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Abstract:  The vast majority of points collected with coordinate measuring machines are not used 
in isolation; rather, collections of these points are associated with geometric features through 
fitting routines.  In manufacturing applications, there are two fundamental questions that persist 
about the efficacy of this fitting – first, do the points collected adequately represent the surface 
under inspection; and second, does the association of substitute (fitted) geometry with the points 
meet criteria consistent with the standardized geometric specification of the product.  This paper 
addresses the second question for least-squares fitting both as a historical survey of past and 
current practices, and as a harbinger of the influence of new specification criteria under 
consideration for international standardization. It also touches upon a set of new issues posed by 
the international standardization on the first question as related to sampling and least-squares 
fitting. 
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1 Introduction 
Computational coordinate metrology deals with the problem of fitting and filtering of discrete 
geometric data measured on the surface (or in the interior) of a manufactured product [1, 2]. 
Such measurements are typically made by coordinate measuring machines (CMM). In the 
manufacturing industrial setting, we are interested in using these measurements (1) to verify if 
the manufactured part is within designer-specified tolerances, and (2) to evaluate the capability 
of a manufacturing process and ensure that the process stays in control during the production run.   
 As with virtually every technology used in manufacturing, the availability of inexpensive 
computing power has made advanced data analysis available to many users in a more timely 
manner than ever before.  Initial advances in CMM technology focused on the real-time 
compensation of geometric errors in the CMM structure and the fitting of measured basic 
geometric elements.   
 While multiple fitting choices were available (e.g., minimum-zone fitting) the stability, 
speed, and robustness of least-squares algorithms made them a natural choice for early 
programmers.  The very public release of a GIDEP alert [3] was the first indication to many 
users that the use of least-squares did not fully capture the spirit of the ASME Y14.5 tolerancing 
standard used to specify most products.  The recognition of a ‘methods divergence’ between 
coordinate metrology systems and open setup (i.e., hard-gaging) systems led to the 
implementation of the non-least-squares algorithms described later in this paper in Section 4. 
 In this paper, we introduce least-squares fitting and give ten reasons in Section 2 for its 
enduring appeal. We note that it is not our intent to recommend one fitting choice over another. 
Rather we simply seek to document some of the reasons for the prevalence of the least-squares 
fits as seen today, including an emerging urgency posed by major developments in ISO 
(International Organization for Standardization) standards. In Section 3 we briefly outline on-
going computational metrology research for free-form surfaces using least-squares fitting. 
Section 4 describes current industrial practice driven by zone-based tolerance specifications in 
some detail, and offers a technical and historic perspective on the methods divergence alluded to 
earlier. It sets the stage for Section 5, which defines the continuous least-squares fitting problem 
and exposes a convergence problem associated with sampling that has hitherto remained hidden 
from general technical discussion in this field; it also provides a remedy in the form of weighted 
least-squares fitting. 

2 Ten Reasons for the Enduring Appeal of Least-squares Fitting 
A CMM user has a wide range of software fitting options ranging from using a least-squares 
criterion to employing (among others) minimum-zone, maximum-inscribed, minimum-
circumscribed, and L1 fits along with constrained or shifted variations of these. Over the past two 
decades, the least-squares fit has remained the most popular fit used in practice, despite the 
awareness and availability of various other fit objectives. Listed below are ten reasons for the 
enduring appeal of the least-squares fitting criterion. 



2.1 Ordinary least-squares regression has a long history and large existing application 
base in data analysis. 
Linear least-squares fitting has been a popular tool for analyzing experimental data since the 
days of Gauss and Legendre [4]. In the context of their classical work, we will cast the simple 
problem of fitting a straight line to a set of m points in a plane as shown in Figure 1. The fitted 
straight line may be represented in the familiar linear form 
  , (1) 
where c1 and c2 are the coefficients to be determined. The problem becomes interesting when 
m > 2 and the points are not collinear – a typical case in coordinate metrology. Assuming that the 
‘errors’ are only the vertical direction, which is a major assumption that we will remedy shortly, 
we have an over-determined set of equations given by 

 

 ,

 (2) 

where the Cartesian coordinates of the point pi are represented by (pi,1 ,  pi,2) and m > 2. We can 
write the set of equations of (2) in a convenient matrix notation as Ac = b and – here lies the 
contribution of Gauss and Legendre – an optimizing vector c can be obtained by solving the 
normal equation [ATA]c = ATb, even though Eq. 2 generally has no solution.  
 

 

Figure 1:  Linear least-squares fitting of a straight line in a plane. 
  
 It can be easily shown that this solution for c solves the optimization problem 

,                                                 (3) 
where the objective function is the sum of the squares of the errors. Hence we have the least-
squares fitting. It is also known as linear regression, especially in the statistical literature. In the 
parlance of popular scientific and technical computing, popularized by the likes of MATLAB, 
we can find this solution using the backslash operator as in c = A\b without resorting to the 
explicit solution of the normal equation. (All codes given in this paper are in the MATLAB 
language). Matrix generalizations of this kind are very useful for least-squares fitting (or, linear 



regression) in higher dimensional cases. For example, fitting a plane to a set of points in space is 
a simple exercise of expanding A to an m×3 matrix. 

2.2 Linear total least-squares problems are similar in nature to ordinary least-squares 
regression problems and are easy to solve. 
 A slightly different problem that is of major interest to coordinate metrology arises when 
we want to fit a straight line to a set of m points in a plane, without prejudice to whether the 
errors are in the horizontal or vertical direction. Figure 2 shows a case where the errors are 
considered perpendicular to the line to be fitted. In such a case, it is not a good idea to represent 
the straight line in the linear form (1) because it does not admit the possibility of the line being 
vertical. So, we pick a more general representation in the form of a point q on the line, and a 
vector v (usually unitized) perpendicular to the line. If we denote the perpendicular distance of a 
point pi to the fitted straight line l as di, then we pose a new optimization problem  

 ,                                                                        (4) 
which is known as the total least-squares fitting problem [5-7]. Since the ‘error’ distances di’s 
are measured orthogonal to the fitted straight line, it is also referred to as the orthogonal 
regression problem in some literature. 
 

 

Figure 2:  Total least-squares fitting of a straight line in a plane. 
  
 It is indeed fortunate that part of the solution to the problem in (4) can be found by a 
clever observation that the centroid of the m points lies on the fitted line. So we can always set q 
= ( ). Having solved half the problem, we can turn to finding the vector v 
perpendicular to the fitted line. For this, we first translate all the points so that the centroid, in 
this case q, lies at the origin of the coordinate frame. Denoting such translation by the mapping 
of pi to pi

* we can then form a matrix of central Cartesian coordinates as 

.                                                                (5) 



It can then be shown that the vector v can be found as the singular vector corresponding to the 
smallest singular value of A in (5). Alternatively, with some sacrifice of numerical accuracy, the 
same vector v can be easily found as the eigenvector corresponding to the smallest eigenvalue of 
ATA, which is just a real symmetric 2×2 matrix. 
 To illustrate the simplicity of the total least-squares computation, which has contributed 
considerably to its appeal in computational coordinate metrology, a short code that does the 
entire computation is given below: 
 
function [q, v] = tlsqLine(X, Y) 
    q = [mean(X); mean(Y)]; 
    A = [(X - q(1)), (Y - q(2))]; 
    [U, S, V] = svd(A);                   % Can be replaced by [V, S] = eig(A’*A); 
    [s, i] = min(diag(S)); 
    v = V(:, i); 
return; 

 
This six-line code snippet has the reputation of being the pithiest non-trivial code in all of 
computational coordinate metrology. What is more, the theoretical arguments and the code can 
be directly extended to higher dimensional cases [7]. 
 Before we leave this section, it is worth making some physical analogy to total least-
squares fitting of lines and planes. We will have an occasion to exploit this analogy later in 
Section 5. What we are actually computing is the inertial ellipsoid of a set of unit point masses. 
To see this, consider the set of m points as physical point masses with unit weight assigned to 
each point. As in classical physics, treat this set of points as a rigid entity and associate a second-
order tensor by taking all second moments with respect to the original coordinate system. It is 
then an elementary exercise in classical mechanics to compute the principal moments of inertia 
and the principal axes – together, they define the size and orientation of the inertial ellipsoid 
centered at the centroid of the point masses. The normal vector v that we compute for least-
squares fitting is aligned with a principal axis. The same idea resurfaces in statistical analysis in 
the form of principal component analysis. 
 It is interesting to contemplate cases where one may assign non-uniform weights to the 
measured points, leading to a weighted total least-squares fitting problem. Later, in Section 5, we 
will show that this arises naturally when we consider the problem of least-squares fitting to a 
continuum of points (as opposed to a discrete set of points) and proceed to solve it using 
numerical integration. But, before that, we need to address some nonlinear total least-squares 
problems still involving discrete sets of points. 

2.3 Least-squares fitting makes nonlinear problems more manageable. 
After disposing of the linear elements such as straight lines and planes quite easily and elegantly 
in Section 2.2, we turn to the more sobering cases of fitting nonlinear elements such as circles, 
spheres, cylinders, cones, and tori to a set of measured points. It is possible to pose their fitting as 
nonlinear optimizations problems. In general, such nonlinear problems are quite nasty to handle. 



However, the least-squares formulation provides some desirable structure to the problem that 
renders its solution manageable [5, 6]. 
 All nonlinear total least-squares problems are solved iteratively, starting from an initial 
guess for the solution. Of the many iterative techniques that have been proposed and tried, three 
of the most popular ones are Gauss-Newton, Levenberg-Marquart, and ‘trust region’ algorithms. 
The optimization toolbox implements all of them in its lsqnonlin function. Since these iterative 
methods converge only to the local minimum close to the initial guess, it is important to start 
with as good an initial solution as we can find. 
 For circles in a plane and spheres in space, a clever observation based on parabolic 
transformation provides good, automatic starting solutions. To illustrate this, consider the 
nonlinear total least-squares fitting of a circle to a set of m points in a plane. Figure 3 illustrates a 
circle parameterized by its radius r and its center coordinates (x0 , y0). The perpendicular distance 
of any point pi with coordinates (xi , yi) to the fitted circle is given by di = ri – r = 

. To fit a circle to m such points, we pose the optimization problem,  

 ,                                                                         (6) 
which is clearly a nonlinear optimization problem due to the radical in di. To employ any 
iterative technique to solve this problem, we need to come up with a good starting solution, 
which is provided by the following observation. 
 

 

Figure 3:  Perpendicular distance between a point and a circle in a plane. 
  
 Consider a unit paraboloid of the form z = x2 + y2 as shown in Figure 4. Any point in the 
xy plane with coordinates (xi , yi) can be projected vertically onto the parabolid to a point with 
coordinates (xi , yi , xi

2 + yi
2). It can be easily shown that co-circular points in the xy plane, when 

projected onto the unit paraboloid, become coplanar points in space [8]. This fact is generalizable 
to higher dimensions. For example, co-spherical points in three-dimensional space, when 
projected on the unit paraboloid in four-dimensional space become coplanar (in a hyperplane) in 
4D.   



 

Figure 4:  Parabolic projection 
 

 Coming back to our circle fitting problem, our premise is that the m points in the xy plane 
are not co-circular and so, when vertically projected onto the unit paraboloid, the projected 
points will not be coplanar in space. But this is not a problem because we can fit a linear least-
squares plane P (it is not necessary to fit a total least-squares plane in this case) to these 
projected points in space. This plane P will intersect the paraboloid in an ellipse. When this 
ellipse is vertically projected back to the xy plane, it will yield a circle that is a good starting 
solution for our iterative method to solve the nonlinear least-squares problem. A short but 
complete code to find the total least-squares circle utilizing the lsqnonlin function in the 
optimization toolbox is given below to illustrate the power of automatically generating a good 
starting solution. 
 
function [xc, yc, rc] = tlsqCircle(X, Y) 
  m = size(X); 
  va = [X  Y  ones(m)] \ (X.^2 + Y.^2); 
  x0 = [va(1)/2;  va(2)/2;  sqrt(va(3) + (va(1)/2)^2 + (va(2)/2)^2)];  
% 
% After parabolic projection 
% 
 function [F, J] = myfun(x) 
    rvec = sqrt((X - x(1)).^2 + (Y - x(2)).^2); 
    F = rvec - x(3); 
    J = [-(X - x(1))./rvec,  -(Y - x(2))./rvec,  -ones(m)];  
  end   
  options = optimset('Jacobian', 'on'); 
  x = lsqnonlin(@myfun, x0, [ ], [ ], options); 
  xc = x(1); yc = x(2); rc = x(3); 
 

Not only has this been found to be effective for fitting circles, its generalization to total least-
squares fitting of spheres has also been very successful. 
 This success in automatically finding good starting solutions for circles and spheres has, 
alas, not extended to other important geometric elements such as cylinders, cones and tori. 
Computational metrologists have struggled with this problem and tried various ad hoc techniques 
to get good starting solutions with only limited success. This might change with some recent 
theoretical and computational developments in what might be called Plücker coordinate 
metrology, which will be described briefly below.   



  Traditional coordinate metrology is based on measuring Cartesian, polar, cylindrical-
polar or spherical coordinates of points on the surface (or in the interior) of an object. In three-
dimensional space, each point has three coordinates. The type of coordinates measured (e.g., 
Cartesian vs cylindrical-polar) depends to a large extent on the physical structure of the 
coordinate measuring machine. But suppose that, in addition to measuring the point coordinates 
on a given physical surface, we can also measure – or estimate – the surface normal vector at that 
point. This gives some added information that can be exploited in further computations such as 
fitting. Formally, we now enter the domain of Plücker coordinate metrology, where each point is 
associated with six coordinates – three involving moments of the normal vector and the other 
three involving just the normal vector. 

 Theoretically, Plücker coordinates provide a ℝ3→ℝ6 mapping by taking a G1 continuous 

surface in ℝ3 and mapping it to a set in ℝ6. To accomplish this, consider a position vector p and 
a normal vector n of a point on a surface (which is assumed to have a normal at that point – 
hence the G1 continuity assumption), as shown in Figure 5, and create the six Plücker 
coordinates (p×n , n). Here p×n is the vector cross product of the position vector p and the 
normal vector n. 
   

 

Figure 5:  Position vector and normal vector at a point on a surface. 
  
 So far, we seem to have achieved nothing new in embracing Plücker coordinates. In fact, 
we have added more cost by including the normals. But what recent developments have shown is 
that if the surface in question falls under one of the six symmetry classes (out of a total of seven) 

for surfaces, then its mapping to ℝ6 under Plücker coordinate transformation spans a linear 

subspace in ℝ6 [9, 10]. This is eerily similar to the parabolic transformation we saw earlier, 
where a nonlinear object in a lower-dimensional space spans a linear subspace when mapped to a 
higher-dimensional space. In practice, of course, we need to fit a linear subspace to the mapped 

points in ℝ6. All the machinery of linear algebra and matrix numerical analysis can then be 



brought to bear in teasing some useful information automatically out of this fitted linear 
subspace.  
 Initial experiments with the Plücker coordinate transformation show some promise in 
suggesting good starting solutions for the nonlinear least-squares fitting of cylinders, cones and 
tori. But this needs further exploration before it can be declared suitable for deployment in an 
industrial setting. For the moment, we will leave this as a promising research topic. 

2.4 The least-squares software used in coordinate metrology has had a greater amount of 
formal testing through national labs than the other fits discussed.  
In the 1980s data was submitted to CMM software that performed least-squares fits. The errant 
results (due to fitting problems and/or methods divergence) led to a Government Industry Data 
Exchange Program (GIDEP) alert being issued in 1988 indicating that fitting software could be a 
significant source of overall measurement uncertainty [3]. 
 A number of institutions had a hand in responding to this, including formal testing of 
least-squares fitting software being done both at NIST (National Institute of Standards and 
Technology) in the U.S.A. and PTB (Physikalisch-Technische Bundesanstalt) in Germany.  
Though there are differences in the testing procedures, both operate in the same basic way: test 
data sets are designed and generated to be representative of some range of measuring tasks.  
These data sets are submitted to both the software under test and to reference fitting software.  
The fit results from the software under test are compared with the reference fits, and the outcome 
of that comparison is summarized in a test document. 
 The most commonly performed test at NIST (in the Algorithm Testing and Evaluation 
Program – Coordinate Measuring Systems, ATEP-CMS) follows procedures and test data sets 
that conform to the ASME B89.4.10 Standard, which specifies a number of things about the data 
sets for various geometries such as size, form, location, orientation, number of points, sampling 
strategies, and partial feature sampling.  Following these procedures helps ensure a broad 
spectrum of test cases that emulate a range of real-world measurements.  Figure 6 is an example 
of what a portion of such a test report might look like.  



 

Figure 6:  A part of a sample test report following the ASME B89.4.10 Standard. The Mean 
(RMS) deviations shown serve as reasonable valuations for the uncertainty contributed by 
incorrect least-squares fitting results (not considering methods divergence issues). 
 
The testing procedure works as follows:  
1) The testing body generates test data sets along with corresponding reference fits.  The 

reference fits may be found by means of a reliable reference algorithm or by a technique that 
generates the data in a way that defines its fit ahead of time.  

2) The same data sets are submitted to the software under test, which computes their fits. 
3) The fits from the software under test are then compared with the reference fits by the testing 

body. 
 Some data files with reference fits are available for download from the NIST website 
(http://www.nist.gov/pml/div681/grp11/cst-algorithmtesting.cfm Algorithm Testing; Physical 
Measurement Laboratory). 
 It is important to understand exactly what any software testing does and does not cover.  
Currently, the national laboratories involved in formal CMM software testing services cover only 
the least-squares fits and only for the simple geometries and only for unconstrained fitting.  
While such testing is extremely valuable, as it has led to significant software errors having been 
corrected, it is nonetheless incorrect to extend those results to other functionality of the software, 
of which there are many. It is incorrect to assume that software that has undergone such a small 
degree of testing (albeit valuable) has been “verified,” “validated,” or “certified,” since these 
terms connote a sense of security and comprehensiveness. 
  
 Software that performs least-squares fits correctly might perform Chebyshev fits poorly 
[11]. In fact, least-squares testing of simple geometric shapes does not reveal important 
information about: fitting to complex surfaces, or CAD shapes, datum reference frame 
construction, conformance to specifications (e.g., position, profile tolerances, etc.), outlier 



rejection, filtering techniques, or any of a number of other vital features that software 
implements. These are also topics of current research in computational coordinate metrology, 
and we will mention them briefly in Section 3. 

2.5 Least-squares fitting problems generally have easier objective functions than those for 
the other fits discussed. 
Fitting is achieved by finding the location, orientation, and even size of a geometry such that an 
objective function is minimized. The least-squares problem uses the objective function of the 
sum-of-squares of the residuals.  
 A reader not familiar with optimization algorithms can think of an analogous problem of 
finding the deepest point in a swimming pool filled with opaque liquid and with the shape of the 
bottom being unknown. It is allowable to use a long ruler to make simple vertical depth 
measurements, one at a time, without dragging the ruler along the bottom surface. A more 
sophisticated method would, at each step, allow for a vertical depth measurement plus an 
indication of the direction and magnitude of the slant of the bottom surface at each measurement. 
(Think of a small ‘foot’ attached to the end of the ruler using a ball-and-socket joint. The foot 
rotates to rest on the bottom at the same slant as the surface at that location – provided the 
location was not a jagged peak or valley.) The additional piece of slant information acquired at 
each step can speed the process in finding the deepest point. 
 In this analogy, the objective function is the shape of the bottom of the pool. The easier 
the shape (e.g., a simple bowl shape) the less time the process takes to identify the deepest point. 
A pool bottom having lots of mountains and valleys would make the process more difficult, since 
it could appear that the low point has been found when a deeper point could exist elsewhere. See 
Figure 7. 
 

 

Figure 7:  For the two objective functions shown, it is easier to find the minimum for the 
one on the left, since it is smoothly varying and since the global minimum is not so much 
hidden among nearby, local minima. 
  
 Objective functions for minimum-zone, maximum-inscribed, minimum-circumscribed, 
and L1 fits can be difficult since the objective functions can have locations where they are not 
differentiable (as in the right hand side of Figure 7). Least-squares objective functions in 



coordinate metrology are easy to work with, since they are generally smooth (i.e., differentiable 
everywhere) and since they are generally convex over a large region surrounding the global 
minimum. 

2.6 Least-squares objective functions generally have unique solutions. 
Another desirable characteristic of least-squares fitting is that the solution is generally unique. 
(Pathological cases exist where this is not true, but these do not arise in practice—especially 
given sufficient sampling). 
 There are times when a perfect plane needs to be associated with an imperfect but 
nominally planar surface (e.g., in datum establishment). If the imperfect surface has a peak near 
its center, a one-sided mating plane might not be unique, since it could ‘rock,’ pivoting on the 
high point from one mating orientation to another. In contrast, the least squares fit would be 
unique given a fixed, realistic data set. 
 In the case of maximum-inscribed fits, it is possible to have a non-unique situation as 
shown in Figure 8. 
 

 

Figure 8:  A set of points taken around the shape shown could have two maximum-
inscribed circles, one centered at p and one at q.  A least-squares fit to the same data would 
be unique. 
 

2.7 Least-squares fitting is generally much faster – especially when large numbers of 
points are involved – than the other fits discussed. 
Due to the more complex objective functions associated with other fitting choices (as mentioned 
in 2.5) least-squares fitting can be computationally performed much faster. For line and plane 
fitting, the computational time required reduces down to a singular vector problem, which takes 
O(m) operations, where m is the number of points. For the minimum-zone line fit (as will be seen 
in section 4), an exhaustive search method involves a convex hull algorithm plus a search over 
all antipodal pairs, the latter step alone being an O(h 2) task, where h is the number of points on 
the convex hull. 



 For nonlinear fitting, the least-squares fit is much faster as well. If a good initial guess is 
found then a fast ‘straight downhill’ minimization algorithm can be used. Examples of fast 
algorithms that can be used (as mentioned in Section 2.3) are Gauss-Newton and Levenberg-
Marquardt. These cannot be used for many other fit objectives mentioned in this paper. For these 
other fits, the minimum of the objective function is hidden among several nearby local minima, 
making a more complex, global optimization algorithm necessary. More complex (and slower 
algorithms) that could be employed include brute-force exhaustive-search, simulated annealing, 
basin hopping, genetic algorithms, etc. 
 The result of needing one of these more complex algorithms is an enormous increase in 
computational time. Precise numbers for comparison are highly dependent on the specific set of 
points and algorithms used, but it is very easy for the least-squares fit to be 100 times faster than 
the other fit objectives discussed in this paper. 

2.8 Least-squares fits are less affected by outliers when compared with the other fits 
discussed. 
The existence of outliers in coordinate metrology data collection is a reality, for a wide range of 
reasons ranging from a speck of dirt to an isolated machine anomaly. An outlier might not 
always be removed before fitting. A minimum-zone fit is entirely determined by the locations of 
a few extreme points. (See, for example, minimum-zone line fitting discussed in Section 4).  This 
means that the solution can be drastically affected by just one errant point. This effect might 
manifest itself in poor repeatability, if several measurements were made employing the 
minimum-zone fit. The instability in that fit is also seen in maximum-inscribed, minimum-
circumscribed, and supporting plane fits as well. 
 The least-squares fit has more of an averaging effect over all the data, and thus the effect 
of a single errant point is mitigated by the locations of several other points. The averaging effect 
is quantifiable, in that the average residual is zero for unconstrained least-squares fits of lines and 
circles (considered in 2D), spheres, cylinders, and cones. Furthermore, the averaging effect is 
intuitive in this sense: if someone unfamiliar with fitting were shown points on a plane that 
approximated a line, and were then told to draw the straight line represented by the points, the 
line drawn would likely approximate the least-squares fit. 
 It turns out that the seldom-used L1 fit is even less sensitive to outliers, but that fit is not 
widely used, probably due to the other reasons for the least-squares appeal discussed in this 
paper. Even still, all the fits discussed in this paper (including the least-squares and L1 fits) can 
give meaningless results due to even a single outlier that is extremely deviant. In such cases, 
outlier removal or similarly effective data handling should be incorporated.  

2.9 Least-squares fits have effective tests for correctness. 
A necessary-condition test can be applied to a fit as a check as to its correctness. For instance, for 
an unconstrained least-squares circle fit (considered in 2D) the average residual must be zero. If 
it is not, the fit is not the least-squares fit. Similarly, a correct L1 fit in this case would have 
residuals whose median is zero when the number of data points is odd. When the number of data 



points is even, the test would be that middle two residuals (when sorted) cannot have the same 
sign. And a correct minimum-zone fit would have at least four residuals attaining the maximum 
absolute residual value. 
 These conditions are necessary but not sufficient. That is, if they are not met, the solution 
is certainly wrong; but the tests can be satisfied even with incorrect fits. As it turns out, these 
tests – though helpful – are quite weak. They are commonly satisfied even with sub-optimal fits. 
 But in the case of least-squares fitting, there is a much more powerful test for correctness. 
That is, the gradient of the objective function must be zero at the solution. This is easy to 
calculate – formulas for the gradient are given for all the basic shapes in [5, 6]. While this is still 
a necessary but not sufficient condition, it is a very strong condition that makes it quite easy to 
detect incorrect fits. 
 In the cases of non-least-squares fits – for instance maximum-inscribed circles and 
cylinders – an errant solution can appear correct even though the iterative algorithm has reported 
it's fit result without having converged on the optimal (i.e., correct) solution.  

2.10 Emerging ISO Geometric Product Specifications call out the least-squares fit 
explicitly. 
ISO 1101 will soon be amended to enable specifications such as those shown in Table 1. In 
addition, ISO 14405-1 will soon allow dimensional tolerance specification for linear size such as 
the one shown in Table 2, Example 1; a similar method is being developed for angular sizes, as 
shown in Example 2 in the same Table.  
 The semantics presented in the last columns of Tables 1 and 2 using the English language 
text can be augmented by figures to make them a bit clearer, but they will still remain 
ambiguous. We will address this issue in some detail in Section 5. For now, suffice it to point out 
that total least-squares fitting will soon become normative in tolerance specification, and this 
presents an urgent need to examine the theory and practice of total least-squares in detail. 
 In fact, it is this urgency that has motivated us to devote this entire paper to least-squares 
fitting. In that sense, we have reserved the enumeration of the best reason to study least-squares 
fitting to the last and we will continue its exposition in the rest of the paper.   
 



Table 1 :  Examples of straightness and flatness specifications syntax, along with their 
semantics, allowed by the upcoming, newly amended ISO 1101. 
Example Syntax 

(Drawing indication) 
Semantics* 

(Explanation) 
 
 
1 

 

The root-mean-square parameter of any 
extracted (actual) line on the upper surface, 
parallel to the plane of projection in which the 
indication is shown and measured from the 
total least-squares associated straight line, 
shall be less than or equal to 0,02 mm. 

 
 
2 

 

The root-mean-square parameter of any 
extracted (actual) generating line on the 
cylindrical surface, measured from the total 
least-squares associated straight line, shall be 
less than or equal to 0,03 mm. 

 
 
3 

 

The root-mean-square parameter of extracted 
(actual) median line (i.e., axis) of the cylinder 
to which the tolerance applies, measured from 
the total least-squares associated straight line, 
shall be less than or equal to 0,02 mm. 

 
 
4 

 

The root-mean-square parameter of any 
extracted (actual) surface, measured from the 
total least-squares associated plane, shall be 
less than or equal to  0,03 mm. 

 
 
5 

 

The root-mean-square parameter of extracted 
(actual) median plane of the indicated feature 
of size, measured from the total least-squares 
associated plane, shall be less than or equal to 
0,02 mm. 

*These statements of semantics are composed from different statements in the upcoming amended version of ISO 
1101. These are not the formal statements of explanation associated with the drawings in the official ISO 1101 
amendment. 
  



Table 2:  Examples of linear and angular size specifications syntax, along with their 
semantics. 

Example Syntax 
(Drawing indication) 

Semantics* 
(Explanation) 

 
 
1 

 

The linear size of the indicated feature of 
size, with least-squares association criterion, 
shall be within the indicated limits. 

 
 
2 

 

The angular size of the indicated feature of 
size, with least-squares association criterion, 
shall be within the indicated limits. 

*These statements of semantics are composed from different statements in ISO 14405-1. These are not the formal 
statements of explanation associated with the drawings in the official ISO standard. 
 

3 Computational Metrology Research for Free-form Geometries 
 
The examples cited in the previous section show the fitting of basic geometric elements, such as 
those listed in the first column of the table in Figure 6.  Most of these primitive geometries have 
well defined fitting algorithms, and the trends in recent topical studies in computational 
metrology have focused on the fitting of free-form geometry.  Modern point collection hardware 
permits the gathering of many data points in a short amount of time, and the focus of inspection 
software is now how to filter the data and fit it to a complex nominal surface. (The reader will 
recall that we alluded to this while discussing the limitations and caveats of current testing of 
least-squares fitting in Section 2.4.) This is an area where least-squares fitting, especially if 
performed with weighting, is often the method that best captures the performance characteristics 
desired by the designer.  This is because free-form surfaces will likely be responsible for much 
different functionality in the final design than that of the prismatic mating surfaces used in 
assembly.   The free-form surfaces are often used for flow control (be it fluid or gas) and the 
geometric properties desired are more statistical in nature.  For this reason, the use of a more 
balanced metric such as that captured in least-squares fitting may be preferred. In this section we 
will briefly touch upon some of the research currently underway. 

3.1 Data filtering 
The filtering of dense data on free-form surfaces is often necessary because of the nature of the 
instruments used to collect the data.  Laser-based systems often have a noisy return signal, 
although the mean of the points measured can have low uncertainty.  The issue of filtering of the 
data to best capture the actual surface is of interest both to users and instrument manufacturers.  
The user wishes to remove the high-frequency variability associated with the instrument without 
biasing the measurement of the underlying geometry.  While the application of filters to regular 



nominal geometry can be tailored to remove biases, the application of (e.g., Gaussian) filters to 
free-form surfaces can distort the measurement results.  Jiang et al [12] have reported on 
methods to address this problem but, as with all filtering problems, assumptions must still be 
made about the underlying character of the surface. 

3.2 Fitting to free-form surfaces 
Given that any filtering to remove measurement noise and/or surface texture variations has 
already been performed, the task of fitting the remaining data to a nominal free-form surface can 
still be challenging.  The major components of the measurement task are: partitioning of the data 
– that is, identifying the feature to which each of the measured points belongs; registration of the 
data – that is, aligning the key points or areas of the surface(s) with the model; actually fitting the 
data to the nominal model; and finally, collecting additional points (re-sampling) if any metrics 
concerning the quality of the fit indicate that this is necessary. 

3.2.1 PARTITIONING AND REGISTRATION 

The partitioning of the data to match individual features is a current area of research [9, 10] and 
cannot, at this time, be done automatically except for certain classes of feature geometry.  In 
almost all cases, there is operator intervention required for this process.  The partitioning 
problem is related almost exclusively to point cloud measuring systems – the nature of Cartesian 
measuring machines is that each point’s feature association is known a priori as only a relatively 
small number of points are collected for each feature. 
 The registration of point data to the nominal model is necessary when one or more 
datums are established on the free-form surface.  In this case, initial points are measured on the 
surface that correspond to where the part would rest in a locating fixture.  The relative location of 
these measured points will often not correspond to the nominal locations of the datum targets.  
The local coordinate system is adjusted based on the measured points, and a new set of points is 
measured.  This process is repeated until the measured points coincide with the theoretical 
locations of the fixture.  Where the surfaces being measured have very shallow slopes, this 
registration process can take many iterations. Research that breaks this problem into rough 
pattern matching of the nominal and measured surfaces, followed by a final fitting of the surfaces 
is attempting to speed up the process by reducing the time spent in the early iterations of this 
process [13]. 

3.2.2 SAMPLING STRATEGIES 

When measuring surfaces with non-uniform curvature, it may be desirable to vary the density of 
the point sampling depending on the local curvature of the surface.  Whether the sampling 
strategy is established based on the nominal model or is developed dynamically based on the 
measured surface attributes, the influence on fitting algorithms can be substantial.  Edgeworth 
and Wilhelm [14, 15] performed some of the early work on this problem, and work on adaptive 
sampling continues today [16].  The impact of adaptive sampling on least-squares fitting has not 
– to our knowledge – been studied extensively, but it is clear that the weighting of points 



acquired with non-uniform sample densities will be critical to the overall fitting process (more on 
this later in Section 5). 

3.2.3 FITTING AND CONFORMANCE ASSESSMENT 

Three main issues arise when fitting data to free-form surfaces: (1)  determining the shortest 
perpendicular distance between the nominal surface and a measured point can be time 
consuming, and may have non-unique results; (2) the different densities of points in different 
regions may bias the fitting algorithm; and (3) the specification may have non-uniform profile 
requirements (as in Figure 9), where the deviations from nominal have different criteria 
depending on the part of the profile with which they are associated. 
 

 

Figure 9:  Specification of non-uniform Profile tolerance.  The nominal profile and 
tolerance zone boundaries will typically be specified in a CAD system, but may be 
elaborated through basic dimensions on the drawing. 
 
 
 The problem of determining the distance between points and a surface is a computational 
issue, and the main difficulties arise when there are multiple surface points with the same 
perpendicular distance to the point, or there is no 'closest point' on the surface that has a well-
defined normal direction.  As is the case with partitioning, it is the automation of this task that is 
difficult – most algorithms will fail under certain conditions, such as sharp corners or small radii 
at edges.   
 The issues of changing sampling densities on the workpiece surface, and of non-uniform 
conformance zone boundaries both require some sort of weighted fitting, and the work in these 
areas is ongoing.  An initial assessment of the impact of weighting and sample densities will be 
found in Section 5 of this paper. 



4 Current Industrial Practice Driven by Zone-based Specifications 
One of the major objectives of computational coordinate metrology is to support the verification 
of whether a given manufactured part is within designer specified tolerances. Given the 
prominence of least-squares fitting in commercially available software, it is ironic that it is not 
the basis for the current practice of tolerance specifications. To understand this problem and to 
appreciate its implication for least-squares fitting, let’s describe a simple instance involving the 
flatness tolerance. 

 Figure 10shows how the flatness tolerance specification is defined in the ASME Y14.5 
standard today. An equivalent current definition by ISO can be found in Figure 11. To conform 
to the specification, the toleranced feature (which is supposed to be nominally flat) on a 
manufactured part should be contained within a tolerance zone bounded by two parallel planes 
that are separated by the specified tolerance value (0.25 units in Figure 10, and 0.08 mm in 
Figure 11) found in the tolerance frame. 
 

 

Figure 11:  ISO defines flatness tolerance specification.  
  
 While such a definition of flatness expresses a particular aspect of a designer’s 
requirement, it does not directly provide a prescriptive method to inspect and verify a given 
manufactured part. For this, we make the additional observation (which can be rigorously 

 

Figure 10:  ASME defines flatness tolerance specification. 
 



proved) that this specification is completely equivalent to stating that the width of the toleranced 
feature should not exceed the specified tolerance value. Mathematically, the width of a set of 
points (whether they are continuous or discrete) is the shortest distance between two parallel 
planes between which the whole set is contained. In the two-dimensional case, Figure 12 
illustrates how the width is realized for a discrete set of points. Also shown is the convex hull of 
the set of points. The computation of width is aided considerably by the observation that the 
width of a set of points in a plane is always realized between an edge-vertex antipodal pair on the 
convex hull. The center line shown in Figure 12, halfway between the two parallel lines that 
realize the width, is called the minimum zone line (MZline). So, it can be said that the width is 
the peak-to-valley distance of the points measured perpendicular to the MZline. 
 

 

Figure 12:  Width of a set of points in a plane. 
  
 It is reasonable to ask how complex can such a computation of width get. To be fair, we 
should compare this with the computation of total least-squares fitting described earlier in 
Section 2.2. Complete code that does the computation is given below: 



function [w, p, v, i1, i2, i3] = Width2d(P) 
%------------------------------------------------------- 
% Width2d Computes the width of a set of points in 2D 
%            It also computes the MZline in 2D 
%------------------------------------------------------- 
% Input 
% P   Array of x and y-coordinates of input points 
%     Size m x 2 
%     Caution: If the input points are collinear, or almost 
%              collinear, the code will fail due to problem 
%              with convex hull computation. 
% 
% Output 
% w   Width of the set 
%     Size 1 X 1, scalar 
% p   A point on the MZline 
%     Size 2 X 1 
% v   A unit vector along the MZline 
%     Size 2 x 1 
% i1, i2  Indices of endpoints of antipodal edge that realizes the width 
%     Integer 
% i3  Index of the antipodal vertex that realizes the width 
%     Integer 
%---------------------------------------- 
% Error checking for number of input points 
m = size(P, 1); 
if m < 3 
    error('Width requires at least 3 input points in 2D') 
end 
% 
H = convhull(P(:,1), P(:,2));            % Compute the convex hull 
nh = size(H,1) - 1;                      % Number of hull edges or vertices 
av = zeros(nh, 1);                       % initialize antipodal vertex array 
h  = zeros(nh, 1);                       % initialize hight array 
% 
% Compute the antipodal edge-vertex pairs 
%   av is the vector that stores the antipodal vertices 
%   h is the vector that stores the height of the triangle formed 
%        by each antipodal edge-vertex pair. 
% 
for i = 1:nh                              % loop over each edge of the convex hull 
    a = [P(H(i),1)  P(H(i),2)]';          % first vertex of the edge 
    b = [P(H(i+1),1)  P(H(i+1),2)]';      % second verted of the edge 
    area2 = zeros(nh,1);                  % initialize the 'twice-the-area' array 
    for j = 1:nh                          % loop over each vertex of the convex hull 
        c = [P(H(j),1)  P(H(j),2)]'; 
        area2(j) = abs(det([[a b c]; [1 1 1]])); 
    end % for j 
    [a2max, k] = max(area2); 
    av(i) = k; 
    h(i) = a2max/norm(a-b); 
end % for i 
% 
% Now compute the width 
% 
[w, i] = min(h); 
% 
% Identify the antipodal edge-vertex pair that realizes the width 
% 
i1 = H(i); i2 = H(i+1); i3 = H(av(i)); 
a = [P(i1,1) P(i1,2)]';                   % Starting point of antipodal edge 
b = [P(i2,1) P(i2,2)]';                   % Ending point of antipodal edge 
c = [P(i3,1) P(i3,2)]';                   % Antipodal vertex 



% 
% Compute a point on the MZline and a unit vector along the MZline 
% 
p = 0.5*(a + c);                       % MZline bisects any line-segment from  
                                       % the antipodal edge to the antipodal vertex 
v = (b - a)/norm(b-a);                 % MZline is parallel to the antipodal edge 
% END of Width2d 

 
The code above uses the convhull function to compute the convex hull. It is not the most efficient 
code nor is it the shortest, but it serves to illustrate the point that the width can be computed in 
two-dimensional cases by completely solving the combinatorial optimization problem. In other 
words, the global minimum can be found for this nonlinear optimization problem using just a 
page-long code. The corresponding width computation problem for a set of points in three-
dimensional space can be similarly solved using convex hull in three-dimensions. For the sake of 
completeness we reproduce the corresponding code below: 
 
function [w, p, v] = Width3d(P) 
%------------------------------------------------------- 
% Width3d Computes the width of a set of points in 3D, 
%            by solving several 2D width problems. 
%------------------------------------------------------- 
% Input 
% P   Array of x, y and z-coordinates of input points 
%     Size m x 3 
%     Caution: If the input points are coplanar, or almost 
%              coplanar, the code will fail due to problem 
%              with convex hull computation. 
% 
% Output 
% w   Width of the set 
%     Size 1 X 1, scalar 
% p   A point on the MZplane 
%     Size 3 X 1 
% v   A unit vector normal to the MZplane 
%     Size 3 x 1 
%---------------------------------------- 
% Error checking for number of input points 
m = size(P, 1); 
if m < 4 
    error('Width requires at least 4 input points in 3D') 
end 
% 
H = convhulln(P);                          % Compute the 3D convex hull 
nf = size(H,1);                            % Number of hull faces 
Haug = [H, H(:,1)];                        % Augument the face array  
V = union(union(H(:,1),H(:,2)), H(:,3));   % array of vertices of convex hull.  
                                           % Contains only unique indices. 
W = zeros(nf, 3);                          % Initialize the width array 
% 
% Compute the 2D widths by projecting the hull vertices perpendicular to every edge     
% 
for i = 1:nf                               % loop over each face of the convex hull 
    a = P(H(i,1),:)';                      % first vertex of the face 
    b = P(H(i,2),:)';                      % second vertex of the face 
    c = P(H(i,3),:)';                      % third vertex of the face 
    vec = cross((b-a),(c-b));              % compute a vector normal to the face 
    nvec = vec/norm(vec);                  % it is the unit vector normal to the face 
    for j = 1:3                            % loop over each edge of the face 



        v1 = P(Haug(i,j),:)';              % starting vertex of the edge 
        v2 = P(Haug(i,j+1),:)';            % ending vertex of the edge 
        evec = (v2 - v1)/norm(v2 - v1);    % unit vector along the edge 
        yvec = cross(evec, nvec);          % nvec, yvec, and evec form a right-handed 
                                           % unit triad 
        Q = P(V,:)*[nvec, yvec, evec];     % project hull vertices perpendicular 
                                           % to the edge 
        w2 = Width2d(Q);                   % 2D width of the projected points 
        W(i,j) = w2;                       % Store the 2D width in the W array 
    end % for j 
end % for i 
% 
% Now compute the width 
% 
[wmin, K] = min(W);                        % Find maximum of each column and their  
                                           % row indices 
[w, k] = min(wmin);                        % w is the width 
% 
% Now compute the MZplane 
% Note that we will repeat several steps that were computed within the  
%     'for' loops above. 
% 
irow = K(k); icol = k;                     % index into the right face and  
                                           % starting vertex 
    a = P(H(irow,1),:)';                   % first vertex of the face 
    b = P(H(irow,2),:)';                   % second vertex of the face 
    c = P(H(irow,3),:)';                   % third vertex of the face 
    vec = cross((b-a),(c-b));              % compute a vector normal to the face 
    nvec = vec/norm(vec);                  % it is the unit vector normal to the face 
        v1 = P(Haug(irow,icol),:)';        % starting vertex of the edge 
        v2 = P(Haug(irow,icol+1),:)';      % ending vertex of the edge 
        evec = (v2 - v1)/norm(v2 - v1);    % unit vector along the edge 
        yvec = cross(evec, nvec);          % nvec, yvec, and evec form a right-handed 
                                           % unit triad 
        Q = P(V,:)*[nvec, yvec, evec];     % project hull vertices perpendicular to 
                                           % the edge 
        [w2, p2, v2] = Width2d(Q);         % 2D width of the projected points 
                                           % Get a 3D point from p2 
        p3 = [p2(1); p2(2) ; 0.5*(max(Q(:,3)) + min(Q(:,3)))];   
        v3 = [-v2(2); v2(1) ; 0];          % Get a 3D vector normal to the MZplane 
        p = [nvec, yvec, evec]*p3;         % Transform the point back to the  
                                           % original system 
        v = [nvec, yvec, evec]*v3;         % Transform the vector back to the  
                                           % original system 
% END of Width3d 

 
The code shown above uses the convhulln function and the Width2d function presented earlier. 
Note that the width can be realized between a face-vertex or an edge-edge (where both edges are 
skew) antipodal pair of the convex hull, and the code checks for both cases. It is not the most 
efficient code, but it does find the global solution to the combinatorial optimization problem, and 
it can be understood and maintained by expending only a moderate amount of effort. Once the 
MZplane is found, we can consider the width to be the peak-to-valley distance of the points 
measured perpendicular to the MZplane. 
 A few words of analysis about the width computation in two- and three-dimensional 
spaces are worth making at this stage. Note that width is the normative definition for straightness 
(for a curve in a plane) and flatness, in the sense that this is completely equivalent to what the 
ASME and ISO standards mean when they define straightness and flatness tolerances today. It is 



clear that the width computations are considerably more involved than the least-squares 
computations for lines and planes described in earlier sections, even though we have 
demonstrated just above that they can be reliably computed using some of the modern, popular 
computing tools.  
 In reality, many CMM software vendors just compute the least-squares plane and 
estimate the width as the peak-to-valley distance of the points measured perpendicular to the 
least-squares plane. It is well known that this is only an approximation, and it overestimates the 
width. Nevertheless, the computational convenience (coupled with robustness and uncertainty 
considerations, and a myriad of other reasons outlined in Section 2) overrides the normative 
requirements.   
 The reader may wonder how the width was measured before the era of CMMs and 
ubiquitous computers. Figure 13 shows how the flatness can be checked by moving the part 
under inspection over the inspection surface plate, all the while maintaining contact between the 
toleranced surface and the surface plate. The full indicator movement of the dial indicator is 
taken to be a measure of the width. This may appear to be a crude way to verify flatness – and it 
has several other drawbacks – but it is a practice that can be carried out even in modest shop 
floor environments and is widely prevalent even today. In fact, we assert that the existence of 
this type of open setup to check for flatness is the main reason why its definition in ASME and 
ISO standards has stayed this way thus far.  
 We observe an interesting dichotomy here. While the width (required for flatness 
verification) is harder to compute, it is easily measured – albeit crudely – by commonly 
available, relatively cheap metrological apparatus. Just a full indicator movement will do. On the 
other hand, least-squares fitting is relatively easy to compute, but it has no simple open setup 
arrangement, such as a full indicator movement, to measure according to it; we invariably need a 
computer to do the calculations.    
 

 

Figure 13:  An open setup to check for flatness using a surface plate and a dial indicator. 
 

 This brief encounter with flatness tolerance is only a small example of a much wider 
scope covered by current ASME and ISO standards. They all rely almost exclusively on zone-
based semantics for their geometric tolerance specifications. The least-squares fitting is not in the 
normative scope of the current versions of these standards; the least-squares fitting is popularly 
used more as a computational convenience. (Even in some of the commercial software that 



comply with zone-based semantics, the initial guess for an iterative technique to solve the 
optimization problem happens to be a least-squares solution.)  
 All this is about to change because ISO is preparing to issue a whole series of standards 
that expand the scope of geometric tolerancing language beyond the zone-based semantics. And 
they will place least-squares fitting on a firm normative footing. This recent resurgence, and its 
implication for physical and computational coordinate metrology, are addressed in the next 
section. 

5 The continuous least squares problem definitions, convergence, and 
weighted least-squares fitting 

As noted in Section 2.10, the semantics presented in the last columns of Tables 1 and 2 using the 
English language text can be augmented by figures to make them a bit clearer, but they will still 
remain ambiguous. We will address this issue in some detail now. We will provide mathematical 
semantics to remove any ambiguity in these definitions, and to guide further verification 
processes such as sampling and designing fitting algorithms. We illustrate our approach using 
three examples: (1) fitting a total least-squares straight line to a curve in a plane, (2) fitting a total 
least-squares plane to a surface patch in space, and (3) fitting two parallel planes to two surface 
patches in space. 
 We start with continuous sets of points in the form of curves and surfaces, and define the 
optimization problems to fit straight lines and planes to these continuous sets. A bounded curve 
is contained within a sphere of finite radius; we also demand that it has finite length (that is, we 
don’t allow fractal curves). It can consist of one or finitely many curve segments or arcs; each 
segment or arc is path connected. Similarly, a bounded surface is contained within a sphere of 
finite radius; we also demand that it has finite area (that is, we don’t allow fractal surfaces). It 
can consist of one or finitely many surface patches; each patch is path connected.  
 In Section 2.2 we considered the total least-squares fitting of a straight line to a finite, 
discrete set of points. We now consider fitting a total least-squares straight line to a curve in a 
plane. Referring to Figure 14, we pose the optimization problem as follows: 
 
  



Tlsq2dLine: Given a bounded curve C in a plane, find the straight line L that minimizes  
 

 

 

Figure 14:  Fitting a straight line to a curve in a plane. 
 
Here d(p, L) denotes the perpendicular distance of a point p on curve C from the straight line L 
that will be fitted. Once such a straight line L has been found, the root-mean-square parameter 
for the bounded curve C is given by  

      .                                                                          (7) 

 
Some important observations are worth noting here. 
1.  is the length of the curve C. 
2. If the curve consists of several segments (arcs), then the integrals can be evaluated over each 

segment and then summed. 
3. It can be shown that the total least-squares line L passes through the centroid of C, and is 

aligned with one of the principal axes of C. 
4. It can also be shown that the root-mean-square parameter is the ‘radius of gyration’ of the 

curve; it is equivalent to the ‘standard deviation’ in statistics. 
 Similarly, to fit a total least-squares plane to a surface patch in space, we pose the 
following optimization problem (with reference to Figure 15): 
 
  



TlsqPlane: Given a bounded surface S, find the plane P that minimizes  
 

 

Figure 15:  Fitting a plane to a surface patch. 
 
Here  denotes the perpendicular distance of a point p on surface patch S from the plane P 
that will be fitted. Once such a plane P has been found, the root-mean-square parameter for the 
bounded surface S is given by  

                                                                         (8) 

 
We again  note that 
1.  is the area of the surface patch. 
2. If the surface consists of several patches, then the integrals can be evaluated over each patch 

and then summed. 
3. It can be shown that the total least-squares plane P passes through the centroid of S, and is 

perpendicular to one of the principal axes of S. 
4. The root-mean-square parameter is equivalent to the ‘standard deviation’ in statistics. 
 To address the issue of size as specified in ISO 14405-1, we need to define fitting 
problems such as the following (with corresponding illustration in Figure 16): 
 
  



TlsqParallelPlanes: Given two bounded surfaces S1 and S2, find two parallel planes P1 and P2 
that minimize   

 

 

Figure 16:  Fitting two parallel planes to two surface patches. 
 
Once such parallel planes P1 and P2 have been found, the distance between them is the linear size 
(that has been defined with the least-squares criterion). 
 With such definitions in place, we can start designing algorithms to compute the fitted 
lines and planes. Here we run into an interesting issue related to sampling and discretization. The 
objective functions posed in Tlsq2dLine, TlsqPlane and TlsqParallelPlanes cannot, in general, be 
evaluated in closed form. So we resort to approximate evaluations of the integrals in those 
objective functions by sampling a discrete set of points on the continuous curves and surfaces. If 
we exercise some care in sampling these points uniformly on the curves and surfaces, we can 
simplify the subsequent calculations and use most of the readily available algorithms and 
software mentioned in earlier sections. 
 For example, in fitting a straight line to a curve in Tlsq2dLine, we divide the curve into 
uniform arc length interval of Δs and approximate the objective function as  

                                 (9) 
where pi are the m sampled points, one in each interval. Since Δs can be treated as a constant 
within the optimization problem, the approximate objective function to minimize is 

. It is worth noting that this approximate objective function is a continuous and 
smooth function of the parameters of the fitted line L, thus admitting good solutions to be found.  
 Similarly, in fitting planes to surface patches in TlsqPlane, we can sample points on a 
surface patch after dividing up the patch into uniform areas of ΔA and approximate the objective 
function as 



                          (10) 
where pi are the m sampled points, one in each subdivision. Since ΔA can be treated as a constant 
within the optimization problem, the approximate objective function to minimize is 

 Again, it is worth noting that this approximate objective function is a continuous 
and smooth function of the parameters of the fitted plane P, thus enabling good solutions to be 
found. 
 We observe that almost all of the efforts expended over the past two decades in total 
least-squares fitting of straight lines and planes have used these approximate objective functions 
as the starting point to find efficient and robust solutions. They have made a subtle assumption 
about the uniformity of sampling, without explicitly cautioning the users of its importance.   
 Once the total least-squares fitting line is computed, an approximation for the root-mean-
square parameter can be found for the curve C as  

 .                                (11) 

Similarly, once the total least-squares fitting plane is computed, an approximation for the root-
mean-square parameter can be found for the surface S as 

   .                                (12) 

 This brings us now to the subject of convergence. The topic of total least-squares fitting 
of lines and planes to discrete sets of points presented in Section 2.2 is well developed, and the 
related algorithms have been implemented and tested over the past two decades. It is only natural 
to ask if these solutions will converge to the lines and planes – and to the root-mean-square 
parameters – defined for continuous sets of points, as we sample more and more points on the 
curves and surfaces. 
 We can show that uniform sampling when refined uniformly will lead to the desired 
convergence. We cannot guarantee convergence to the right answer otherwise. It is important to 
note that uniform sampling should be observed across all segments or patches involved, and not 
just within one. Figure 17 illustrates what we mean by uniform and non-uniform sampling and 
their refinement. 
 



 

Figure 17:   (a) Example of non-uniform sampling and its refinement, (b) Example of 
uniform sampling and its refinement. 

 
 If, for some reason, we are not able to sample points uniformly, then we may have to 
resort to weighted total least-squares techniques to solve the discrete version of the problem. 
(Weighting may also be used if there are different uncertainties associated with different sampled 
points [17].) These weights arise naturally from the fact that Δs and ΔA are not constants and 
therefore cannot be taken out of the summation. So we have to minimize   
for Tlsq2dLine, where Δsi's are treated as the weights. Similarly, we have to minimize 

 for TlsqPlane, where ΔAi's are treated as the weights. These weights will 
also influence the calculation of the root-mean-square parameter, after the total least-squares fits 
have been found. 
 The need for uniform discretization or weighted total least-squares is best illustrated 
using the simple example shown in Figure 18. Here a simple, symmetric v-shaped curve requires 
a total least-squares fitting of a straight line. The correct solution is a horizontal line positioned 



halfway between the top and bottom of the v-shaped curve, as shown in Figure 18 using long 
dashes and dots. However, if we discretize the curve non-uniformly by choosing twice as many 
points on the left arm as on the right, as shown in Figure 18, then the resulting total least-squares 
fit will be tilted more towards the left if we do not use any weights. This will continue to be the 
case even in the limit as n tends to infinity, thus converging to the wrong answer. (Note that this 
is not the case in the width computations associated with current zone-based tolerance 
specifications.) So, an unscrupulous inspector can make the fitted line and the root-mean-square 
value to be almost anything he wants within a rather wide interval and show that he has 
converged to them by increasing the sample density. A weighted total least-squares will not lead 
us to such wrong answers. 

 

Figure 18:  Convergence using non-uniform discretization 
  
 The examples illustrated in this section are just the tip of the iceberg. Several other 
problems of similar nature arise when least-squares fitting is made normative. Both linear and 
nonlinear total least-squares fitting problems have to be defined for continuous curves and 
surface patches, and their discrete versions have to be developed as weighted total least-squares 
problems. We believe the current total least-squares fitting algorithms and the corresponding 
software implementations can be extended to cover the weighted total least-squares. But these 
have to be rigorously tested to ensure that they conform to the emerging normative 
specifications.  

6 Summary 
A resurgence of least-squares fitting is under way with the new specification methods that are 
being made available to designers.  The thrust of this paper has been to describe the wealth of 
experience and tools that are currently available to metrologists faced with these specifications, 
along with identifying some of the reasons for the popularity of the least-squares choice of fit 
objective. As the use of such specifications becomes commonplace, it is anticipated that further 
research and discussion will be needed to better understand the uncertainty present when a finite 
sample set is used to estimate the least-squares solution for the entire continuous surface. Thus 
the appeal of least-squares fitting will continue to endure for foreseeable future in research and 
practice of computational coordinate metrology. 
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