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We consider the linear stability of a horizontal liquid bilayer subject to vertical heating. The two
layers consist of a binary liquid that has undergone a phase transition, resulting in a horizontal
interphase boundary between two phases with different compositions. We perform linear stability
calculations to determine the critical values for the applied temperature difference across the system
that is necessary to produce instability using both numerical computations and small-wavenumber
approximations. We focus on an instability primarily due to the phase change, which can occur in
the absence of buoyancy and surface-tension-driven convection. We find both direct and oscillatory
modes of instability, either of which can persist to small wavenumbers that allow approximate
analytical descriptions. The interaction of flow with a deforming phase boundary plays a critical role
in the instability, and the results are compared to morphological stability results that can be obtained
in the absence of flow. �doi:10.1063/1.3567188�

I. INTRODUCTION

The stability of a fluid-fluid interface is important in a
number of scientific and technological applications.1–4 In
previous work,5 we have considered the linear stability of a
two-phase binary liquid confined between differentially
heated horizontal parallel plates in a layer geometry and sub-
ject to the effects of buoyancy and thermocapillarity. The
two liquid phases are not considered to be immiscible, but
are in thermodynamic equilibrium. An example is a liquid
that has undergone phase separation at a temperature below
the critical point �the temperature at which the phases be-
come identical�. The two phases are separated by a deform-
able interphase boundary with a temperature-dependent sur-
face energy that can give rise to Marangoni convection in
addition to Rayleigh–Benard convection. In the previous
paper,5 we found a mode of instability even in the absence of
buoyancy and thermocapillarity, which is therefore a phase-
change mode of instability reminiscent of the familiar mor-
phological instability in two-phase systems subject to trans-
port by diffusion and heat flow.6 This mode was examined
for the aluminum-indium system, sufficiently far from the
critical point that the usual transport equations are valid with
a sharp interface model. The density ratio �� of the two
phases at the temperature considered ��Al /�In=0.427� differs
significantly from unity, so that dynamic perturbations to the
interface shape drive fluid motion normal to the interface.
However, in many two-phase systems, especially in organic
systems, for example, the acetone-hexadecane system,7 the
density ratio can approach unity. For this case, it is conceiv-
able that flow effects could be negligible in determining the
stability of the system. In this paper, we consider the linear
stability of two binary liquid layers with equal densities in
the absence of buoyancy and thermocapillarity, and find un-
stable phase-change modes, including both direct modes and

oscillatory modes that occur over a range of wavenumbers,
including small wavenumbers where analytical approxima-
tions can be obtained that illustrate directly the effects of
flow on the modes. In addition, in this paper we generalize
an approximate dispersion relation for small wavenumbers
obtained in our previous work that had the form

G =
��� − 1�Bo

c0 Ma Cr
, �1�

where G is a dimensionless temperature gradient �defined
below�, Bo is the Bond number, Ma is the Marangoni num-
ber, Cr is the Crispation number, and c0 is a constant that
depends on the depth ratio, the viscosity ratio, and the ther-
mal conductivity ratio. This approximation describes a direct
mode of Marangoni-driven instability for small wavenum-
bers in the absence of buoyancy, giving a finite value for the
critical dimensionless temperature gradient G. This approxi-
mation breaks down for either equal densities in each phase
���=1� or in the absence of surface tension gradients �Ma
=0�. In this work, we extend this analysis, obtaining a modi-
fied dispersion relation that describes in addition the cases
��=1 and/or Ma=0. For ��=1 numerical calculations for the
full problem show that the critical value of G scales with the
square of the wavenumber a, and in addition, a small-
wavenumber instability is found for Ma=0 that is also con-
vectively driven; the scaling of this mode with wavenumber
is also sensitive to whether or not the densities are equal. The
modified small-number expansion is found to take the form

G =
��� − 1�Bo − a2

c0 Ma Cr + c1 Cr
, �2�

where the constant c1 also depends on the depth ratio and
thermophysical properties. The new term proportional to c1

requires the careful retention of O�a2� terms that were ne-
glected previously.5a�Electronic mail: mcfadden@nist.gov.
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The outline of the paper is as follows. In Sec. II we
describe the model, including a summary of the thermody-
namics and governing equations. Numerical results are given
in Sec. III, followed by a summary of some small-
wavenumber expansions in Sec. IV. An analysis of a simpli-
fied no-flow example is given in Sec. V, and a discussion is
provided in Sec. VI.

II. GEOMETRY AND GOVERNING EQUATIONS

We consider a semi-infinite horizontal two-layer system
with vertical heating imposed across the layers. The unper-
turbed system is assumed to be quiescent with a stationary
planar interface located at position z=0. The unperturbed
upper layer �the � phase� extends over the interval 0�z

� H̄�, and the unperturbed lower layer �the � phase� extends

over the interval −H̄��z�0. Without loss of generality, we
consider the linear stability results for a two-dimensional
system with velocity components u and w in the x and z
directions, respectively. The perturbed interface is assumed
to have the form z=h�x , t�; the horizontal coordinate extends

over the interval −��x��. The upper boundary at z= H̄�

and the lower boundary at z=−H̄� are assumed to be isother-
mal and impermeable to solute with no-slip boundary condi-
tions. The equations of motion are given by the Navier–
Stokes equations in the Boussinesq approximation,8 coupled
to equations for heat and mass transfer.9 The interfacial
boundary conditions consist of continuity of tangential ve-
locity, conservation of mass, the balance of normal and tan-
gential stress, continuity of temperature, balance of heat and
solute fluxes, and the conditions of thermodynamic equilib-
rium at the interface. The latter conditions express the rela-
tionships between interfacial temperature and solute concen-
trations as depicted in the system’s phase diagram. The
interfacial conditions for the phase-change system differ
from those for an immiscible system primarily because of the
possibility of mass transport through the phase boundary,
which is not a material interface. Therefore, the two bound-
ary conditions equating the normal velocity of the interface
and the normal component of the flow velocity in each phase
in an immiscible system are replaced by a single equation for
the continuity of the relative mass flux normal to the inter-
face in a phase-change problem. In addition, the conditions
of thermodynamic equilibrium that are applied in the phase-
change problem augment the usual continuity conditions for
temperature and solute that apply in the immiscible case. The
generation of latent heat during a phase change also modifies
the usual heat flux condition.

A. Base state

We consider a quiescent one-dimensional base state with
a static temperature gradient normal to the planar interphase
boundary at z=0, with interface temperature T=TE and pres-
sure p= pE, and corresponding equilibrium concentrations c̄�

and c̄�. Near these points, the linearized coexistence curve
relating temperature and concentration for a fixed pressure
p= pE takes the form

T = TE + m��c − c̄��, T = TE − m��c − c̄�� , �3�

where m��0 and m��0.
The solute field is assumed to be uniform in each phase,

and the thermal field is

T��z� = TE + G�z �4�

in the � phase and

T��z� = TE + G�z �5�

in the � phase. The temperature gradients in the base state
satisfy

0 = k�G� − k�G�, �6�

where k� and k� are the thermal conductivities in each phase.
The pressure field in the base state is hydrostatic. We assume
the transport coefficients are uniform in each phase, and,
following the Boussinesq approximation, we assume the
density is uniform in all terms in the governing equations
except for the gravitational term.

B. Dimensionless parameters

We make the equations dimensionless based on a length

scale given by the total depth d= H̄�+ H̄�, a time scale based
on the thermal time d2 /��, the velocity scale �� /d, the tem-
perature scale G�d, and the pressure scale 	����̄� /d2. Here,
	� is the kinematic viscosity, �� is the thermal diffusivity,
and �̄�= �̄�TE , c̄�� is the density in the � phase. These scales
introduce a number of dimensionless parameters which are
listed in Table I. In addition, we define the dimensionless
temperature gradient in the � phase,

TABLE I. Dimensionless properties used in numerical calculations. Mate-
rial properties are based on values used for the aluminum-indium system
�Ref. 5� with d=1 cm, but further idealized by taking ��=1, and
Ma=Ra=0.

Mass fraction of indium
in the � phase c� 0.1721

Mass fraction of indium in the
� phase c� 0.9650

Density ratio ��=�� /�� 1.0

Kinematic viscosity ratio 	�=	� /	� 3.818

Dynamic viscosity ratio 
�=
� /
� 1.630

Thermal diffusivity ratio ��=�� /�� 1.137

Thermal conductivity ratio k�=k� /k� 1.664

Thermal expansion ratio ��=�� /�� 1.127

Diffusivity ratio D�=D� /D� 1.0

Schmidt number Sc=	� /D� 13.2

Prandtl number Pr=	� /�� 3.99�10−3

Bond number Bo=g��d2 /
 233.1

Crispation number Cr=
��� /d
 8.420�10−5

Marangoni number Ma=−
TTEd /
��� 0

Rayleigh number Ra=g��TEd3 /	��� 0

Dimensionless latent heat L��=��L���� /k�TE 1.287

Dimensionless dT /dc� m̃� 1.218

Dimensionless −dT /dc� m̃� 5.152
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G =
G�d

TE
, �7�

and the geometrical parameter H�= H̄� /d representing the
dimensionless depth of the � phase; the corresponding depth
of the � phase is H�=1−H�. We consider the temperature
gradient G� to play the role of an experimental control pa-
rameter, and so we have chosen to isolate the dependence on
G� in the dimensionless parameters in the single variable G.
The conventional Rayleigh number and Marangoni numbers
are then given by

G Ra =
g��G�d4

	���

, G Ma = −

TG�d2


���

, �8�

where the parameters Ra, Ma, and the dimensionless latent
heat L��, are independent of the temperature gradient and
depend only on the geometry and material parameters. The
values of the dimensionless parameters used in the calcula-
tions are given in Table I. �We have taken D�=1 since we
know of no measurements of this quantity.� Henceforth, all
variables will be dimensionless unless otherwise indicated.

C. Linearized governing equations

We assume a horizontal wavenumber a and a temporal
growth rate �=�r+ i�i; for example, the perturbed interface
z=h�x , t� then has the specific form

z = h̃ exp�iax�exp��rt + i�it� , �9�

where h̃ is the dimensionless interface amplitude. Neutral
stability corresponds to �r=0. A direct mode of instability
has �i=0 �“exchange of stabilities”� whereas the case �i

�0 represents an oscillatory mode �“overstability”�; for this
problem, oscillatory modes come in complex conjugate
pairs.

The perturbed quantities �indicated by tildes� satisfy the
linearized governing equations

iaũ� + w̃z
� = 0, �10�

Pr−1 �ũ� + iap̃�/�� = 	��ũzz
� − a2ũ�� , �11�

Pr−1 �w̃� + p̃z
�/�� = 	��w̃zz

� − a2w̃�� + ��G Ra T̃�, �12�

�T̃� + G�w̃� = ���T̃zz
� − a2T̃�� , �13�

Pr−1 Sc �c̃� = D��c̃zz
� − a2c̃�� �14�

for z�0 and

iaũ� + w̃z
� = 0, �15�

Pr−1 �ũ� + iap̃� = ũzz
� − a2ũ�, �16�

Pr−1 �w̃� + p̃z
� = w̃zz

� − a2w̃� + G Ra T̃�, �17�

�T̃� + w̃� = T̃zz
� − a2T̃�, �18�

Pr−1 Sc �c̃� = �c̃zz
� − a2c̃�� �19�

for z�0. Here, w̃z
� denotes the partial derivative �w̃� /�z, etc.

The boundary conditions at z=0 are continuity of tan-
gential velocity and conservation of mass,

ũ� − ũ� = 0, �20�

���w̃� − �h̃� = �w̃� − �h̃� , �21�

balance of normal and tangential stress,

�p̃� − p̃�� − Bo Cr−1��� − 1�h̃ + a2 Cr−1 h̃ = 2�
�w̃z
� − w̃z

�� ,

�22�

�
�ũz
� − ũz

�� + ia�
�w̃� − w̃�� − iaG Ma�T̃� + G�h̃� = 0, �23�

continuity of temperature,

T̃� + G�h̃ = T̃� + h̃ , �24�

thermodynamic equilibrium,

G�T̃� + G�h̃� = m̃�c̃�, �25�

G�T̃� + G�h̃� = − m̃�c̃�, �26�

and balance of heat and solute fluxes,

G�k�T̃z
� − T̃z

�� = ���w̃� − �h̃�L��, �27�

D�c̃z
� − c̃z

� = Pr−1 Sc ���w̃� − �h̃��c̄� − c̄�� . �28�

As in our previous work,5 we have ignored pressure pertur-
bations in Eqs. �25� and �26� since their effects are negligible
for the wavenumbers considered here. The effect of capillar-
ity is included directly in the Crispation number in the nor-
mal stress balance �22�.

III. RESULTS WITH FLOW

We computed the solution numerically using two meth-
ods as described previously.4,5 A matrix collocation proce-
dure, based on a pseudospectral Chebyshev discretization of
the solution,10 provides an approximate set of growth rates
for a given wavenumber and value of G. In a complementary
shooting procedure, a single growth rate is obtained by using
the two-point boundary value solver BVSUP.11 The resulting
modes would take the form of a set of convection rolls on
either side of a sinusoidally distorted interface in a two-
dimensional geometry.

In Fig. 1 we show a plot of the marginal values ��r=0�
of G versus wavenumber a for equal layer depths H�=H�

=1 /2 with Ra=Ma=0 and ��=1. For equal depths, the sys-
tem is stable for positive values of G. At small wavenumbers,
the system exhibits a direct mode of instability ��i=0� indi-
cated by the solid curve; the system is unstable ��r�0� for
sufficiently negative values of G. The marginal values of G
tend to zero for small wavenumbers. An oscillatory mode
branches from the direct mode near a=2.5�10−3 as indi-
cated by the dashed curve, so that for larger wavenumbers
the system first becomes overstable ��i�0� for sufficiently
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negative values of G. The frequency �i tends to zero where
the oscillatory mode merges with the direct mode, and in-
creases monotonically with increasing wavenumber, reach-
ing �i= �3.25 for a=1. The frequency of the oscillatory
mode is sensitive to capillarity: for example, decreasing the
Crispation number by an order of magnitude increases �i to
�10.22 for a=1, while G is only slightly changed. The be-
havior of the direct mode at small wavenumbers can be de-
scribed analytically by a small-wavenumber approximation
which we present below; these results are indicated by dots
in the figure.

In Fig. 2 we show a plot of G versus wavenumber a for
H�=0.1 and H�=0.9. There is again a direct mode of insta-
bility at small wavenumbers �solid curve�, but now the insta-
bility occurs for sufficiently large positive values of G. An

oscillatory mode �dashed curve� branches from the direct
mode at a=1.25�10−2, and the marginal values of G rise
rapidly with increasing wavenumber while the values of �i

remain relatively small with �i= �1.0�10−3 for a=0.25.
The system is linearly stable for small negative values of G,
but becomes unstable to another oscillatory mode when G
becomes sufficiently negative. This oscillatory mode asymp-
totes to a constant value of G=−21 and �i= �0.02 for small
wavenumbers. This mode can be described by a simplified
dispersion relation in which flow is neglected, as we describe
in the Appendix. The corresponding results are shown as the
square data points in Fig. 2. The numerical results indicate
that for large enough wavenumbers the system becomes
stable for finite values of G of either sign. The small-
wavenumber approximation, shown as the dots on the direct
mode, reproduces the observed sign change of the critical
values of G as the relative depths of the layers change in
passing from Fig. 1 to Fig. 2.

The accuracy of the numerical calculations is found to
deteriorate significantly for very small wavenumbers �a
�10−4�, but we have performed a small-wavenumber expan-
sion for the direct mode that extends the numerical results to
this regime, as we describe next.

IV. SMALL-WAVENUMBER APPROXIMATION
WITH FLOW

An approximate description of the direct mode of insta-
bility with Ra=Ma=0 and ��=1 can be obtained in the limit
of small wavenumbers; this mode is sensitive to the interface
deformation and requires a nonzero value of Cr. A formal
expansion can be obtained in terms of a small parameter �
representing the ratio of vertical to horizontal length scales in
the spirit of a lubrication approximation.1 By directly exam-
ining the dominant terms in the governing equations based
on their numerical solution, we find appropriate scalings for
the dependent variables with �. If we scale the interface de-
formation to order unity and scale the wavenumber accord-
ing to a=�â �denoting scaled variables with a hat�, the addi-
tional scalings are found to take the form ũj�z�=�3ûj�z�,
w̃j�z�=�4ŵj�z�, p̃j�z�=�2p̂j�z�, T̃j�z�= T̂j�z�, c̃j�z�=�2ĉ0

j �z�
+�4ĉ1

j �z�, and G=�2Ĝ, for j=� or �, with all other parameters
taken to be of order unity. Note that two terms are necessary
to approximate the solute field; the leading order term turns
out to be uniform, ĉ0

j =const, but a higher order correction is
needed that provides a nontrivial solute flux at the interface
to balance the convective contribution. Consistent with these
scalings, we find that a simplified set of approximate equa-
tions and the boundary conditions are �in terms of the origi-
nal unscaled variables�

iaũ� + w̃z
� = 0, �29�

iap̃� = 
�ũzz
� , �30�

p̃z
� = 0, �31�

T̃zz
� = 0, �32�
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FIG. 1. A plot of G vs wavenumber a for neutral modes with equal layer
depths H�=H�=1 /2 showing morphological instability with flow. The solid
curve is a direct mode and the dashed curve is an oscillatory mode. A
small-wavenumber approximation is indicated by dots.

10
−4

10
−3

10
−2

10
−1

10
0

−50

−40

−30

−20

−10

0

10

20

30

40

50

G

a

FIG. 2. A plot of G vs wavenumber a for neutral modes with layer depths
H�=0.1 and H�=0.9 showing morphological instability with flow. The solid
curve is a direct mode and the dashed curves are oscillatory modes. The
round data points indicate the results from a small-wavenumber approxima-
tion for the direct mode, and the square data points on the oscillatory branch
correspond to analytical results for a morphological stability analysis in
which flow is neglected.
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c̃zz
� − a2c̃� = 0 �33�

for z�0 and

iaũ� + w̃z
� = 0, �34�

iap̃� = ũzz
� , �35�

p̃z
� = 0, �36�

T̃zz
� = 0, �37�

c̃zz
� − a2c̃� = 0 �38�

for z�0. The approximate boundary conditions at z=0 are

ũ� − ũ� = 0, �39�

��w̃� = w̃�, �40�

�p̃� − p̃�� − Bo Cr−1��� − 1�h̃ + a2 Cr−1 h̃ = 0, �41�

�
�ũz
� − ũz

�� = iaG Ma�T̃� + G�h̃� , �42�

T̃� + G�h̃ = T̃� + h̃ , �43�

G�T̃� + G�h̃� = m̃�c̃�, �44�

G�T̃� + G�h̃� = − m̃�c̃�, �45�

G�k�T̃z
� − T̃z

�� = 0, �46�

D�c̃z
� − c̃z

� = Pr−1 Sc ��w̃��c̄� − c̄�� . �47�

By including the terms proportional to Bo���−1� in Eq. �41�
and Ma in Eq. �42�, we are able to include the small-
wavenumber expansion results that were obtained
previously.5

The solutions to the differential equations and the
boundary conditions at z=H� and z=−H� are given by p̃�

=const, p̃�=const,

ũ� =
iap̃�

2
�
�z − H��2 + E��z − H�� , �48�

ũ� =
iap̃�

2
�z + H��2 + E��z + H�� , �49�

w̃� =
a2p̃�

6
�
�z − H��3 −

iaE�

2
�z − H��2, �50�

w̃� =
a2p̃�

6
�z + H��3 −

iaE�

2
�z + H��2, �51�

T̃� = A��z − H��, T̃� = A��z + H�� , �52�

c̃� = F� cosh a�z − H�� � F�	1 +
a2

2
�z − H��2
 , �53�

c̃� = F� cosh a�z + H�� � F�	1 +
a2

2
�z + H��2
 , �54�

where the remaining unknown coefficients are determined by
the interfacial boundary conditions at z=0. The resulting dis-
persion relation takes the form

G =
2H�H��H� + 
�H���H� + k�H���Bo��� − 1� − a2�

3�H�
2 − 
�H�

2�Ma Cr + c1 Cr
,

�55�

where

c1 =
− 36
��H� + k�H�����H� + H���d1 + d2��̄

H�H�

, �56�

�̄ =
− �D�H�/m̃� − H�/m̃��

Pr−1 Sc ���c̄� − c̄���H� + k�H��
, �57�

d1 =
− 
�H�H��4��H� + 3H�� − ��H�

3

6
�H����H� + H��
, �58�

d2 =
− 
�H�

3 − H�H��3��H� + 4H��
6H����H� + H��

. �59�

For c1=0 and a2=0, this result reproduces the expression for
G given in Eq. �4.6� of Ref. 5. Since �d1+d2��0, for Ma

=0 and ��=1 the sign of G is determined by that of �̄, which
in turn is determined by the sign of �D�H� / m̃�

−H� / m̃�� / �c̄�− c̄��. For fixed material properties, there is a
sign change when the ratio of layer depths is varied with a
pole of G for H�=1 / �1+D�m̃� / m̃�� �see Fig. 3�. Near this
pole, there is enhanced stability as the magnitude of the criti-
cal temperature gradient required for instability becomes
large.
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FIG. 3. A plot of G vs layer depth H� for ��=1 and Ma=0 and a wavenum-
ber a=1.0�10−3. The solid curves are the small-wavenumber approxima-
tion and the data points are the full numerical solution. There is a pole for
H�=1 / �1+D�m̃� / m̃��=0.1912.
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V. RESULTS WITHOUT FLOW

The simplest conventional morphological stability analy-
sis �cf., e.g., Refs. 6 and 12� for a solid-liquid binary system
neglects flow in the liquid phase, and the transport equations
are purely diffusive in nature. For the fluid-fluid system we
consider here, if flow is neglected the normal component of
the interfacial momentum balance reduces to

�p̃� − p̃�� − Bo Cr−1��� − 1�h̃ + a2 Cr−1 h̃ = 0. �60�

Thus, either capillarity �Cr−1�0� or a density difference
�Bo���−1��0� causes a pressure difference across a nonpla-

nar interface �h̃�0�. On the other hand, the horizontal mo-
mentum equation requires the pressure to vanish if there is
no flow, so the equations without flow are not consistent in
this case. �In the case of the solid-liquid system, the pressure
is often assumed to vanish in the liquid phase, and any pres-
sure is implicitly accounted for in the solid phase, which is
assumed to be capable of withstanding arbitrary forces.�
Nevertheless, it is useful to perform a linear stability analysis
without flow for comparison purposes, which we examine in
the Appendix. To do so, we assume the densities are equal,
eliminating density-driven convection, and neglect the ef-
fects of capillarity �Cr−1=0�. In this case, the momentum
conservation equations in the bulk and at the interface are
also identically satisfied, and a purely diffusive model can be
solved.

Numerical results for the case of equal depths H�=H�

=0.5 are shown in Fig. 4. The system is stable for positive
values of G, and unstable for negative values, and has a
neutral mode ��=0� for G=0. Curves for other values of �r

�with �i=0� are also shown in Fig. 4. For small positive
values of �r, the small-wavenumber behavior represents a
nonuniform �singular� limit, in that

G0 = lim
�r→0+

� lim
a→0+

G� � lim
a→0+

� lim
�r→0+

G� = 0, �61�

where

G0 =
�k�H� + H��m�m��c̄� − c̄��

m�H� − m�H�

. �62�

This result is shown as the dashed line in Fig. 4, correspond-
ing to G0=−3.37. The four curves in Fig. 4 corresponding to
�r=10−12, 10−9, 10−6, and 10−4 illustrate this nonuniform be-
havior.

A large wavenumber expansion of the dispersion relation
�A16� in the Appendix gives a direct mode of instability with
the leading order behavior

G �
�r

2a
	− L�� + �1 + k��

Pr

Sc

m�m��c̄� − c̄��
�D�m� − m�� 
 , �63�

which is negative for �r�0 with our parameter values. For
the case H�=0.1 and H�=0.9, the dispersion relation without
flow given in Eq. �A16� gives oscillatory modes ��i�0�, as
shown in Fig. 2.

VI. DISCUSSION

We have performed linear stability calculations for hori-
zontal liquid bilayers in a two-component system that can
undergo a phase transformation. Aside from the interphase
boundary that is initially present, we assume no further phase
transformations occur in the bulk layers, such as nucleation
or spinodal decomposition. We have obtained values for the
applied temperature difference across the system that is nec-
essary to produce instability by a linear stability analysis
using numerical and small-wavenumber approximations. We
find a direct phase-change instability due to the combined
effects of solute diffusion and fluid flow that persist at small
wavenumbers. We find oscillatory instabilities at finite wave-
numbers in which flow plays an important role, and in some
instances �cf. Fig. 2� we also find an oscillatory instability,
where flow is relatively unimportant, which persists at small
wavenumbers. This oscillatory mode has a relatively large
value of �G� on the order of 20; since the applied temperature
difference across the system is �T�GTE, this requires sub-
stantial temperature variations for typical values of TE �e.g.,
103 K�. On the other hand, the direct mode has a small-
wavenumber instability with G tending to zero, so that insta-
bility can occur for small values of �T at the cut-off wave-
number set by the lateral length scale of a typical container.

For the two-layer system with phase change, the direct
mode persists to small wavenumbers with a scaling that de-
pends on the Crispation and Bond numbers �see Eq. �55��. In
particular, if Cr and Bo are considered to be independent
parameters, then for nonzero values of ���−1�Bo and Cr the
direct mode has a finite limiting value of the critical tempera-
ture gradient G as the wavenumber tends to zero, whereas if
���−1�Bo=0, G tends to zero as a2. Similar behavior is ob-
served for the case of inert fluids for the direct Marangoni
instability �Ma�0�, see Ref. 1, although we emphasize that
the phase-change mode considered in the present paper oc-
curs for Ma=0. In addition, for the inert Marangoni mode
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FIG. 4. A plot of G vs wavenumber a for H�=H�=1 /2 and various values
of �r showing morphological stability without flow. The dashed line is G0,
the small-wavenumber expansion result for small positive values of �r. The
numbers in the figure denote the value of �r used to generate the adjacent
curve. The four additional curves that lie in the narrow region G0�G�0
correspond to values �r=10−12, 10−9, 10−6, and 10−4 from left to right.

044102-6 McFadden, Coriell, and Lott Phys. Fluids 23, 044102 �2011�

Downloaded 15 Apr 2011 to 129.6.88.148. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



there is a small-wavenumber instability even with a nonde-
forming interface �Cr=0� with G scaling with 1 /a2, see Refs.
1 and 13; in this case, the mode is insensitive to the Bond
number. Similarly, in the single-component liquid-vapor
problem considered in Ref. 4, the direct mode of instability
with Ma=0 occurs even with a rigid interface �Cr=0�. In that
case, the small-wavenumber instability is driven by a cou-
pling between interfacial temperature and pressure through
the Clausius–Clapeyron effect.4 By contrast, in the binary
case considered here the instability is solute-driven and is
accompanied by an interface deformation requiring Cr�0.

In the absence of flow, the morphological stability of a
stationary planar interface is usually determined by the pres-
ence or absence of undercooled phases. In an applied tem-
perature gradient, one of the phases is heated above the equi-
librium temperature, and the other is below �supercooling�;
for a static interface this results in the marginal state being
given by G=0. Constitutional supercooling �effects of solute
on the equilibrium temperature� is not an issue for uniform
concentrations in the base state. For large wavenumber per-
turbations, the effects of the confining boundaries become
unimportant and the stability analysis is straightforward. For
small wavenumbers the effects of the boundaries are signifi-
cant and the analysis is more complicated; a transcendental
dispersion relation is obtained, and the stability results show
singularities at certain depth ratios where resonance occurs.

In general, flow effects cannot be neglected even for
Ra=Ma=0 and ��=1, so the morphological stability results
cannot always be expected to provide a useful approxima-
tion. The effects of flow on the direct mode of instability at
G=0 predicted by the morphological instability analysis shift
the instability to nonzero values of G, as shown in Figs. 1
and 2. The direction of the shift is consistent with a stabili-
zation of the mode to higher supercooling required for insta-
bility: the direct mode of instability occurs for positive tem-
perature gradients if H� is near unity �the sample consists
mostly of � phase� and occurs for negative temperature gra-
dients if H� is near unity �the sample consists mainly of �
phase�, see Fig. 3. This is consistent with a supercooling
argument,12,14 since the liquid in the � phase is supercooled
�T�TE� for G�0, and the liquid in the � phase is super-
cooled for G�0. The oscillatory modes of instability are
more difficult to interpret; in particular, we note that for
some depth ratios oscillatory instabilities occur for either
heating from above or below �see Fig. 2�.

For small wavenumbers the effect of the solute field is
apparent in the approximate stability relation for the mar-
ginal temperature gradient G given by Eq. �55�. For ��=1

and Ma=0, G is inversely proportional to �̄ which depends
on the Schmidt number Sc, the liquidus slopes m̃� and m̃�,
and the solute concentrations c̄� and c̄�. For certain param-

eter values �̄ can vanish, leading to a pole in G and hence a
strong sensitivity to the solute parameters. Solute depen-
dence is also evident in the large wavenumber approximation
given in Eq. �63�. We note that these results are obtained for
uniform concentrations of solute in the base state. Solute
gradients could arise from a nonzero Soret coefficient, which
we have neglected in the present work; for the alloy system

considered here we are not aware of measurements of the
Soret coefficient. Inclusion of the Soret effect could lead to
interesting modifications of our stability results.
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APPENDIX: STABILITY WITHOUT FLOW

We consider the linear stability problem in the absence
of flow effects. The linearized equations are

�T̃� = ���T̃zz
� − a2T̃�� , �A1�

Pr−1 Sc �c̃� = D��c̃zz
� − a2c̃�� �A2�

for z�0 and

�T̃� = T̃zz
� − a2T̃�, �A3�

Pr−1 Sc �c̃� = c̃zz
� − a2c̃� �A4�

for z�0.
The boundary conditions at z=0 are

T̃� + G�h̃ = T̃� + h̃ , �A5�

G�T̃� + G�h̃� = m̃�c̃�, �A6�

G�T̃� + G�h̃� = − m̃�c̃�, �A7�

G�k�T̃z
� − T̃z

�� = − �L��h̃ , �A8�

D�c̃z
� − c̃z

� = − � Pr−1 Sc�c̄� − c̄��h̃ . �A9�

We define ��=
a2+� /��, ��=
a2+�,

��=
a2+Sc � / �Pr D��, and ��=
a2+Sc � /Pr. The

solutions are

T̃� = A� sinh ���z − H��, T̃� = A� sinh ���z + H�� ,

�A10�

c̃� = B� cosh ���z − H��, c̃� = B� cosh ���z + H�� .

�A11�

Define

� = k��� cosh ��H� sinh ��H�

+ �� sinh ��H� cosh ��H�. �A12�

The temperature equations then give

A� = 	 �G� − 1�G�� cosh ��H� − �L�� sinh ��H�

G�

h̃ .

�A13�
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Then,

B� =
GG�� − sinh ��H��G� − 1�G�� cosh ��H� + �L�� sinh ��H� sinh ��H�

�m̃� cosh ��H�

h̃ , �A14�

B� =
− GG�� + sinh ��H��G� − 1�G�� cosh ��H� − �L�� sinh ��H� sinh ��H�

�m̃� cosh ��H�

h̃ . �A15�

The dispersion relation is then

G��� sinh ��H� cosh ��H�

+ �� cosh ��H� sinh ��H��

=
� Pr−1 Sc m�m��c̄� − c̄���

D�m��� tanh ��H� − m��� tanh ��H�

− �L�� sinh ��H� sinh ��H�. �A16�

We note that for a direct mode with �i=0, this relation im-
mediately gives G as a function of a and �r; in particular,
G=0 for �=0. More generally, we obtain a transcendental
equation for � as a function of a and G, which we solve
numerically15 to determine the oscillatory modes. It is diffi-
cult to obtain analytical small-wavenumber approximations
to these modes because the quantity Sc �i /Pr that appears in
�� and �� is of order unity, so that the dispersion relation
remains transcendental in this limit. The solution is further
complicated by the possibility of poles where the denomina-
tor vanishes, which can occur for certain depth ratios, and
other poles associated with vanishing values of the argu-
ments of ��, ��, ��, and ��, which can occur for finite
wavenumbers if �r�0. The values of G that occur near these
poles are unphysically large and lie outside the range of va-
lidity of the Boussinesq approximation; it is also likely that
the linearized equations break down near these resonances,
requiring a nonlinear theory to obtain consistent results.
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