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Abstract

Reduction in the size and complexity of neural networks is essential to improve general-
ization, reduce training error, and improve network speed. Most of the known optimization
methods heavily rely on weight sharing concepts for pattern separation and recognition. In
weight sharing method the redundant weights from specific areas of input layer are pruned
and the value of weights and their information content play a very minimal role in the pruning
process. The method presented here focuses on network topology and information content
for optimization. We have studied the change in the network topology and its effects on
information content dynamically during the optimization of the network. The primary opti-
mization is Scaled Conjugate Gradient (SCG) and the secondary method of optimization is
a Boltzmann method. The conjngate gradient optimization serves as a connection creation
operator and the Boltzimann method serves as a competitive connection annihilation opera-
tor. By combining these two wethods its is possible to generate small networks which have
similar testing and training accuracy, i.e. good generalization. from small training sets. In
this paper we have also focused on network topology. Topological separation is achieved by
changing the number of connections in the network. This method should be used when the
size of the network is large enough to tackle real life problems such as fingerprint classifica-
tion. Our findings indicate that for large networks, topological separation yields a smaller
network size that is more suitable for VLSI implementation. Topological separation is based
on the error surface and information content of the network. As such it is an economical
way of size reduction that leads to overall optimization. The differential pruning of the con-
nections is based on the weight contents rather than number of connections. The training
error may vary with the topological dynamics but the correlation between the error surface
and recognition rate decreases to a minimum. Topological separation reduces the size of the
network by changing its architecture without degrading its performance.

1 Introduction

The Boltzmann methods have been used as a statistical method for combinatorial optimiza-
tion and for the design of learning algorithms [1].[2]. This method can be used in conjunction



with a supervised learning method to dynamically reduce network size . The strategy used
in this research is to remove the weights using Boltzmann criteria during the training pro-
cess. Information content is used as a measure of network complexity for evaluation of the
resulting network 1.

The Cross Validation technigue have been used for optimization by Moody [3], in which
the information content is removed before the training. In the Optimal Brain Damage method
the optimization takes place after the training is done, see Le Cun [4]. The type of opti-
mization described in this paper is simultaneous, which means the optimization takes place
concurrent with the training process. During the optimization process the Boltzmann method
is used in conjunction with Scaled Conjugate Gradient (SCG) mechanism. The Boltzmann
method works as a connection annihilator while SCG is the connection creator. There are
several points where these two methods can be compared. The Boltzmann method is self-
organizing while the SCG method is a supervised learning method. The Boltzmann method
seeks to minimize the the number of weights while maintaining the information content of
the network. The SCG method sceks to minimize an error function on the training set. The
information in the network during the iteration time ¢, as t — 00 is used as the control
parameter for Boltzmann method. The control parameter for the SCG method is the infor-
mation provided at ¢t = 0 in the initial weights. The algorithmic control in the Boltzmann
method is the temperature sequence applied during the iteration. The equivalent controlling
parameter for the SCG method is the restart sequence.

A standard method of optimization for real world problems is weight sharing [5]. The
weight sharing method increases the redundancy of the network while reducing the Vapnick-
Chervonenkis (VC) dimension [6]. Weight sharing lowers the network capacity and decreases
the network entropy. The increase in redundancy and decrease in network entropy lead to
larger size networks with minimal information capacity. A very large training set is needed
to train such a network. Even after the training the generalization power of the network can
not be estimated.

The optimization strategy used in this research focuses on network topology as it effects
information content and the quality of information represented in the network. This results
in a smaller network with a very high information content that allows the use of a reasonably
small training set. We have also done the topological separation to verify that the methed is
successful for networks with different number of neurons in the hidden laver. The information
content for topologically equivalent networks is basically the same and the change in the
number of neurons in the hidden layer has little or no effect in the information content and
the generalization power of the optimized network [7].

We have used the Boltzmann method as a secondary method of optimization to prune
the networks. This method has been applied to both supervised and self organizing networks
[8]. The method can be used in conjunction with a primary method of optimization such as
Scaled Conjugate Gradient scheme [9]. The resulting optimized network has been used for
both fingerprint and Landwritten character recognition. The recognition system is briefly
described. The optimization method is explained, the information content and capacity are
discussed and the results are presented.

A US patent is applied for by NIST for the optimization method presented in this paper.



2 Recognition Systems

Artificial neural network systems are constructed as interacting subsystemns with parallel data
flow between the layers and parallel processing of data in each subsystem. For example. all
pixels of the image are simultaneously applied to the input of the network so that all parts
of the input are filtered in parallel. In fingerprint classification [10] the input is an image
containing a single fingerprint. If the input is filtered, an image of the fingerprint with ridges
enhanced is produced [11]. The input to the system is initially converted to a more compact
representation in terms of ridge direction data; this conversion is called ridge-valley feature
extraction. After the ridge-valley feature extraction is performed, a set of numbers which
represents the input data in a more compact form, ridge direction data, is produced. In the
next calculation the Karhunen-Loéve (K-L) [12] transform is used to filter the ridge-valley
data by expanding it in terms of a set of characteristic image components which are the
eigenfunctions of the image covariance. This representation of the data is then used for
classifying the input in each of the learned classes providing an estimate of the probability
of the input being in each of the known classes. In the final calculation the input is assigned
to one or more of the known classes.

2.1 Training and Testing Data

The recognition system described in this paper were trained and tested using feature vectors
derived from the fingerprint images of NIST Special Database 4 [13). This database consists
of 8 bit per pixel gray level raster images of two inked impressions (“rollings”) of each of
2000 different fingers. The 300 feature vectors used to train the classifiers were made from
the 2000 first-rollings, and 300 feature vectors used to test the classifiers were made from the
2000 second-rollings. Every fingerprint in the database has an associated class-label, assigned
by experts. The two rollings of any finger have the same class, since the class of a fingerprint
is not affected by variations that occur between different rollings of the finger.

Fingerprints as they naturally occur are not distributed equally into the five classes. The
estimated probabilities are .037..029, .338, .317. and .279. for the classes Arch, Tented Arch,
Left Loop, Right Loop, and Whorl respectively. The 2000 fingers represented in Special
Database + are equally divided among the five classes. The database was produced this
way, rather than by using a natural distribution. so as to increase the representation of the
relatively rare, and also difficult. Arch and Tented Arch classes. This provides trainable
classifiers with more examples with which to learn these problematical classes. The training
set (first rollings) therefore has equally many prints of each class, so the testing set (second
rollings) also has equally mauny prints of cacl class. since the database consists of rolling

pairs,

2.2 KL Features

The feature extractor performs a K-L transform directly on the fingerprint image. The
fingerprint image is a raster of 512 by 512 8-bit grayscale pixels, produced by scanning the
fingerprint card with a CCD camera. The fingerprint classifiers described in this report
take as their input a small vector of numerical features derived from a fingerprint raster
image. The fingerprint is reduced to 112 features {not all of which need be used) as follows.
First. it is subjected to an FFT-based filter that increases the relative power of dominant



frequencies, increasing the ratio of signal (fingerprint ridges) to noise. The local orientations
of the ridges at 840 equally-spaced locatiouns (a 28 by 30 grid) are then measured, using an
orientation finder described in {11]. It computes an orientation at the location of each pixel,
then averages these basic orientations in nonoverlapping 16x16-pixel squares to produce the
grid of 840 orientations. The feature vector is intended to represent most of the information
relevant to classification in a compact form.

3 Scaled Conjugate Gradient Network

A fully connected multilayer network was implemented on a parallel machine with 1024
processor. The weights in the nerwork are updated for each step of iteration using the
following technique.

AW = or(gr + BxA W) (1)

Where 3y, is calculated by the algorithm to make AW, and AW;._; conjugate, or orthog-
onal in a generalized meaning of the word. The factor o is often determined by some kind of
line searclh, the line is drawn between your current position and a potenrial minimum in the
g direction. Initially a temporary small value used for ay to perform function evaluation.
This is done to approximate the second derivative in the search direction.then we use the
second derivative to select a final ng [14].

4 Boltzmann Methods

A fully connected multi layer neural network is used as a starting network for the Boltzmann
weight pruning algorithm. The network has an input layer with thirty-two input nodes, a
variable size hidden layer with sixteen, thirty-two or sixty-four nodes and an output layer
with ten nodes. The initial network is a fully connected network. The pruning was carried
out by selecting a normalized temperature. T, and removing weights based on a probability
of removal:

P, = exp(~|wil/T) (2)

The values of P, are compared 1o a set of uniformly distributed random numbers. R;, on
the interval [0.1]. If the probability P; is greater than R; then the weight is set to zero. The
process is carried out for each iteration of the SCG optimization process and is dynamic.
If a weight is removed it may subsequently be restored by the SCG algorithm; the restored
weight may survive if it has sufficient magnitude in subsequent iterations.

The dynamic effect of this is shown in figure 1 for five temperatures between 0.1 and 0.5,
starting from a fully converged and fully connected network. The initial iterations removes
many weights but later iterations of optiwization and pruning remove fewer weights. The
rate of weight removal is the function of iteration count, while the number of weights removed
is related 1o the temperature change. The number of weights in the initial network was 1386,
including bias weights. At all tewperatures the initial iterations are very effective in reducing
the weights. The decrease in the rate of pruning is the result of a critical phenomenon
characterized by a critical temperature. Te, at which the new information added by the SCG
training balances the information removed by pruning. At this critical point networks trained



on small training sets will achieve identical testing and training accuracy even when tested
on large test sets.

The effect of change in the number of hidden nodes can be seen in figures 2, 3 and 4.
The change in the number of hidden unirs has minimal effect on the optimization process in
general and the network performance changes very little. With the increase in tempreture
the accuracy of the network for recognition decreases slowly for temperatures up to 0.4. With
higher number of iterations the rate of weight removal slows and the rate of accuracy decay
accelerates. The comparison of the training set and testing set accuracy shows that the
training set accuracy is initially greater than the testing accuracy. At a critical temperature,
T., the testing accuracy and training accuracy are identical. In figure 2, at the critical
temperature of approximatly 0.58, chaotic behavior is observed in the vicinity of T, due to
the effects of weight removal. The behavior of the 32-64-10 network in figure 4 is similar
to the 32-32-10 network. The 32-16-10 network in figure 3 shows an increase in the critical
temperature. T, and a significant decrease in accuracy at T.. This increase in 7, is caused
by the reduced set of possible pruned configurations in the 32-16-10 network: the initial 32-
16-10 network is too small. eventhough it has many more weights than the pruned 32-32-10
network.

5 Information Capacity Reduction

The mechanism involved in the collapse of the information capacity reduetion during testing
and training accuracy near T; is caused by the large increase in weights near zero created
by the most recent SCG iteration. In a given training cycle some weights are removed. If
these weights are redundant they will be compensated for by other weights in the network.
If these weights are critical they will be restored by the SCG optimization. The peak in
the distribution near zero in both figures 3 and G is caused by this process. At T, the SCG
creation process is just balanced by the Boltzmann pruning.

To evaluate the generalization capability of the pruned network the network associated
with a temperature T = 0.55 was tested. The predicted accuracy from T, data was 75.5%; the
accuracy achieved in the test was 72.6%. In this region the change in accuracy of the network
is about 3% for each AT of 0.001 so that chis agreement is consistent with an accuracy of T,
of £.0005 with a value of 7, = 0.582.

During this optimization process three important measures of information content are
calculated [15]. The information capacity of the network. C, is given by:

C= -’Yu-ls({lo.g._l([“"mu.rl - Iogg(lwmml) + 1}}) (3)

where N, is the number of non-zero weights. wy,ez is the weight with the largest mag-
nitude, and wpyi, is the weight with the smallest nonzero magnitude. The distribution of
information content during the optimization process are shown figures 7 and 8. The entropy
is given Dby:

r
l\' uil e

H=C- ( Z 105’,2 |“'1| + -\'wls(l - 10!‘%2(?Unun))) N (4)

=1

aud the Shannon redundaucy is given by:



Nu""
R=( Z log; [wil + Nuas(1 — logy wmin))/C (5)
i=1

The dynamic effects of weight removal for nine temperatures between 0.001 and 0.2,
starting with weights from a fully converged but unpruned network are showa in figure 9.
The two curves plotted in this figure are the training set and testing set accuracy of the
network. The training set accuracy is initially greater than the testing accuracy. At a
critical temperature. T, the testing accuracy and training accuracy are identical. At the
critical temperacure of 0.125, by extra polating the low temperature crossing point, chaotic
behavior occurs in the vicinity of T, due to critical weight removal. For the same nine
temperatures and starting with a fully converged and fully pruned network the effects of
weight removal are shown in figure 10. The changes in capacity and entropy starting with a
fully connected unpruned network are shown figure 11. The change in the number of weights,
N, results in capacity reduction and entropy reduction. The change in capacity starting
with a fully pruned network is shown figure 12.

The effect on the information content of the network can be evaluated by examining
the distribution of weights in the network as a function of temperature or by evaluation of
the information capacity of the network. As the temperature is increased, the recognition
accuracy of the network decreases slowly for temperatures up to 0.15. As the temperature
approaches 0.2, the rate of weight removal slows, and the rate of accuracy decay accelerates.
The accuracy collapse is caused by the large increase in weights near zero created by the
most recent SCG iteration. In a given training cycle some weights are removed. If these
weights are redundant they will be compensated for by other weights in the network. If these
weights are critical they will be restored by the SCG optimization. The effect of the near-zero
weights is more important when viewed as information content. The information content is
approximately 3 (log, |w;| +1). When large numbers of near-zero weights exist, their contri-
bution to the sum dominates the network information. Under these conditions the network
is dominated by recently created weiglts that have not been optimized by SCG iterations.
This lowers network accuracy without reducing genralization power of the network.

6 Conclusions

A method of network optimization has been developed which reduces the number of weights
required for moderately accurate fingerprint classification by 87%. The method is based
on achieving equilibrium between the information in the training set and the information
capacity of the neural network by concurrent weight creation using SCG optimization and
Boltzmann weight removal. These reductions allow smaller training sets and smaller classifi-
cation networks to be used since the information capacity of the network and the information
capacity of the training aund testing sets are matched.
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Figure 1: Weights removed as a function of iteration and temperature for T =
0.1,0.2, 0.3, 0.4, 0.5. The lower curve is for T = 0.1; the upper curve is for T' = 0.5.
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Figure 2: Change in testing and training accuracy as a function of temperature for a 32-32-10
network a.ft.el 1000 iterations at each temperature.
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Figure 3: Change in testing and training accuracy as a function of temperature for a 32-16-10
network after 1000 iterations at each temperature.
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Figure 4: Change in testing and training accuracy as a function of temperature for a 32-64-10
networlk after 1000 iterations at each temperature.
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Figure 7: Information content distribution, ¥ log,(|wil), below T, at T' = 0.55.

20

15—
[ 1
Y 10 I
2
&

- Nl’”

0 1 fﬂ b0 f{
T T ' I I !
-10 -5 [+] s 10

LoG(IwI)

Figure 8: Information content distribution, 3 log,(|w.|). above T, at T = 0.6.

11



100— ==X

95

ACCURACY %

vE— X TRAINING
E 0 TESTING
4
dy T T T 1 T T T
0 Q.05 0.1 a.15 0.2
TEMPERATURE

Figure 9: Network testing and training accuracy as a function of temperature for T =
0.001, 0.01.0.05, 0.075. 0.0875, 0.9373, 0.1, 0.125, 0.15. The capacity initially was that of

an unpruned network.
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Figure 10: Network testing and training accuracy as a function of temperature for T =

0.001. 0.01.0.05. 0.075. 0.0873. 0.9375. 0.1. 0.125. 0.15. The capacity initially was reduced
by pruning the network at a temperature of 0.2
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Figure 11: Change in capacity and entropy as a function of temperature for a 128-128-5 fingerprint
recognition network after 300 iterations at each temperature starting with a network at 7' = 0.001.
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Figure 12: Change in capacity and entropy as a function of temperature for a 128-128-5 network
after 300 iterations at each temperature starting with a network at I' = 0.2.
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