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Abstract
We describe ongoing work in a Fabry–Perot interferometry system designed to measure
displacements over a range of 50 mm with sub-pm uncertainty. The apparatus involves
probing two nearby modes of the Fabry–Perot cavity with narrow-linewidth fiber telecom
lasers and measuring both the mode spacing and the absolute mode frequencies relative to a
third, frequency-stabilized, fiber laser. We explore the improvement in resolution obtained as
the frequency separation between the two modes is increased and employ an internal
consistency requirement to infer the magnitude of residual systematic errors. The
measurement uncertainty is sufficiently small that we are easily able to see the Gouy phase
shift as the cavity length is changed over several millimeters.
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1. Introduction

Accurate measurements of displacement are essential to many
applications in manufacturing and scientific research [1].
Various types of laser interferometry are commonly used for
such measurements [2]. While ‘two-beam’ interferometry,
characterized by a sinuosoidal optical fringe [3–5], is the
most common, Fabry–Perot interferometry [6–9] has been
noted to possess a number of distinct advantages for the most
demanding tasks [10]. Recent work [11, 12] is exploring the
benefits that may be derived from using advanced frequency-
comb techniques. In 2005, one of us (JL) probed two adjacent
modes of a Fabry–Perot cavity with light from a helium–
neon laser at 633 nm [10]. In that work, the measurement
of changes in mode spacing alone was sufficient to determine
cavity length changes with an uncertainty of δL = 21 nm, and
by employing an iodine-stabilized laser as an optical reference,
displacements were measured over a distance of 25 mm with
an uncertainty below 10 pm.

In this work, we are revisiting this approach, using fiber
lasers at a wavelength of 1560 nm. This work is underway in
order to make a new ‘calculable capacitor’ [13], a realization
of the SI (International System of Units) farad in terms
of an accurately measured mechanical displacement. The
displacement is to be made over a range of 50 mm, centered

around a length of 85 mm. The fiber lasers are tunable over a
much broader range than helium–neon lasers, and fine tuning
by means of a piezoelectric transducer is sufficiently rapid
that the use of acousto-optic modulators, as done in [10], is
not required. Moreover, the use of telecom fiber components
makes the system vastly simpler and more robust. Most
importantly, the performance of the present system promises
to be considerably better than that obtained formerly with the
helium–neon-based system.

In this paper, we explore two aspects of the new
implementation which are of particular importance for high-
accuracy measurement. First, due to the large tuning range
of the fiber lasers, we are able to span a much larger mode
spacing than was done in the earlier work, yielding improved
resolution and accuracy. Second, displacement measurements
may be made either by interpretation of changes in the Fabry–
Perot cavity mode spacing or by measurement of changes in the
absolute frequency of cavity modes; the associated redundancy
provides a powerful check for systematic errors. In this
way, we have established that the level of systematic errors
present in the current system should allow for displacement
measurements with an accuracy of 25 fm over distances up to
4 μm (assuming a perfect optical reference). In subsequent
work, we will extend this analysis to find the corresponding
limitation over the full 50 mm measurement range. For
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Figure 1. Experimental apparatus. EOM: electro-optic modulator; EDFA: erbium-doped fiber amplifier; FPD: fast photodiode; PPLN:
periodically poled lithium niobate; PBS: polarizing beam splitter; PD: photodiode; FP: Fabry–Perot cavity; FC: frequency counter. Light
from fibers lasers L1 and L2 is combined, collimated and locked to two nearby modes νN and νN+M of a Fabry–Perot cavity. Light from a
third fiber laser L3 is frequency-doubled and locked to a Rb cell to provide an optical frequency reference. The beats between lasers L1 and
L2 and between L2 and L3 are observed with fast (20 GHz) detectors and counted.

the moment, we merely show that the uncertainty is small
enough to allow us to observe the influence of the Gouy
phase shift in the measurement of a displacement of several
millimeters.

2. Principles of Fabry–Perot displacement
metrology

2.1. Review of fundamentals

We start by briefly summarizing Fabry–Perot displacement
metrology using tunable lasers [10]. The Fabry–Perot cavity
is assumed to be formed of one flat mirror and one curved
mirror with a radius of curvature R, separated by a distance
L (figure 1). We consider only the case where the cavity
finesse is high. Laser light is resonant with the cavity when
its frequency matches one of the cavity resonance frequencies
νN given approximately by

νN = c

2L
N, (1)

where c is the speed of light in vacuum and N is an integer. (It is
implicitly assumed that the cavity is operated in vacuum; if not,
the length L would need to be replaced with nL, where n is the
index of refraction of the gas in the cavity, and if n varies with
frequency, then equation (1) requires further modification.)
Thus, if feedback is employed to lock a tunable laser to a
cavity resonance, changes δL in the cavity length manifest
themselves as changes δνN in the cavity resonance frequency.
A more accurate formulation [10], properly accounting for
diffraction and phase shifts upon reflection, is

νN = c

2L

1

1 + α
2π

c
2L

[
N +

1

2π
(2�(L) − φrefl)

]
, (2)

where �(L) = sin−1 √
L/R is the Gouy (or Fresnel) phase

shift associated with diffraction of a Gaussian beam, and φrefl

and α are (unknown) constants associated with reflective phase
shifts at the cavity mirrors. In any case, by comparing a
change in the resonance frequency δνN to an optical reference,
δL can be determined. The utility of this approach to

displacement determination is limited, however, by the range
over which the tunable laser can follow a change in mode
frequency [6, 10].

This difficulty can be largely overcome by probing two
modes of the cavity rather than only one, as the absolute cavity
length L determines the mode spacing (free spectral range).
Using the complete expression (2) for the mode frequencies,
the difference �νN+M,N between the frequencies of modes N
and N + M is

�νN+M,N ≡ �νM = c

2L

M

1 + α
2π

c
2L

, (3)

where the more compact notation �νM is used since the
expression for �νN+M,N is independent of N. Equation (3)
can be solved for the cavity length L in terms of the mode
spacing, and one obtains for the measured length

Lmeas = c

2

[
M

�νM

− α

2π

]
. (4)

This approach to determining the cavity length has been
dubbed the ‘rf method’, as the measurement of �νM is done by
means of radio-frequency (rf) or microwave electronics, with
no optical frequency reference. In this formulation, it is not
necessary to track a particular mode N. Whatever the cavity
length, one simply locks the two lasers to any two nearby
modes. The (small) constant term α

2π
reflects the fact that the

optical field penetrates the dielectric mirror on a length scale
set by the wavelength of the light. This term drops out in the
measurement of a displacement.

2.2. Relation of resolution to mode spacing

In the previous work [10], the limited tuning range of the
acousto-optic modulators allowed only for a measurement of
adjacent modes (M = 1). With the advent of fiber lasers
that can be swept over more than 10 GHz, we are able to
span a much larger mode spacing. It is straightforward to
show that this can yield a correspondingly better resolution.
Differentiating equation (4), one finds

δLmeas = Lmeas
δ(�νM)

�νM

. (5)
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Fluctuations in the measured value of �νM are determined
partly by the fluctuations of the laser frequency about
the mean–mode frequencies νN and νN+M , and partly by
actual fluctuations in the cavity length L. For simplicity, we
assume that these fluctuations are uncorrelated, and the laser-
frequency fluctuations are governed by electronic noise in the
servo. Denoting the laser-frequency fluctuations by δνservo,
one has

δ(�νM) =
√

2δν2
servo +

δL2

L2
�ν2

M. (6)

Substitution of δ(�νM) into equation (5) yields

δLmeas =
√

2L2
meas

δν2
servo

�ν2
M

+ δL2. (7)

Thus, in the case of a perfectly stable cavity (δL = 0), the
resolution in the length measurement is expected to scale
inversely with the mode spacing �νM probed. In this work, we
are limited by the photodetector bandwidth to a mode spacing
of 20 GHz.

3. Experiment

3.1. Apparatus

The experimental apparatus, shown in figure 1, has been
described previously [14]. Briefly, light from fiber lasers L1
and L2 is combined and collimated, and then mode-matched
into a Fabry–Perot cavity with a finesse of F ≈ 20 000 whose
length can be varied over 6 μm by means of a piezoelectric
actuator. The nominal cavity length is set by an aluminum
spacer and the cavity is presently operated in air. The lasers
are independently locked to nearby modes of the cavity and
the beat frequency between the lasers is recorded by means of
a photodetector (20 GHz bandwidth) and microwave counter.
An optical reference is formed by frequency-doubling a third
fiber laser L3 and locking the doubled light (780 nm) by means
of saturated absorption to a rubidium transition. The beat
frequency between lasers L2 and L3 is also measured and
counted.

3.2. Mode spacing

In order to assess the dependence of the length resolution on
the number of modes spanned, we locked lasers L1 and L2
to modes N and N + M for M varying from 1 to 10, and
recorded the beat frequency as a function of time. Figure 2(a)
shows the fractional mode spacing δ(�νM)/〈�νM〉, where the
angle brackets indicate a time average, over a period of 60 s
for M = 1 (〈�νM〉 ≈ 1.91 GHz) and M = 10 (〈�νM〉 ≈
19.1 GHz). It is clear that the measurement for M = 10 is
substantially less noisy, as expected, at high frequencies, but at
low frequencies the mean-square fractional frequency change
is similar. This arises from the fact that the aluminum cavity
under test is not stable. More quantitatively, figure 2(b) shows
the Allan deviation of the fractional frequency fluctuations for
the same separations M = 1 and M = 10. For the smallest
averaging times, the fractional fluctuations are about a factor
of four smaller for the case of M = 10 than they are for M = 1,

and at larger times, the fluctuations in the cavity length start
to dominate and the distinction between M = 1 and M = 10
becomes less pronounced.

We now return to the issue of the length fluctuations
inferred as a function of the number of modes, M, spanned.
Figure 3 shows a log–log plot of the length fluctuations found
for M taking all integral values from 1 to 10. Clearly, the length
fluctuations diminish as M increases, corresponding to better
measurement resolution. The rate of improvement, however,
also diminishes as M increases. For a perfectly stable cavity,
equation (7) implies

δLmeas =
√

2Lmeas
δνservo

�νM

. (8)

The dotted line in figure 3 has a slope of −1, showing that
the behavior embodied in equation (8) is only asymptotically
approached for the smallest values of M. Fluctuations in
the (optical) cavity length, due both to thermal expansion
and contraction of the aluminum spacer and fluctuations in
the index of refraction of air, are the cause. Nevertheless,
we are able to resolve length variations at the level of
2×10−11 m Hz−1/2 using only rf techniques to monitor changes
in the optical mode spacing. Ultimately, we plan to work in
vacuum and lock the cavity length to the interferometer output,
rather than the other way around as we do here.

3.3. Optical reference

Until now, all measurements discussed have been based
on the difference in mode frequencies, rather than absolute
mode frequencies. We now return to the idea of measuring
displacements relative to an optical reference, as embodied in
equation (1) and, more accurately, equation (2). Comparing
equation (2) to equation (3) at the heart of the ‘rf method’, it
is apparent that the resolution of a measurement employing an
optical reference can be expected to be higher by a factor of
approximately N/M . In our case (cavity with a nominal length
L ≈ 100 mm and wavelength λ = 1560 nm), and with �νM

limited to 20 GHz, the expected enhancement in resolution
provided by the optical reference is approximately 104. While
this figure assumes a perfect optical reference, in practice the
enhancement can still be expected to be substantial. This
matter will be discussed more thoroughly below.

Figure 4 shows a comparison of three cavity length
(L ≈ 80 mm) measurements, in which the rf method is
used in the domain where the performance is limited by servo
noise (dashed line) , the rf method is used with M = 10,
and cavity length fluctuations dominate (dotted line), and the
optical method (solid line). The measurements using the
optical method and the rf method with M = 10 were made
simultaneously. While the reduction in noise achieved with the
rf method by going to M = 10 is evident, the optical method
appears to give little improvement over the rf measurement
with M = 10. This is a consequence of the fact that we are
not working in vacuum and the fluctuations observed are true
fluctuations in the optical path length. This is actually a strong
testament to the power of the rf method.
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(a)

(b)

Figure 2. (a) Fluctuations in the mode spacing �νM normalized to the mean value of �νM , for M = 1 (thin line) and M = 10 (bold line).
Interrogating a larger mode spacing reduces the influence of noise imposed by the servo loops, but the slow variations are similar since they
are due to cavity length drifts. (b) Corresponding Allan deviation with square markers for M = 1 and circular markers for M = 10. Error
bars correspond to the Allan deviation divided by the square root of the number of samples used in its computation. The improvement due to
spanning a large number of modes is particularly evident for small integration times. For larger times, the improvement is masked by
variations in the cavity length.

Figure 3. Length fluctuations δL inferred as a function of the number of modes M spanned. The experimental data points (markers) are
fitted using equation (7) (line). The error bars reflect the standard deviation of 20 successive measurements, each of 16 s duration acquired at
a rate of 6 Hz. Increasing M improves the resolution, but the rate of improvement observed diminishes as M increases, owing to fluctuations
in the optical cavity length. The dotted line has a slope of −1, corresponding to the ideal case of resolution inversely proportional to M.
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Figure 4. Time variation of cavity length measurements made with three different methods. Dashed line: rf method dominated by servo
noise; dotted line: rf method with M = 10, where length fluctuations dominate servo noise; solid line: optical method. All traces are
fluctuations about the mean measured cavity length, and are offset from one another by 2 nm for clarity.

(a)

(b)

Figure 5. (a) Nonintegral parts of the ‘effective order number’ Neff defined in equation (9). The standard deviation is σ = 3 × 10−3 and the
integral parts of Neff vary from 86 236 to 86 242. (b) Similar data for nominal cavity lengths of 68 mm (circles), 78 mm (squares) and 82 mm
(triangles). The different mean values are due to the Gouy phase shift.

3.4. Internal consistency verification using optical reference

By working in vacuum it can be expected that the resolution
obtained with the optical method can be used to advantage.
This enhanced resolution only translates to accuracy, however,
in the absence of parasitic Fabry–Perot cavities and other
sources of systematic error that can shift the laser lock

point away from the actual mode frequencies νN and
νN+M . Remarkably, the measurement redundancy present
in measuring displacements via the optical and rf methods
provides a powerful check for the presence of such systematic
errors [10]. Dividing equation (2) by equation (3), one obtains

νN

�ν
≡ Neff = N +

1

2π
(2�(L) − φrefl), (9)
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where

�ν ≡ �νM

M

is the free spectral range. The quantity denoted by Neff is the
ratio of a measurement made with the optical reference, νN , to
a rf measurement �ν of the free spectral range. Equation (9)
states that the nonintegral part of this ratio must be equal to a
constant plus a term arising from the Gouy phase shift.

Figure 5(a) shows the nonintegral parts of Neff arising
from a series of independent measurements made with a
cavity of nominal length L = 67 mm over a distance of
4 μm, in which the integral part of Neff varied from 86 236
to 86 242. Over this range the Gouy phase shift changes are
completely negligible. The error bars are purely statistical,
and correspond to the standard deviation of 180 measurements
performed during a time of 30 s for each cavity length.
The fact that the fluctuations between points exceed the
statistical uncertainties confirms the presence of uncontrolled
systematic errors shifting the measurement lock points. From
the standard deviation σ = 3 × 10−3 in Neff we can infer
an absolute uncertainty (standard deviation) of 78 Hz on
the free spectral range measurement. The corresponding
relative length uncertainty for the rf method is 3.5 × 10−8, or
2.3 nm for this cavity length. Assuming the lock points of
lasers L1 and L2 to be uncorrelated, we infer uncontrolled
random frequency offsets with a standard deviation of 55 Hz
in the individual lock points νservo. The corresponding length
uncertainty for the optical method, from equation (1), is 18 fm.
This level of length uncertainty is of course only realized if
the optical reference has an uncertainty well below 55 Hz; if it
does not, then the optical reference, rather than uncontrolled
perturbations of the frequency lock point, will limit the
measurement uncertainty. We have recently beat laser L3,
locked to rubidium, against a frequency comb [15], and found
an Allan deviation of 1 kHz after 3 s of averaging time. The
corresponding contribution to a cavity length measurement
is δL = L dν/ν = 335 fm. Figure 5(b) shows the result
of similar measurements for three macroscopically different
cavity lengths obtained by the use of different aluminum
spacers. The length fluctuations are of similar magnitude, but
the measurements are slightly offset from one another. This
offset is a manifestation of the Gouy phase shift. A quantitative
evaluation will appear in a future paper. We emphasize that
the accuracy in a measurement of the free spectral range is
nearly two orders of magnitude better than that required to
unambiguously recover the integer part of Neff .

4. Conclusion and outlook

We have described ongoing research in the development of
a Fabry–Perot interferometry system using fiber lasers at
1560 nm to be used in a new calculable capacitor. Two aspects
of this work have been highlighted. First, changes in the cavity
length can be measured by purely rf means by monitoring the
spacing between nearby cavity modes. We have demonstrated
that the resolution can be increased by spanning a greater
number of modes. In our case, we are limited to a span of
approximately ten modes due to the 20 GHz bandwidth of

the photodetector we use to monitor the beat frequency. We
demonstrate a length resolution of 2 × 10−11 m Hz−1/2, that
we believe to be limited essentially by the fluctuations in the
index of refraction of air. By use of a frequency comb [15],
this approach could be extended to a mode spacing of tens
of possibly hundreds of nanometers. As the mode spacing
increases, however, the influence of dispersion in the mirror
reflection will arise and must be accounted for. Second, by
use of an optical reference, we demonstrate that for small
(4 μm) excursions of the cavity length, we can lock the lasers
to the cavity resonances with an rms uncertainty of 55 Hz.
This corresponds to a limiting absolute uncertainty of 2.3 nm
rms in inferring the cavity length using the rf method. We will
soon introduce a frequency comb locked to an atomic clock to
provide a better optical standard. We expect that the ultimate
limitation on the measurement accuracy will be provided by
uncertainty in the laser lock point about the cavity resonances
and should lead to sub-picometer accuracy over our full target
range of 50 mm.
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