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Abstract:  

We used a single, fixed-path-length cylindrical-cavity resonator to measure c0 = 

(307.8252  0.0012) ms1, the zero-density limit of the speed of sound in pure argon 

at the temperature of the triple point of water. Three even and three odd longitudinal 

modes were used in this measurement. Based on the ratio M/0 = (23. 968 644  0. 

000 033) gmol1, determined from an impurity and isotopic analysis of the argon 

used in this measurement and our measured c0, we obtain the value kB = 1.380 650 

61023 JK1 for the Boltzmann constant. This value of kB has the relative uncertainty 

ur(kB) = 7.6106 and is fractionally, (0.12  7.8)106 larger than the value 

recommended by CODATA in 2006.  (The uncertainty is one standard uncertainty.)  

Several, comparatively large imperfections of our prototype cavity affect the even 

longitudinal modes more than the odd modes. Our models for these imperfections are 

approximate, but they suggest that an improved cavity will significantly reduce the 

uncertainty of c0. 
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1. Introduction 

The Boltzmann constant kB relates the thermodynamic temperature to thermal 

energy. Today, the kelvin is defined such that the thermodynamic temperature of the 

triple point of water TTPW is exactly 273.16 K. As part of a larger change to the 

International System of Units (SI), Mills et al. [1] propose to replace the present 

definition of the kelvin with a new one that specifies an exact value of kB. The 

specified value of kB will be chosen to agree with the best measurements available. 

Since the 1970s, acoustic resonators have been the preferred method for 

determining kB [2,3,4,5,6,7,8,9], thermodynamic temperatures [10,11,12,13,14], and 

the thermophysical properties of gases. For determining kB, acoustic resonators rely 

on kinetic theory to relate the speed of sound in a dilute monatomic gas to the kinetic 

energy of the gas atoms and, therefore, to the thermodynamic temperature. For the 

highest possible accuracy, acoustic resonance measurements in dilute gases use 

non-degenerate modes, which are the radially-symmetric modes in a spherical or 

quasi-spherical cavity and the longitudinal modes in a cylindrical cavity. Among these 

modes, the radial modes of spherical and quasi-spherical resonators have the 

advantage of high quality factors, Qs. For resonators of the same volume, the Qs of 

the low-frequency radially-symmetric modes of a spherical cavity are 5 times larger 

than the Qs of low-frequency longitudinal modes of a cylindrical cavity. Despite this 

significant advantage of spherical and quasi-spherical resonators, we chose to use the 

non-degenerate longitudinal modes of a fixed-path-length cylindrical resonator to 

re-determine kB. In part, our choice was motivated by the recommendation of the 

Consultative Committee of Thermometry (CCT) that the redefinition of the kelvin 

should be based on three different methods of measuring kB. In common with several 

other recent measurements of kB, we used an argon-filled acoustic cavity resonator; 

however, the corrections to measured resonance frequencies required to determine the 

thermodynamic speed of sound are quite different for spherical and cylindrical 

cavities. Furthermore, we have measured the length of our cylindrical cavity using 



NIST Version      3  

two-color optical interferometry. Interferometry is subject to very different errors than 

either pychnometry or microwave dimensional metrology, the two methods that have 

been used to determine the volume of spherical and quasi-spherical cavities. 

In this publication, we summarize our measurements of the acoustic resonance 

frequencies, the length of the cylindrical cavity, the impurities and isotopic 

abundances of the argon, and the argon’s temperature. (Part of this work was 

published previously [9,15,16,17].) We also describe the corrections to the acoustic 

frequencies and the determination of kB from fits of the frequencies by a physically 

motivated function of the pressure. Our principal result is: kB = (1.380 650 

6  0.000 010 5)1023 JK1. This new value of kB has the relative standard 

uncertainty ur(kB) = 7.6106 ; it is, fractionally, 0.12106 larger than the value 

recommended in CODATA 2006 [18] and 0.30106 larger than Moldover et al.’s 

measurement in 1988 [3]. It is also consistent with the recent determinations of kB 

using quasi-spherical cavities [5,6,7]. Our analysis also determined the second 

acoustic virial coefficient of argon at TTPW: 3 1
a (5.34 0.15) cm mol   . This result 

is also consistent with the values obtained using spherical and quasi-spherical 

resonators [3,11,5,6,7,19,20,21,22]. 

The uncertainty of our value of kB is dominated by the 6 inconsistent values of kB 

determined by the data for each of 3 even and 3 odd longitudinal acoustic modes of 

our cavity resonator. The inconsistencies may originate in our limited ability to 

characterize and model the differences between the actual cavity and a perfect circular 

cylinder. For example, the fill tube that was used to move argon in and out of the 

cavity had a comparatively large inner diameter and it was surrounded by a gap (slit) 

where it joined the cavity. We used approximate models to calculate the frequency 

perturbations produced by these features. The perturbations were comparatively large 

and sensitive to a poorly-known volume terminating the slit. However, the fill tube 

and gap joined the cavity at a symmetric location where its effects on the odd 

longitudinal modes were small. Therefore, we assessed possible effects of the 

approximations by calculating another value of kB using only the odd longitudinal 
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modes. This value was, fractionally, (5.0  5.2)106 larger than the CODATA value. 

This suggests that, elimination of the gap and similar modifications of cavity might 

reduce the uncertainty of our results by a factor of two or more.  

 

2. Fundamentals of measurement 

2.1 Thermodynamic relation 

The Boltzmann constant kB is related to the speed of sound in an ideal gas by:  

 
2

0
B

0 A

c M
k

T N
    , (1) 

where c0 denotes the speed of sound at the thermodynamic temperature T; NA is the 

Avogadro constant; M is the molar mass of the working gas; 0 CP/CV is the ratio of 

the specific heat capacities that has the value 5/3 for ideal monatomic gases. The 

uncertainty of the Avogadro constant is 5108 which is two orders of magnitude 

smaller than the uncertainty of kB. [18] Therefore, we consider NA to be known.  

The resonance frequencies 0
lf of the longitudinal acoustic modes (l00) of a gas-filled, 

geometrically-perfect, rigid, perfectly-thermally-insulating, cylindrical cavity are 

determined by the speed of sound in the gas c and the length L of the cavity by the 

formula 
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where l = 0,1, 2,… is the longitudinal mode index [9]. (Since this work focuses on 

pure longitudinal modes, we refer to these modes using only the longitudinal index l 

in subscripts for convenience. Other types of modes are designated by the complete 

triplet of indices.) Upon combining this formula with Eq. (1) we obtain the relation 

between kB and the acoustic resonance frequencies of an idealized, gas-filled cavity 
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Our cavity had a radius a  40 mm, a length L  130 mm and we used the modes l = 2, 

3, . . .,7. The resonance frequencies ranged from 2.4 kHz to 8.3 kHz. 
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2.2 Perturbations to the Resonance Frequencies 

The perturbations to the ideal resonance frequencies 0
lf caused by imperfect 

geometry and other well-understood physical phenomena have been described in our 

previous publications [9,15]. For completeness, we review these perturbations here.  

2.2.1 Boundary layers 

The non-zero thermal and viscous admittances of the solid shell surrounding the 

cavity cause the measured resonance frequencies to differ from their unperturbed 

values. The acoustic oscillations are subject to viscous damping in the boundary layer 

where the gas is in contact with the surrounding shell. For the longitudinal modes, the 

viscous damping adds to the ideal resonance frequency the term (fl)v  
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Here, a denotes the radius of the cylindrical cavity; lv denotes the pressure-dependent 

viscous accommodation length; v is the viscous penetration length defined by 
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Here, f denotes the measured resonance frequency and   and   are the viscosity 

and mass density, respectively, at the working temperature and pressure. The viscous 

accommodation length is given by 
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Here, R  kBNA is the universal gas constant, and hv is the viscous (or momentum) 

accommodation coefficient which has a value near 1. [23] The viscous boundary layer 

also increases the half-widths (gl)v of acoustic resonances by [17] 
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The irreversible heat exchange between the gas oscillating in the cavity and the 
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shell surrounding the cavity adds to the ideal resonance frequencies the term (fl)th  
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Here,   CP/CV is the adiabatic index, in which CP and CV are the constant-pressure 

and constant-volume specific heats at the working temperature and pressure. th is 

the thermal penetration length that characterizes the penetration of the thermal 

boundary layer from the cavity’s wall into the gas 
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Here,   denotes thermal conductivity of the gas at the working temperature and 

pressure. In Eq. (8), the subscripts “shell” and “endplate” indicate properties of the 

material.  

In Eq. (8), lth denotes the thermal accommodation length, given by [3]  
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where hth is the thermal accommodation coefficient that has been found to be 

approximately 1.0 for several acoustic resonators [3,11], CV,m is the molar specific 

heat at constant volume of the gas. At low gas pressures, the frequency perturbations 

terms (fl)v and (fl)th increase as (pressure)1 as the pressure is reduced. In the 

discussion below, we allow for this dependence in the determination of the 

zero-pressure speed of sound c0 by correcting the measured resonance frequencies for 

known effects and then fitting the corrected frequencies by a polynomial function of 

the pressure with and without a p1 term.  

The irreversible heat exchange between the gas oscillating in the cavity and the 

shell increases the half-widths of the acoustic resonances by the term (gl)th: 
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Acoustic oscillations are attenuated throughout the volume of the cavity by both the 
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viscosity and the thermal conductivity of the gas. This attenuation contributes a term 

to the resonance half-width [3] given by the term (gl)bulk: 
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2.2.2 Mechanical admittance of the shell 

The shell surrounding the cavity deforms in response to the acoustic pressure in 

the gas. In general, the mechanical admittance associated with these deformations is 

difficult to calculate. In a prior publication [9], we calculated perturbations for three 

deformations: (1) radial ( sh,1f ) and (2) axial ( sh,2f ) deformations of a finite-length 

cylindrical shell, and (3) bending of the end-plates ( sh,3f ). These perturbations have 

similar functional forms  
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where the compliance Gi,l depends upon the geometry, the gas mode l, and elastic 

properties of the resonator and fsh,i is the frequency of the ith resonance of the shell for 

the deformation under consideration. For the present resonator, our estimates are: (1) 

for radial motion, fsh,1  20.23 kHz for l = 2,4,6 and 26.85 kHz for l = 3,5,7. The 

scaled compliances * 12 3
, ,10 J mi l i lG G   are *

1,2G  through *
1,7G  are 1.91, 1.23, 0.559, 

0.268, 0.136, 0.0767, respectively. (2) For axial motion, fsh,2  15.1 kHz and *
2G  = 

4.23 and, (3) for the bending of the end-plates assuming that both plates were simply 

supported around their average circumference fsh,3  12.6 kHz and *
3G  = 2.67; for 

bending of the end-plates assuming that both plates were clamped to a rigid cylinder, 

fsh,3  27.1 kHz and *
3G  = 4.36. 

For the acoustic modes with odd l, the unbalanced acoustic pressure on the 

end-plates causes recoil. For simplicity, we estimated the recoil perturbation by 

approximating the steel cylinder as a rigid, free body. In this approximation, the 



NIST Version      8  

perturbation is 

 
  2

gassh4 solid
0

fluid res

1 2
,odd 

2
l

l

f MKE
l

f KE l M
      

 
 , (14) 

where the last equality is in terms of the total mass of the gas Mgas ( 0.0011 kg at 

100 kPa) and the mass of the resonator Mres. 12 kg. When we measured kB, the 

cylindrical resonator was clamped to a stage that was bolted to the pressure vessel 

which was hung inside the thermostat. This assembled structure had its own 

mechanical resonance frequencies. In the unlikely circumstance that all of these 

frequencies were above the frequencies of the (l00) modes (1.2 kHz to 8.3 kHz), Mres 

in Eq. (14) should be replaced with the larger mass Massembly  180 kg. 

Significantly, all four perturbations from the shell’s admittance fsh,i have a nearly 

linear dependence on the pressure of the gas. As discussed in Section 5.6, we deduce 

kB by correcting the measured resonance frequencies for the known perturbations and 

fitting the corrected resonance frequencies to polynomial functions of the pressure. 

Therefore, our imperfect estimates of fsh,i will lead to mode-dependent values of the 

second acoustic virial coefficient a. However, the imperfect estimates do not affect 

the values of c0 and kB. The expected linear dependence of fsh,i on the pressure 

results from three concepts: (1) conservation of momentum, which leads to 

perturbations in the form of Eq. (13), (2) over the narrow range of our measurements 

(T = TTPW and p < 550 kPa) the quantity c2/p changes only 0.6 % and fl changes only 

0.15 %, and (3) fl << fsh,i from our estimates of the shell resonance frequencies, 

therefore the denominator in Eq. (13) never gets so close to zero that the pressure 

dependence of fl /fsh,i is significant.  

2.2.3 Gas fill duct 

We used the method of Gillis et al. [15] to calculate the frequency perturbations 

(fl)d to the (l00) modes caused by the duct that admitted gas into the cavity. The duct 

opened to the cavity mid-way between the end-plates where the odd (l00) modes have a 

pressure node. Therefore (fl)d = 0 for the odd l modes, in the first order of the theory. 

We determined the inner diameter of the fill duct by measuring the pressure difference 
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across the ends of the duct while a measured quantity of argon flowed through it. The 

inner diameter was 2.133 mm ± 0.002 mm and the duct’s length was 2.744 m  0.005 

m. We coiled the duct around the outside of the resonator. At top of the pressure vessel, 

the fill duct joined a larger tube that had an inner diameter of 4.57 mm, a length of 2 m 

and was, for most of its length, at ambient temperature. The larger tube led to a 

diaphragm valve that had a small internal volume and was always closed during the 

acoustic measurements.  

The largest fill-duct perturbations occurred for the (200) mode at 2.4 kHz. These 

perturbations ranged from (fd + igd)/f = (0.4+ i116.4)106 at 550 kPa to (fd + 

igd)/f = (0.8 + i112.4)106 at 50 kPa. The large imaginary part of these 

perturbations is a cause for concern because    2

d dg f r a l   sets the scale for 

acoustic energy in the duct. An un-modeled, pressure-independent mechanism could 

alter the phase cancellation within the duct and thereby change fd by as much as 1 % of 

gd. Such a change would generate an error in kB of 2106. The effect of the 

uncertainty of the fill duct length was largest for the (200) mode at the highest pressure. 

A change of 5 mm in the fill duct length changed the perturbation  2 d
f f  by 

1.7106 at 550 kPa, but did not change the perturbation at 50 kPa. This 

pressure-dependent sensitivity increases the uncertainty of the determination of c0
2 for 

the (200) mode by 1.8106. In the future, we will use a smaller-diameter duct to reduce 

the perturbations. 

2.2.4 Slit surrounding the gas fill duct 

Figure 1 displays the entrance of the duct into the cylindrical shell of the 

resonator. The duct was sealed to the outside of the shell with a commercial 

compression fitting. To avoid compressing the duct, the fitting was not tightened to 

the manufacturer’s specification and the seal leaked slightly. This arrangement 

exposed the acoustic field in the cylindrical cavity to a long, narrow gap between the 

outside of the duct and the hole in the shell. At its widest point, the gap was measured 

to be 0.03 mm, with a possible range from 0.02 mm to 0.05 mm. The depth of the gap 
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was estimated to be 35 mm. The admittance of the gap does not perturb the modes 

with odd l because these modes have a pressure node at the entrance to the gap, 

midway between the end-plates of the resonator.  

We estimated the effect of the gap on the resonance frequencies of the even l 

modes in two ways. In a first approximation, we assumed that the duct was concentric 

with the hole in the shell, thereby forming an annular gap. We approximated the 

annular gap as a slit 35 mm deep with a rectangular cross-section 0.015 mm  10 mm 

terminated by an infinite acoustic impedance and we used the formulas in Section 5.3 

of Mehl et al. [24] to calculate the frequency perturbations. At 550 kPa, the 

perturbations of the l = 2, 4, 6 resonance frequencies are 1.4 ppm, 0.9 ppm, and 

0.6 ppm, respectively. In the range 550 kPa to 100 kPa the perturbations are 

approximately linear functions of the pressure that extrapolate to 0.6 ppm, 0.4 ppm, 

and 0.4 ppm, respectively, at zero pressure. In the range of our measurements, the 

rectangular-slit calculation predicts the half-widths of the l = 2, 4, 6 resonances 

increase by nearly the same amount as their frequencies decrease.  

In a second approximation, we assumed that the duct was off center with the hole 

in the shell, as sketched in the lower-right corner of Fig. 1. We approximated this 

shape by two rectangular slits 35 mm deep with cross-sections 0.0075 mm  5 mm 

and 0.023 mm  5 mm. At 550 kPa, the perturbations of the l = 2, 4, 6 resonance 

frequencies were -1.5 ppm, -0.8 ppm, and -0.4 ppm, respectively. Linear 

extrapolations give zero-pressure perturbations of -0.8 ppm, -0.6 ppm, and -0.5 ppm, 

respectively. This two-slit model predicts half-widths that are about 20 % larger than 

the annular gap model.  

2.2.5 Angle between end-plates 

As discussed in Section 5.1.2, the end-plates of the cavity were tilted at an angle 

of 37 microradians with respect to each other. In addition, both end-plates might have 

been tilted by a similar angle  with respect to the axis of the cylinder. Such a tilt in 

the endplates leaves the average cavity length unchanged, to first order in a L  and 
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perturbs the resonance frequencies by an amount proportional to  2
a L  and was 

neglected. 

2.2.6 Chamfer on corners of cylinder 

Often, the machining of cylindrical shells leaves a burr of metal on every corner; 

subsequent removal of the burr leaves a chamfer. We measured the dimensions of the 

chamfers on the inner corners of our shell to be (0.028  0.012) mm high and 

(0.043  0.006) mm wide as sketched in Fig. 1. The chamfers are located at both ends 

of the cylinder, which are at pressure anti-nodes for all modes. Therefore all of the 

longitudinal modes are affected by such chamfers. The chamfers at both ends of the 

shell together increased the cavity’s volume by the fraction 7
cham res2 4.7 10V V     

and the solid surfaces exposed to the argon increased by 2
cham2 34 mmS  . (Scham 

includes contributions from the metal shell and the fused silica end-plates.) We 

approximated the actual chamfer by a radial slit with the same volume and surface 

area in order to estimate the specific acoustic admittance. We chose the slit 

dimensions to be 2tslit = 0.18 mm high and Dslit = 0.033 mm deep for our model. For 

this geometry, the acoustic admittance ycham is given approximately by a lossy planar 

waveguide terminated by a lossy plate 
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and 
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The perturbation including both chamfers is 
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where the net change in the admittance is cham cham Ty y y    and chamA  is the 

surface area of the shell that is replaced by the chamfer. For the (200) mode, Eq. 

(19) predicts 610 0.77 0.04lF f i     at 550 kPa and 610 0.77 0.01lF f i     at 

100 kPa; whereas, the perturbations for the (700) mode are 610 0.72 0.11lF f i     

at 550 kPa and 610 0.77 0.03lF f i     at 100 kPa. The real part of this 

perturbation is weakly dependent on both the mode and the pressure. In contrast, the 

contribution to the half-width depends upon mode and pressure through the thermal 

penetration length th. We also modeled the same chamfer by slits with the extreme 

dimensions of 2tslit = 0.014 mm high by Dslit = 0.043 mm deep and 2tslit = 0.028 mm 

high by Dslit = 0.022 mm deep. We used the differences between the results from the 

models as a measure of the model’s uncertainty. Although this perturbation is fairly 

small, it does not extrapolate linearly with pressure to near zero, and it depends on 

difficult-to-measure dimensions. In future work, we will avoid chamfers.  

 

3. Transducer perturbation and signal-to-noise ratio 

We used piezoelectric transducers (PZTs) to excite and detect the acoustic 

resonances. In comparison with the small capacitive microphones that are often used 

in metrological applications of gas-filled acoustic resonators, the PZT driver generates 

a significantly larger signal and the PZT detector has a much larger capacitance that 

allowed us to connect the PZT to a remote amplifier with a coaxial cable. (In contrast, 

triaxial cable with a driven shield must be used with small microphones.) The drive 

PZT was excited with 7 V (RMS) and it dissipated 1.0 W at 2 kHz. Under these 

conditions, the fractional standard deviation of the voltages from a curve fitting was 

2.0104, a factor of 7 smaller than we obtained with the capacitor microphones. As a 

result, we measured the resonance frequencies fl with the fractional uncertainty of 

2.0107 when the Q was greater than 600. The response of each PZT was a linear 
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function of the static pressure. This contrasts with the non-linear pressure dependence 

of the response of the loud speaker that was used to measure kB in Ref. [2]. We 

searched for non-linearity in the response of the installed PZTs to the acoustic 

pressure by exciting the drive PZT with 3.5, 7, and 14 VRMS. The dependence of the 

acoustic resonant frequencies on the drive voltage was negligible. We reported the 

performance of the PZTs elsewhere [9,16].  

The end-plates of the cylindrical cavity were made of fused-silica to facilitate the 

measurement of the cavity’s length using laser interferometry. We ground a blind hole 

into the outside-facing surface of each end-plate to form a diaphragm flush with the 

inside surface, thereby preserving the cylindrical shape of the cavity. (See Fig. 3.) 

Each diaphragm had a diameter of 10 mm and a thickness of 0.4 mm. Each PZT disk 

had a diameter of 6.4 mm and a thickness of 0.5 mm. These disks were bonded to the 

outer surface of a diaphragm with epoxy and each was concentric with the diaphragm. 

As discussed in [9], the drive PZT was located 25.2 mm from the axis of the cylinder 

and the detector PZT was on the axis. The driver and the detector were on opposite 

ends of the cavity; the 13 cm between them reduced crosstalk.  

In response to the acoustic pressure in the cavity, the largest bending stress in each 

diaphragm occurred near its perimeter. Therefore, the low-frequency compliance of 

the diaphragm was determined by the properties of fused silica and not by the 

properties of PZT. We modeled each diaphragm as a thin plate clamped around its 

perimeter and loaded with a 98 mg, the mass of a PZT transducer. The frequency 

perturbation generated by the compliance of each diaphragm was  
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where the diaphragm’s resonance frequency was fdm  38 kHz. (See Figs. 2 and 3 in 

Ref. [9].) Because Eq. (20) has the same functional form as Eq. (13), the compliance 

of the {transducer + diaphragm}, like the compliance of the shell, is nearly a linear 

function of the pressure. Therefore, imperfections in the modeling of ftr affect the 
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determination of the second acoustic virial coefficient a, but not kB. 

 The perturbations from small capacitive microphones are more complicated than 

Eq. (20), the perturbation from our PZT transducers. When the diaphragm of a 

microphone is displaced, it compresses the gas in the complicated cavity between the 

diaphragm and a back-plate. The compression generates restoring and damping forces 

that are complicated functions of the frequency, pressure and transport properties of 

the gas.  

 

4. Experimental setup 

The experimental setup and the resonator assembly were sketched in Figs. 2 and 3. 

The pressure vessel containing the resonator assembly was installed in a thermostat 

that had a stability of better than  0.1 mK in 24 hours [9,17]. The temperature of the 

resonator was measured using three capsule-type standard platinum resistance 

thermometers (Hart 5686) 1 , of diameter 5.5 mm and length 30 mm. These 

thermometers were installed at the top, the middle and the bottom of the cylinder. We 

used an ASL F900 bridge to measure ratios of the thermometer resistances to a 100  

standard resistor (Tinsley 5685A) that was thermostatted with a stability of  1 mK. 

The sinusoidal acoustic driving voltage was generated by an arbitrary waveform 

generator (Agilent 33220A) that was locked to a 10 MHz standard signal derived from 

a GPS clock. A frequency counter (Agilent 53131A) monitored the signal frequency 

from the waveform generator. The counter verified that frequency stability was better 

than 0.05106 during the measurement of a single mode. The signal from the PZT 

detector was measured with a two-phase lock-in amplifier (Stanford Research 

SR830).  

At 20 C, the cylinder bounding the cavity had the nominal length of 129.390 mm, 
 

1In order to describe materials and procedures adequately, it is occasionally necessary to identify 

commercial products by manufacturer’s name or label. In no instance does such identification imply 

endorsement by either China’s National Institute of Metrology or the United States’ National Institute 

of Standards and Technology, nor does it imply that the particular product or equipment is necessarily 

the best available for the purpose. 
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a diameter of 80 mm, and a thickness of 30 mm. It was made of bearing steel that had 

a Young’s modulus of 210 GPa (somewhat larger than that of stainless steel), a 

Poisson’s ratio of 0.29 and a density of 7800 kgm3. Both end-plates had a thickness 

20 mm and were fabricated from optical-quality, fused silica with a Young’s modulus 

of 73 GPa, a Poisson’s ratio of 0.17 and a density of 2210 kgm3. The inner surface of 

each end-plate was coated with a partially-reflecting metallic film. Both end-plates 

were bolted tightly to the cylinder. They were installed using an indicating torque 

wrench to control the tension in each bolt. Each end-plate had a blind hole that had 

been machined into the outside-facing surface to form an integrated diaphragm flush 

with the inside surface, thereby preserving the cylindrical shape of the cavity. As 

indicated above, the PZT was cemented to the outside surface of each diaphragm with 

epoxy.  

An absolute pressure gauge (Ruska 7250 xi, 0 to 600 kPa) was used to control and 

measure the argon gas pressure inside the pressure vessel at 50 Pa to 200 Pa below the 

pressure in the cylindrical cavity. We relied on the flatness of the surfaces of the 

end-plates and the cylinder’s ends to minimize the leakage of the pure argon gas from 

the cavity into the pressure vessel. These precautions ensured that the argon inside the 

cavity would not be contaminated by outgassing from the transducers, epoxy, wire 

insulation, etc. in the pressure vessel. A differential pressure gauge (MKS Baratron 

616A, 100 Torr) measured the pressure difference between the cavity and a buffer 

volume thermostatted near ambient temperature. The metal diaphragm of the 

differential pressure gauge isolated the cavity from the rest of the gas manifold. The 

pressure inside the buffer volume was measured by another Ruska 7250 xi absolute 

pressure gauge. The absolute pressure gauge and the differential pressure gauge were 

calibrated by the National Institute of Metrology (NIM), China. The pressure 

uncertainty was estimated to be less than ±20 Pa including the uncertainty of the 

absolute pressure gauge of ±15 Pa from (0 to 600) kPa and the uncertainty of the 

differential pressure gauge of ±0.12% of reading. The pressure uncertainty contributes 

no more than 0.05106 to the uncertainty in kB. 
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5. Measurement Procedures 

5.1 Cylinder length measurement 

We determined the internal length of the cylindrical cavity in 6 steps. First, we 

used a coordinate measuring machine to make a comparatively crude measurement of 

the length of the bearing steel cylinder at 20C. (Sec. 5.1.1.) Second, we bolted the 

endplates to the cylinder and used two-color interferometry to make an accurate 

measurement of the assembled resonator’s internal length along an axis displaced 

15 mm from the symmetry axis. (Sec. 5.1.2) Third, we rotated the resonator about its 

symmetry axis while monitoring the interference pattern to determine the angle 

between the endplates and to determine the length of the cavity on the symmetry axis. 

(Sec. 5.1.3) Fourth, we measured the thermal contraction of the length as the cavity 

was cooled to TTPW. Fifth, we estimated the pressured dependence of the length (Sec. 

5.1.4) and the effect of bolting the endplates to the cylinder (Sec. 5.1.5). Finally, we 

estimated the difference between the optical length of the cavity and the acoustical 

length. 

5.1.1 Coordinate measurements of the cylinder’s length 

Before the conducting the length measurements, we cleaned the bearing steel 

cylinder to remove the rust-inhibiting oil. Then, it was allowed to thermally 

equilibrate in the length gauge laboratory for more than 24 hours. The temperature 

inside the laboratory was controlled within  0.2C. The cylinder was supported 

horizontally on a 3-dimensional coordinate measuring machine (3D CMM) that was 

equipped with an integrated laser interferometer. Translational displacements 

measured with the interferometer reduce the effects of thermal non-uniformities and 

guiding deviations in the pitch and torsional motion along the CMM. The CMM/laser 

interferometer was used to determine the distance between 191 pairs of points on the 

opposite ends of the cylinder. As discussed in Section 5.1.3, we assumed that the ends 

of the cylinder were non-parallel planes. The result for the average mechanical length 

of the cylinder’s axis was Lmech(20C, 100 kPa)  (129.3927  0.0008) mm. The 
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uncertainty is one standard uncertainty but does not enter into the uncertainty budget 

for the determination of kB.   

5.1.2 Two color measurements of the resonator’s length 

The two end-plates of optical-quality fused silica glass were bolted to the cylinder 

cavity to form the resonator. The inner surface of each end-plate had been coated with 

a metallic film to increase its optical reflectivity. As stated in Refs. [25,26], the 

penetration of laser beams into the partially reflecting films was on the order of 20 nm. 

The resonator was tightly clamped to a rotation stage inside the pressure vessel, where, 

as indicated in Fig. 3, the axis of the resonator was vertical. The pressure vessel 

assembly, together with the rotation stage and the resonator inside it, was maintained 

in the laboratory at (20.00.2)C.  

The resonator was filled with argon at the pressure 101.603 kPa. The temperature 

of the argon was monitored using the thermometers installed in the walls bounding the 

cavity and averaged 19.916 C with fluctuations of 0.002 C. We adopted the values 

of the refractive index of argon from Ref. [27] and we corrected them for small 

density changes using the suitable approximation: 2 2
2 1 1 2( 1) ( 1)n n    .   

 In our previous publication [9], we described the use of two-color 

interferometry to determine the length of the cylindrical cavity. Our analysis follows 

Ref. [28] and uses measurements of fractional interference fringes formed by two 

lasers of known, unequal wavelengths. Our lasers had nominal wavelengths of 

633 nm and 543 nm and beam diameters of approximately 1 mm. Both lasers were 

calibrated and had a fractional stability better than 2108. As sketched in Fig. 3, the 

laser beams entered the vertical cavity through the top end-plate and exited through 

the bottom end-plate onto a camera. The laser beams formed two sets of 

equal-inclination interference patterns because of the  37 microradian angle that 

existed between the metallic films when the end-plates were bolted to the cylinder. 

From measurements of the fractional fringes, we determined the optical length of 

between the windows with an uncertainty of 30 nm, which contributed a standard 
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relative uncertainty of 0.4610-6 to the determination of kB. 

5.1.3 Angle between end-plates  

As shown in Fig. 4 of Ref. [9], one acoustic transducer was located on the axis 

of the resonator and the other was located, radially, 25.2 mm off of the axis. To avoid 

the transducers, the laser beams entered the cavity parallel to its axis but 

approximately 15 mm from the axis. Because the laser measurements were made 

off-axis and because there was an angle between the end-plates, the length determined 

by the laser measurements had to be corrected to determine the cavity’s length on its 

axis. (It is the axial length that determines the frequencies of the (l00) acoustic modes.) 

To determine the correction, we rotated the resonator about its axis and observed the 

interference fringes first expand outward and then contract inward, finally returning to 

their initial positions when a full rotation was completed. These observations 

indicated that, by accident, the laser measured the shortest length on the 15 mm radius. 

The displacement of the 633 nm laser fringes was measured and interpreted by 

assuming that the metallic reflecting film on each end-plate was flat and rigid. The 

total variation of cylinder length was 1.143 m and the length of the cavity’s axis (the 

arithmetic mean length) was 0.572 m larger than that measured by two color laser 

interferometry at the original orientation. We concluded that the mean optical length 

of the cavity was Lopt(19.916 C, 101.604 kPa) = (129.39 171  0.00 003) mm.  

5.1.4 Thermal contraction 

The pressure vessel, together with the rotation stage and the resonator inside it, 

were cooled from an initial equilibrium state at 19.9165C and 101.603 kPa to a final 

equilibrium state at TTPW and 94.921 kPa. The resonator’s contraction between these 

equilibrium states was calculated by counting interference fringes, measuring the 

initial and final fringe fractions, and accounting for the small (0.4510-6) fractional 

increase of the refractivity of argon in the cavity as the density of the argon in the 

cavity increased. As the cooling proceeded, we continuously recorded the CCD 

images of the interference fringes from the 633 nm laser as well as the pressure in the 

cylinder and the readings of the thermometers embedded in the cylinder. During the 
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cooling process, valve V11 (Fig. 2) was closed to isolate the cavity from the gas 

supply. During the cooling, the gas pressure in the pressure vessel was controlled to 

be 50 Pa to 150 Pa below the pressure within the resonator. Thus, the resonator was 

under nearly isotropic (hydrostatic) pressure at every temperature. 

The two results of the cooling measurements were: (1) the cavity’s average 

coefficient of linear thermal expansion was T = (dL/dT)/L = 1.049105 K1 and, (2) 

the optical length of the axis of the cavity was Lopt(TTPW, 94.921 kPa) = 129.36470 

mm. The fringe counting contributed a standard relative uncertainty of 0.42106 to 

the determination of kB.  

5.1.5 Deformations from bolts, gravity, and pressure 

As discussed above, we made a comparatively coarse measurement of the 

cylinder’s length using a coordinate measuring machine before installing the 

end-plates to conduct two-color interferometry and we used the result of the 

coordinate measurements in the excess-fraction calculation for the two-color laser 

interferometry. Each endplate was secured to the cylinder with twenty M8 bolts. Each 

bolt was tightened with an indicating torque-wrench to a maximum torque of about 

4 Nm. While we tightened the bolts, we monitored the length of the 130 mm cylinder 

with the 633 nm laser in one, fixed  position. The interference pattern did not change 

significantly. We would have detected a change in the length of order 633 nm/2 or an 

equivalent change in the angle between the endplates. We estimated the deformation 

of the cylinder generated by the bolts holding the end-plates in position using the 

ABAQUS/CAE analysis tools. The estimate assumed that the coefficient of friction 

between the bolts and the threads inside the cylinder was 0.5. Under these conditions, 

the calculated deformation from the bolts was 0.46 m which is smaller than the 

allowable uncertainty ( 0.96 m) of the coarse measurement. The deformation on the 

order of 10 nm from gravity contributed a standard relative uncertainty of 0.1510-6 to 

the determination of kB.  

The cylindrical resonator was installed in a pressure vessel filled with argon. 
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During the acoustic measurements, the pressure inside the resonator was maintained 

50 Pa to 200 Pa higher than the pressure outside the resonator. We used the 

ABAQUS/CAE analysis tools to calculate the elastic response of the resonator to 

these small pressure differences. They changed the cavity’s length by less than 

0.01 m. Our analysis corrected the resonance frequencies for this effect.  

While the acoustic measurements were made, the argon pressures within both the 

resonator and the pressure vessel were varied in the range 30 kPa to 500 kPa thereby 

subjecting the resonator to significant hydrostatic pressures. Using the values of 

Young’s modulus and Poisson’s ratio mentioned above, we accounted for the effect of 

hydrostatic pressure on the length of the cavityto obtain Lopt(TTWP, p) = 129.36473 

mm  [1  10-6 (p/MPa)]. Because this contraction is a linear function of the 

pressure, it has no influence on the determination of kB; however, it will slightly affect 

the value of the second acoustic virial coefficient determined by fitting the corrected 

resonance frequencies to a polynomial function of the pressure.  

 

5.1.6 Difference between optical length and acoustic length. 

The inside surface of each endplate had a partially reflective metallic coating 

protected by a dielectric overlayer. The manufacturer estimated the thickness of each 

coating + overlayer was between 5 nm and 20 nm. The laser beams penetrated an 

unknown distance up to 20 nm into the metallic coating on each end-plate. [23,25] 

Therefore, we assume the optical length of the cavity was approximately 40 nm 

longer than the acoustic length. When calculating the speed of sound, we reduced the 

optical length by the fraction 0.31106 and added ½ of this value to the uncertainty 

of the acoustic length.  

    6
acoustic 129.36469 mm 1 2 10 MPaL L p        (21) 

The contribution to ur(kB) is 0.30106 from the optical-acoustic difference 
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5.2 Temperature measurement 

The temperature of the argon was measured with three 25  standard capsule-type 

platinum resistance thermometers (Hart 5686) we embedded in the steel cylinder 

surrounding the cavity. We calibrated the thermometers in a triple-point-of-water cell 

that agreed with China’s national reference triple-point standard within 0.03 mK, 

after the correction for the isotopic abundances in the water. 

We observed that humidity interfered with the calibration of the thermometers. To 

eliminate the humidity effect, we encapsulated the thermometers in 300 mm long, 

thin-walled, stainless-steel tubes filled with argon. We used a thin layer of thermally 

conducting grease to improve the thermal contact between the thermometers and the 

steel capsules. After encapsulating the thermometers, the humidity effect was not 

detected during repeated calibrations spanning tens of days. During the calibrations, 

each thermometer was periodically cycled between room temperature and TTPW. The 

largest change observed during the calibration of the three thermometers was 

equivalent to 0.13 mK. 

After completing the calibrations, the thermometers, HS 195, HS 159 and HS 192, 

were installed at the upper, middle and the bottom of the cylinder, respectively. We 

used a thin layer of thermally conducting grease in each well to improve the thermal 

contact between the thermometer and well. During two months of measurements, the 

thermometer at the top of the cylinder consistently read 0.1 mK warmer than the 

thermometer at the bottom. The thermometer in the middle of the cylinder read as 

much as 0.4 mK warmer than the thermometer at the top. We calculated the 

temperature of the argon within the resonator from average of the three thermometer 

readings. During the measurement of a set of acoustic frequencies [modes (200) to 

(700)] the maximum temperature variation was less than 0.2 mK. 

Thermometry contributed to the uncertainty of kB through uncertainties in the 

calibration and the stability of thermometers, the temperature measurements, and 

temperature gradients. The maximum temperature change between thermometer 

calibrations (0.13 mK) was counted as a type B uncertainty with the relative value 
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ur(T) = 0.48106. The temperature of gas was assumed to be the average reading of 

the three thermometers; therefore, half of the maximum gradient (0.4 mK)/2, was 

assumed to be a type B uncertainty ur(T) = 0.73106. The gas temperatures varied 

during the frequency measurements. The maximum variation was 0.2 mK, which was 

counted as a type B uncertainty ur(T) = 0.73106. 

 

5.3 Impurity and isotopic composition 

We used “BIP” pure argon gas from Air Products for the acoustic measurements. 

As shown in Fig. 2, the gas flowed from the manufacturer’s cylinder through a getter 

(Aeronex GateKeeper) into the resonator. We collected a sample of the gas after it had 

passed through the getter and we had the sample analyzed by the Center for Gas 

Metrology, Korea Institute of Standards and Science (KRISS).  The results of the 

analysis for chemical impurities are listed in Table 2 and the results of the analysis for 

the relative abundances of the argon isotopes are shown listed in Table 3.  We 

expected the getter would remove the chemically reactive impurities such as 

hydrocarbons, H2O, O2, CO2, and CO from the working gas; therefore, we were 

surprised by the comparatively large [(19.00.9) mol/mol] concentration of nitrogen 

in the gas sample.  

Impurities change the zero-pressure limit of the speed of sound c0; therefore, the 

uncertainties of the impurity concentrations contribute to the uncertainty of our 

determination of kB. Using the methods from [3] and the uncertainties in Table 2, we 

concluded that the chemical impurity contribution to the relative uncertainty of the 

zero-pressure speed of sound at TTPW was: ur(c0) = 1.2106; this conclusion also 

appears in Table 7. 

The KRISS results in Table 3 determine the value MAr = (39.947 843  0.000 028) 

gmol1 for  the molar mass of the commercially-purchased, “BIP” argon that we 

used for the acoustic measurements. (The relative uncertainty, ur(MAr) = 0.7106, 

appears in Table 7.)  Figure 4, compares our KRISS result for MAr with other 
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measurements for commercially-purchased argon.  Our value (labeled “This work”) 

is close to the average of all of the measurements shown except the anomalous “NPL 

#1” sample.   

The agreement of our KRISS result with the other results in Fig. 4 is evidence 

against hypothetical, correlated uncertainties among recent determinations 

measurements of kB.  Recently, Valkiers et als. [29] at the Institute for Reference 

Material and Measurements (IRMM) measured the relative isotopic abundance ratios 

Ar36/Ar40 and Ar38/Ar40 in argon from 8 commercial sources and calculated 8 values 

of MAr with the remarkably small uncertainty ur(MAr) = 0.09106. The IRMM results 

are plotted on Fig. 4 as 8 points between “Lee” and “This work”. The 8 IRMM results 

include three samples that were recently used to determine provisional values of kB at 

National Metrology Institutes, specifically, NPL #1 and NPL #2 [7], and LNE #1 [30], 

If there were an undetected bias in the IRMM results, it would affect both of these 

recent determinations of kB equally. Our result and the three older points on the left of 

Fig. 4 do not rely on the IRMM data; therefore, they provide a bound on any possible 

bias. The point on the left labeled “Nier” displays his results [31] for commercial 

argon obtained by mass spectrometry in 1950. The two values of MAr on Fig. 4 labeled 

NIST-M and NIST-A were used to determine kB at NIST in 1988. [3] These two 

values of MAr did not rely on sophisticated mass spectrometry. Instead, the NIST 

group purchased a sample of isotopically enriched Ar40 to use as a mass standard and 

they used their acoustic resonator to determine the ratio (MAr,commercial)/(MAr-40). 

Figure 4 does not display one value of MAr obtained from a non-commercial 

source by Nier [31] and one obtained by Lee et als. [32] because these values of MAr 

might depend upon the method of purification.  We note that the samples INRIM-A 

and INRIM-B [11] were used in acoustic determinations of thermodynamic 

temperature ratios. This application requires MAr to be constant; however, it does not 

require that MAr to be accurately known. 
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5.4 Frequency Measurements 

5.4.1 Fitting resonance frequencies fN and half-widths gN 

We used the procedure described in Ref. [3] to measure the resonance frequencies 

fN and the half-widths gN. After estimating fN and gN from either a preliminary 

measurement or a theoretical model, we stepped the drive transducer through 13 

synthesized, discrete frequencies in equal increments starting at fN – 2.5gN and ending 

at fN + 2.5gN. Then, the frequency sweep was reversed by starting at fN + 2.5gN and 

ending at fN 2.5gN. At each frequency, the in-phase voltage u and the quadrature 

voltage v generated by the detector transducer were measured by a lock-in amplifier. 

The 26 frequencies and complex voltages were fitted by the resonance function: 

 2
2 2

( ) ( )
( )N N

ifA
u iv B C f f D f f

f f ig
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 
   (22) 

where, A, B, C and D are complex constants; FN = fN + igN is the complex resonance 

frequency of the mode N under study; the parameter f
~

 is fixed and is usually taken 

as the average frequency for the data in the fit. The parameters B and C account for 

the effects of possible cross talk and the “tails” of the modes other than N. In all the 

fits, the term 2( )D f f   in Eq. (22) was significant.  

The contributions to gN in Eq. (22) from the thermal and viscous boundary layers vary 

as f 1/2. This phenomenon generates a small asymmetry in the shape of the resonance. 

To account for this, we used the correction 

  2
corrected 8N N Nf f f f Q      (23) 

derived by Gillis et als. [33] In this work, the smallest value of the Q was 350 [mode 

(200) at 50 kPa] where the, the fractional correction to fN is 1.0106 and the 

fractional correction to kB is twice as large.  

5.4.2 Uncertainty of resonance frequency measurements 

The measured resonance frequency fN is related to the unperturbed (ideal) 

resonance frequency 0
Nf  by  
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 0
b d sh trN Nf f f f f f      (24) 

where fb  (fth + fv) is the sum of the thermal and viscous boundary layer 

perturbations; fd is the perturbation from a fill duct; fsh  fsh1 + fsh2 + fsh3 + fsh4 

is the sum of the perturbations from the shell’s motion, and ftr is the perturbation 

from the transducers.. 

In Ref. [34], one of us estimated the relative uncertainties of the viscosity ur(Ar)  

0.00025 and the thermal conductivity ur(Ar)  0.00025 of argon in the limit of zero 

density at 273.16 K. Using these estimates in Eqs. (4) and (8) leads to an estimated 

relative uncertainty of the thermo-acoustic boundary layer correction: ur(fb)  

0.00013. For the worst case l = 2 and p = 50 kPa, 0
b 2 b 2f f f f    0.0016 and its 

contribution to ur(kB) is 2u(fb)/fN  0.4106. This uncertainty is negligible in 

comparison with other, larger contributions to the uncertainty budget. 

The imprecision of a measurement of fN and gN is proportional to gN /(s/n), where 

s/n denotes the signal-to-noise ratio of a measurement of the acoustic pressure. The 

drive transducer generates an acoustic pressure kpQ, where p is ambient pressure, 

Q  fN/(2gN) is the quality factor, and k is a dimensionless proportionality factor for 

our apparatus. The acoustic detector generates the signal s = kkpQ. For our cavity at 

the lower pressures, 1/(2Q) = gN/fN  0.6 (p/kPaf/Hz)1/2. Therefore, at low pressures, 

the random error of resonance frequency measurements varies as 

   N N N Nf f g f n k kpQ     . For the high Q resonances at high pressures, we 

observed that fN/fN  2107. Thus, the random noise in our measurement was 

approximated by the function 
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The loss of precision in the data below 100 kPa was obvious.  

5.4.3 Frequency measurements at TTPW 

To prepare for the measurements, the resonator assembly, the rotation stage, and the 
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pressure vessel were installed in the thermostat at room temperature. The resonator, 

the pressure vessel, and the gas manifold were purged automatically with the working 

argon gas for more than 48 hours. During this purging process, the entire system was 

baked at 55 C, except for the differential pressure gauge (Baratron 616A) which was 

baked at 120 C. During each frequency measurement, the valve leading from the fill 

duct to the gas manifold was closed. 

During each of three successive runs, we measured the resonant frequencies of the 

modes (200) through (700) as the pressure was decreased in steps from 500 kPa to 

50 kPa. The results from the three runs were mutually consistent. During the 

4-hour-long interval required to measure f2, …, f7, the cylinder’s steady-state 

temperature was within 2 mK of TTPW and it was stable to 0.1 mK. 

When the frequency measurements on each pressure step were completed, the 

valves leading to the gas-handling system were opened and the pressures inside the 

resonator and the pressure vessel were reduced to the next pressure and maintained 

constant. As the pressure decreased, the adiabatic expansion of the argon cooled the 

cylinder. We returned the cylinder to TTPW using a heater glued on the outside of the 

cylinder near its center. 

Between each of the 3 runs, the cylindrical cavity was repeatedly evacuated and 

filled with the argon working gas for at least 12 hours. While this purging proceeded, 

the gas manifold was baked. Once the purging was completed, the cavity was filled 

with argon to 500 kPa to begin the next run. 

We were unable to acquire useful data for the modes (800) and (900) because 

these modes partially overlapped other modes of the gas-filled cavity and/or the shell 

surrounding the cavity.  

 

5.5 Analysis of speed-of-sound measurements 

The speeds of sound were computed from the corrected frequency measurements 

and the cavity’s lengths at the experimental temperatures and pressures T and p. Then, 
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the speeds of sound were computed exactly at TTPW using the relation 

      2 2
TPW TPW, / ,c T p T T c T p   . (26) 

The acoustic model for the cylindrical resonator does not include terms on the 

order (v/a)2 and [(  1)(T/a)]2. The approximate values of these terms are (v/a)2  

2.0106(100 kPa)/(lp) and [(  1)(T/a)]2  1.3106(100 kPa)/(lp) in the range 

of our measurements (modes l = 2 to 7; T = TTPW; 30 kPa < p < 550 kPa) Thus, 

neglecting these unknown terms might produce an l-dependent trend in the values of 

2
0c  determined for the various modes. Because of this concern, we did not take data 

for the l =1 mode. (Also, the corrections to f100 from the fill duct are very large and 

uncertain.) As the pressure decreases, the neglected terms increase as p1 and the 

signal-to-noise ratio of the frequency measurements decreases as p2. (See 

Section 5.4.2.) Therefore, we reduced the weight of the data below 100 kPa as 

(p/100 kPa)2. 

Figure 5 provides a compact overview of our results. We plot the scaled 

differences 6 2 2 2
ref10 ( ) /c c c  between our measurements of c2 using 6 modes and 

“reference” values of c2 reported in Ref. [3]. This comparison does not require fitting 

various functions to our data. The differences 6 2 2 2
ref10 ( ) /c c c  are nearly linear 

functions of the pressure for each mode. The differences tend to decrease as the 

pressure decreases; however, they do not vanish at zero pressure. We quantified this 

comparison by fitting the equation  

    2 2
TPW Ref TPW 0, 1,, ,l l lc T p c T p A A p      . (27) 

to our data between 100 kPa and 550 kPa for each mode separately. The unweighted 

average of the intercepts 0,lA  for the 6 modes gave 2
0c  = 94756.47 m2 s2 with a 

standard deviation of 7.2 ppm. This average intercept is 3.1 ppm higher than the 

reference value 94756.178 m2 s2 [3]. Because the inconsistencies among the modes at 

zero pressure exceed the noise, we expect that improved construction and/or modeling 

will reduce the uncertainty of c0.  
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In order determine the speed-of-sound of the ideal gas c0 without referring to 

Ref. [3], we simultaneously fit the 130 measured frequencies fl,i over the entire 

pressure range with the system of equations with 14 adjustable parameters 

  
2

3 2 1
, , 3 0, 1, 2 1

2 i
l i l i i l l i i i

L
f f A p A A p A p A p

l




             
. (28) 

Here, the six modes are denoted by l = 2…7, and nl is the number of data points for 

mode l. (nl = 22 for l = 3,4,6,7, and nl =21 for l = 2 and 5.) The length of the cavity Li 

is subscripted because it depends on the pressure and temperature of the ith point. Six 

of the adjusted parameters were the intercepts 2
0, 0,l lA c  for each mode and six 

parameters were the slopes 1,lA  for each mode. These coefficients are 

mode-dependent because of the imperfections in our models for the compliance of the 

shell and the shape of the cavity, as discussed in Section 2.2. The parameter 

2 a Ar5 / (3 )A M  is a multiple of the third acoustic virial coefficient a; therefore, we 

assumed that it had the same value for every mode. Because c0 is only weakly 

sensitive to A3 we fixed A3 at the value 1.451018 m2ꞏs2ꞏPa2 taken from Ref. [35]. 

The parameter 1A  accounts for the thermal and momentum accommodation 

coefficients and we also assumed that it had the same value for every mode.  

The minimization function 2  was a weighted sum of the squared deviations 

from Eq. (28). The deviation at each frequency and pressure was weighted by the 

quantity     1
, ,i i i iw f p f p


    , where   2, 2 N Nf p c f f    and N Nf f  

was obtained from Eq. (25). The results of the surface fit are listed Table 4 in the 

column designated “fit 1” and the scaled deviations for the fit are displayed in Fig. 6. 

The uncertainties given in Table 4 reflect the statistical uncertainties for the 

coefficients from the fit. The uncertainty for coefficient A  was calculated using 

2
dfN  , where   is the diagonal element of the covariance matrix and Ndf is 

the number of degrees of freedom in the fit. The average of the coefficients 
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2
0, 0lA c  for the 6 modes is 94756.36 m2s2 with a standard deviation of 0.72 

m2s2 and a relative uncertainty u(c0
2)/ c0

2 of 7.6 ppm. The average of the coefficients 

1, 1lA A  is 4 2 2 12.227 10 m s Pa      with a standard deviation of 

4 2 2 10.061 10 m s Pa     . This value of A1 is equivalent to the value 

  6 3 1
a 5.34 0.15 10 m mol       for second acoustic virial coefficient. 

The result 2 =186 for 116 degrees of freedom and also the observation (Fig. 6) 

that 9 scaled deviations fall outside the range 2  suggest that our a priori estimate 

of the frequency uncertainties was 30 % too small; however, it is satisfying that the 

scaled deviations do not have obvious pressure- or mode- dependences. 

Fit 1 yielded the value A1 = (4.1  7.3)103 m2s2Pa, which indicates that its 

value could not be determined from these data. To demonstrate that A-1  0 is 

consistent with the data, we refit the data with A1 fixed at 0. The results are in Table 4 

in the column labeled “fit 2”. Fixing A1  0 did not change 2 significantly, and it 

increased the average A0,l by 0.62 ppm. We treat this as an added uncertainty in the 

determination of kB. The results from from the mode fits and the surface fits are 

summarized in Table 5. 

As mentioned above, the differences between values of c0
2 determined from the 6 

longitudinal modes are larger than their respective uncertainties. We suspect that our 

incomplete understanding of some imperfections in the cavity’s shape contribute to 

these mode inconsistencies. The imperfection associated with the fill duct produces a 

large perturbation with a large uncertainty that affects the even longitudinal modes, 

but not the odd modes. The value of kB determined when we excluded the even modes 

from the analysis was, fractionally, (5.0  5.2)106 smaller than the CODATA value.  

 

5.6 Determination of kB 

The Boltzmann constant kB was re-determined by Eq. (3) based on the 

speed-of-sound of idea gas c0, the triple point of water TTPW, the molecular mass M, 
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the Avogadro constant NA, and the ratio of specific heat capacity for ideal gas 0. The 

new determination of kB is 23 11.380 650 6 10 J K   , which is 0.12106 above the 

value recommended in CODATA 2006. Table 6 compares our new determination of kB 

and other acoustic determinations of kB with the value recommended by CODATA in 

2006. [18] All of the tabulated values agree, within combined uncertainties, with the 

CODATA recommendation and none claim smaller uncertainties than the CODATA 

value.  

 

6 Uncertainty budget 

The Boltzmann constant kB is connected to measured quantities (frequencies fl, 

mode l, length L, temperature T, pressure p), calculated frequency perturbations fl, 

the fundamental constant NA, quantities measured by others (A3, MAr), and fitted 

quantities (A1,l, A2, A1) through the relation 
 

 
2

2 3Ar 1
B 1, 2 3

A

3 2
( )

5 l l l

M AL
k f f A p A p A p

TN l p


          
   

  . (29) 

Thus, the relative uncertainties ur(MAr) ur(T), and ur(L2) contribute directly into the 

relative uncertainty of ur(kB). [For ur(L2), this is an excellent approximation because 

the L2 term in the square brackets of Eq. (29) is at least 800 times larger than the other 

terms.] The uncertainties of calculated perturbations u(fl) contribute to ur(kB) in a 

complicated way that we explored by numerical experiments. Table 7 lists all our 

estimates of contributions to ur(kB) from these known sources and includes references 

to the appropriate sections of this manuscript for the estimates.  

As discussed in Section 5.5, each of the 6 modes 2 l  7 were fit by Eq. (29)

independently and yielded independent values of kB. The resulting values of kB 

differed from each other by more than their estimated uncertainties. We treated the 

standard deviation of these values from their mean as an additional contribution to the 

uncertainty of kB and we refer to it as “inconsistency among modes”. These 

inconsistencies are anomalous because we do not know their source. They are a 



NIST Version      31  

quantitative measure of the how our real resonator differs from our model for the 

resonator. 

Figure 7 provides a completely independent, quantitative measure of how our real 

resonator differs from our model for the resonator. Figure 7 is a plot of the difference 

between the measured and calculated half-widths of the resonances g  (gmeas  gcalc). 

When g is multiplied by 2106 / f and plotted, it is analogous to the speed-of-sound 

difference 6 2 2 2
ref10 ( ) /c c c  plotted in Fig. 5, insofar as both quantities are computed 

from the data and model without fitting any parameters. Because gl and fl are the real 

and imaginary parts of a single complex frequency, it is reassuring that the values of 

2106 g / f are comparable to the values 6 2 2 2
ref10 ( ) /c c c . However, the 

consistently negative values of g for the l = 4 mode are anomalous. (A truly negative 

g would violate conservation of energy.) At the end of the following section, we 

speculate about the origins and cures of the anomalous inconsistency among the 

modes and on the anomalous negative values of g. 

 

7. Summary and discussion 

We used a single acoustic cylindrical resonator to re-determine kB. Our result, 

kB = 23 11.380650 6 10 J K    has the relative standard uncertainty: ur(kB) = 7.6106 

and is, fractionally, 0.12106 above the value determined by CODATA in 2006 [18]. 

Our result agrees, within combined uncertainties with other determinations of kB that 

used spherical and quasi-spherical resonators [3,5,6,7]. We also determined the second 

acoustic virial coefficient a = 3 15.34 0.15 cm mol  . This result agrees, within 

combined uncertainties, with the values of a clustered about 5.4 cm3ꞏmol1 that were 

determined using spherical and quasi-spherical resonators. [3,7,12,20,21,22] This 

value of a does not agree with the value a = (4.920.34) cm3mol1 previously 

determined using a highly-accurate, variable-length cylindrical resonator. [2] Finally, 

we determined the quadratic term in Eq. (29): A2 = (5.188  0.051)1011 m2s2Pa2. 
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Our value for A2 does not agree, within combined uncertainties, with the value A2 = (5.321  

0.062)1011 m2s2Pa2 reported in Ref. [3]. These results for kB and a suggest that 

many aspects of our resonator are well understood. Nevertheless, the anomalous 

inconsistencies of c2 as p0 in Fig. 5 and the anomalous negative values of g in 

Fig. 7 show that our understanding of the cylindrical resonator is incomplete. 

We speculate that the both anomalies may have resulted, in part, from our use of 

an inadequate protocol for determining resonance frequencies. As described in 

Section 5.4.1, we determined the complex resonance frequencies by fitting 

voltage-vs-frequency data with Eq. (22) to determine the values of fN and gN. Then, we 

used Eq. (23) to correct fN and gN for the asymmetry in the shape of low-Q resonances. 

However, Eq. (23) is a numerical approximation that was determined in [33] for the 

particular frequency span fN  2g and a particular combination of acoustic surface 

losses and bulk viscosity. In the future, we shall fit the voltage-vs-frequency data to a 

more exact version of Eq. (22) where the constant gN is replaced with the 

frequency-dependent function that is appropriate for our mode- and 

pressure-dependent combination of frequency span, surface, bulk-viscosity, and duct 

losses.  

We noticed that the unperturbed l = 4 mode at 4.76 kHz has two near neighbors, 

the (001) mode at 4.69 kHz and the (101) mode at 4.84 kHz. Also, the l = 5 and l = 7 

modes each have one near neighbor. To deal with closely spaced neighbors, we will 

enlarge the span of the voltage-vs-frequency data to include the neighboring modes 

and find the values of FN that best fit the neighboring modes.  

Minor changes of the present apparatus should improve the results. In the future 

we will use a fill duct with a smaller inside diameter, and we will fill the gap where 

the duct joins the cavity. This will reduce the perturbations and their uncertainties. We 

expect that some or most of the anomalies will be reduced. 

More complicated improvements are possible. In [9], we proposed an innovative 

two-resonator method for determining kB. Both cylindrical resonators will have the 
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same diameter cavity and their lengths will be in the ratio 2:1. We will exploit the 2:1 

length ratio to study several longitudinal resonances in both resonators at the same 

frequency and we will transfer a pair of end-plates from one resonator to the other. 

Furthermore, the fill duct will enter the resonator through the endplate. The 

frequency-dependent corrections from the end-plates, including those from the fill 

duct will be nearly identical in both resonators; therefore, they can be eliminated by 

combining the measurements from the two resonators. Similarly, the optical effects of 

the semi-transparent metal films can be eliminated from the combined measurements. 

Thus, we expect the two-cylinder method will significantly reduce ur(kB).  

Finally, we are conducting experiments to establish the feasibility of using 

non-degenerate TM microwave resonances to determining the dimensions of a 

fixed-length, cylindrical cavity. [17] Microwave length measurements are likely to be 

simpler than optical length measurements, particularly when working at very high or 

very low temperatures where optical access is difficult. The combination of 

microwave resonances and acoustic measurements in the same cavity can be used to 

accurately determine the dielectric properties of gases and solids.  
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Table 1. Perturbations for fixed path cylinder resonator 

Quantity Unit Relationship 

Measurement frequency 
correction 

Hz    2 2
corrected corrected8 and 4N N N Nf f f Q g g g Q       

2nd viral coefficient [20] 3 1m mol     4 1 5 2 634.1954 1.1599 10 9.62070 10 10B T T T         

Second acoustic virial 
coefficient 

3 1m mol       2 2
0

a 0 2
0

1d d
2 2 1

d d

B B
T B

T T


 




     

Density 3mol m   , 1
p p

p T B
RT RT

    
 

 

Constant pressure heat 
capacity 

1 1J kg K     
2

2
2

5 d
,

2 dp

B p R
C p T T

T RT M

 
  
 

 

Ratio of specific heat 
capacities 

      
2

2 2
0 0 2

5
, 1 2 1 1

3

dB p d B p
p T T T

dT RT dT RT
  

      
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Thermal conductivity [21,22] 1 1W m K        316.3815+0.052 -273.16 +0.02, 16 10p TT       

Viscosity [21,22] Pa s        620.9627+0.066 -273.16 +0.0111, ,1 10p T p TT        

Thermal penetration length m   th
th

1
,

2

P

D

f
p T

C


  

   

Viscous penetration length m   v
v

2 1
,

f
p T

D 
  

   

Thermal accommodation 
length 

m   th
th

th ,

2 1
,

2 / 0.5V m

hMT
l p T

p R h C R

  



 

Viscous accommodation 
length 

m   v
v

v

2
,

2

hRT
l p T

p M h

  
  
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Thermal boundary layer 
correction 

 
   th

th th th,shell th,endplate0
shell endplate

1 2 2
2 1

2
l

l

f a a
l

f a L L

    
 

           
   

 

Viscous boundary layer 
correction 

 
   0 v

v
v

1
2

2
l

l

f

f R
l


   

ith correction for shell motion  
     

 

12 3 1
,sh, 2

20 gas 0
sh

10 m  J  

1

l i li

l l i

f G
c

f f f


   
 


 

correction for longitudinal 
recoil 

 
  2

gassh4 solid
0

fluid res

1 2
,odd 

2
l

l

f MKE
l

f KE l M
      

 
 

transducer correction  
 
   

2 33
gtr dm dm

20 2 0
dmFS ,FS dm

1 2 1

16 1l p l

cf a aa

f L a tc f f




         

    
 

duct correction [15]  
d d
2 2d

0

Re , even number

0, odd numberl

iy A
lf

l a
f

l


        
 
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Contribution of the thermal 
boundary layer to resonance 

half-width[23, 13] 
 

 th
th th,shell th,endplate0

shell endplate

1 2 2
1

2
l

l

g a a

f a L L

    
 

        
   

 

Contribution of the viscous 
boundary layer to resonance 

half-width[23, 13] 
 

 v v
0 2

l

l

g

f a


  

Contribution of bulk 
attenuation of sound to 

resonance half-width [24, 3] 
  

2
2 2bulk
v th0

4
1

3l

g f

f c

         
 


 

 

Contribution of Duct 
Correction to resonance 

half-width [14] 
 

  d d
2 2d

0

Im , even number

0, odd number

l

l

iy A
g l

l a
f

l


       
 
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Table 2. Impurity analysis of working gas 

Component 
*Molar mass 

(gmol1) 

Molar mass 
uncertainty** 

(gmol1) 

Mole fraction 
(mol/mol) 

Fraction 
uncertainty** 
(mol/mol) 

Hydrogen 2.015 88 0.000 07 2.6 0.5 

Helium 4.002 602 0.000 001 1.6 0.3 

Carbon Dioxide 44.009 5 0.000 5 1.3 3.8 

Methane 16.042 46 0.000 43 0.5 0.3 

Oxygen 31.998 8 0.000 3 1.6 0.3 

Nitrogen 28.013 4 0.000 2 19.0 0.9 

Neon 20.179 7 0.000 3 1.1 0.6 

Krypton 83.798 0.001 0.3 0.2 

Xenon 131.293 0.003 0.5 0.3 

Argon 39.947 843 0.000 028 999971.5 4.0 

* From Ref. [36] 
** Standard uncertainty (1). 
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Table 3. Argon isotopic analysis 

Isotope 
Fraction 

of argon 

Fraction 

uncertainty* 

**Molar mass 

(gmol1) 

Molar mass  

uncertainty* 

(gmol1)  

Molar mass of 

argon in sample  

(gmol1)   

36Ar 0.003 325 0.000 003 35.967 546 26  0.000 000 14 
39.947 843  

0.000 028 
38Ar 0.000 629 0.000 012 37.962 732 2 0.000 000 3 

40Ar 0.996 046 0.000 012 39.962 383 124 0.000 000 003 

* Standard uncertainty (1) 
**.From Ref. [37]. 

 



NIST Version      40  

Table 4. Results of fits to speed-of-sound surface fit at the triple point of water 

parameter fit 1 fit 2 

A0,2/ m2 s2 94757.513  0.12 94757.567  0.075 

A0,3/ m2 s2 94756.428  0.12 94756.482  0.064 

A0,4/ m2 s2 94756.481  0.11 94756.536  0.059 

A0,5/ m2 s2 94755.512  0.11 94755.567  0.057 

A0,6/ m2 s2 94756.600  0.11 94756.655  0.053 

A0,7/ m2 s2 94755.653  0.11 94755.708  0.051 

104 A1,2/ m2 s2 Pa1 2.2162  0.0046 2.2142  0.0029 

104 A1,3/ m2 s2 Pa1 2.3439  0.0045 2.3419  0.0028 

104 A1,4/ m2 s2 Pa1 2.1921  0.0045 2.1901  0.0027 

104 A1,5/ m2 s2 Pa1 2.2396  0.0045 2.2377  0.0027 

104 A1,6/ m2 s2 Pa1 2.1773  0.0044 2.1753  0.0026 

104 A1,7/ m2 s2 Pa1 2.1949  0.0044 2.1929  0.0026 

1011A2/ m2 s2 Pa2 5.188  0.051 5.209  0.034 

103A1/ m2 s2 Pa 4.1  7.3 0 

2 186 186 

 



NIST Version      41  

Table 5. Speed of sound mode and surface fits 

Parameter Value (mode fits) Value (surface fits) 

2 2
0 m sA  94756.47 ± 0.72 94756.36 ± 0.72 

4 2 2 1
110 m s PaA    2.219 ± 0.061 2.227 ± 0.061 

11 2 2 2
210 m s PaA     5.188 ± 0.051 

3 1
a / cm mol  5.319 ± 0.15 5.339 ± 0.15 

  1
0 g molM   23.968644 ± 0.000033 
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Table 6. Acoustic determinations of kB compared with the 
CODATA 2006 value 1.3806504(24)1023 JK1 reported in [17].  

Source 
6B 2006

2006

10
k k

k


  

Uncertainty 

(1)106 

This work 0.12 7.6 

CODATA 2006 [17] 0.00 1.7 

Moldover, et. al. [3] 0.18 1.7 

Sutton, et. al.[11] 0.58 3.1 

Pitre, et. al.[10] 1.88 
+2.34 
1.35 

Gavioso, et. al. [9] 7.50 7.5 

Colclough et. al. [2] 4.0a 8.4 

aRe-calculated using the Avogadro constant from [17] 
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 Table 7. Relative uncertainties for determining kB.  

Uncertainty source Reference 106(Relative uncertainty) 

1. Gas temperature measurement  Sec. 5.2  
Thermometer calibration  0.48 
Temperature gradient  0.73 
Temperature fluctuation  0.73 
   

2. Avogadro constant,  [18] 0.05 
   
3. Molar mass Sec. 5.3  

Abundance of impurities  1.2 
Isotopic abundance ratios  0.7 

   
4. Length measurement  Sec. 5.1  

Two color interferometry at 20.000 C  0.46 
Optical-acoustic difference  0.30 
Length contraction  0.42 
Cylinder deformation from gravity  0.15 
   

5. Zero-pressure limit of corrected frequencies  Sec. 5.4  
Boundary layer corrections   0.40 
Random error in frequency measurements   0.26 

  Difference between “fit 1” and “fit 2”  0.62 
   

Root sum of squares known uncertainties  2.1 

   
Inconsistency among six modes  7.6 
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Fig. 1. Diagram of the joint between duct and cylindrical shell. (Not to scale.) 
All dimensions are in millimeters. Inset in lower right is a model 
cross-section. The chamfers at the ends of the shell are also noted. 
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Fig. 2. Sketch of the experimental setup. The labels refer to: B, thermostat bath; 
BF, buffer volume; DP, differential pressure transducer; FG, functional generator; 
LA, lock-in amplifier; MTaH/L, absolute manometer; P, purifier; PC, computer; 
PV, pressure vessel; R, resonator; RF, GPS reference frequency; SW, selector 
switch; T, thermometer; TB, thermometer bridge; VP, vacuum pump; V1-V14, 
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Fig. 3. Cylindrical resonator assembly  
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Fig. 4. Values of MAr for argon from 13 commercial samples. The data sources are: 
Nier [31]; NIST-A and NIST-B [3]; all others [29], except for “This work”.  



NIST Version      48  

 

Fig. 5. Present values of the square of the speed of sound in argon at TTPW determined 
with modes l = 2, . . .,7, compared with results of Moldover et al. [3] 
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Fig. 6. Deviations of the speed-of-sound data from the surface fit divided by 
twice the uncertainty of a frequency measurement from Eq. (25). 
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Fig. 7. Mode-dependent excess half-widths multiplied by 2106/frequency. 
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