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Abstract

The central atoms model (CAM) of a metallic glass is extended to incorporate thermodynamically stable defects, similar to vacancies
in a crystalline solid, within the amorphous structure. A bond deficiency (BD), which is the proposed defect present in all metallic glasses,
is introduced into the CAM equations. Like vacancies in a crystalline solid, BDs are thermodynamically stable entities because of the
increase in entropy associated with their creation, and there is an equilibrium concentration present in the glassy phase. When applied
to CuAZr and NiAZr binary metallic glasses, the concentration of thermally induced BDs surrounding Zr atoms reaches a relatively
constant value at the glass transition temperature, regardless of composition within a given glass system. Using this “critical” defect con-
centration, the predicted temperatures at which the glass transition is expected to occur are in good agreement with the experimentally
determined glass transition temperatures for both alloy systems.
Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
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1. Introduction

The central atoms model (CAM) was first developed in
the 1960s as an extension of the quasichemical model [1–4].
It has been used primarily to study the thermodynamics of
crystalline phases, particularly interstitial solid solutions in
steels. In a recent paper by the present authors, CAM was
adapted to describe the atomic structure of a binary metal-
lic glass [5]. In the treatment, the local atomic short-range
order (SRO) inherent in glassy metals was used to describe
the system in terms of a “central” atom and a cage of near-
est neighbors (NNs) surrounding it. The equations were
modified to account for the lack of long-range order
(LRO) associated with the glassy state. Topological SRO
(TSRO) was accounted for by considering the local atomic
packing around each central atom. The relative atomic
sizes of the species were used to describe NN cages that
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most efficiently occupy the space surrounding a central
atom. These NN configurations form “geometrically pre-
ferred” arrangements because they minimize the average
atomic volume [7–11], and were termed “ideal” NN cages.
Chemical SRO (CSRO) was introduced by calculating the
energy per atom associated with each NN cage using
atomic interaction energies extracted from thermodynamic
data.

Because of the disordered nature of a metallic glass,
deviations from ideal TSRO and CSRO are likely to occur.
The authors have referred to these deviations as bond-
deficiencies (BDs) [12–14]. These BD defects are akin to
vacancies in a crystalline material, and contribute to
“extra” volume of the amorphous phase often described
using the free volume (FV) model. Just as for vacancies,
entropy effects will result in a non-zero concentration of
point defects in thermodynamic equilibrium at a finite
temperature. Unlike a vacancy, which is defined as the
absence of an atom on a lattice site, a BD is described as
a NN cage containing one fewer atom than an ideal cage.
.
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Nomenclature

CZi
J
; CZi

J�1 combinatorial factor enumerating the num-
ber of different arrangements of i B and Zi

J � i
A atoms (CZi

J
); and for i B and Zi

J � 1� i A

atoms (CZi
J�1)

E molar internal energy of the system
fA; f m

A ratio of average coordination numbers of A to B

atoms, used to calculate “effective” composi-
tions in the amorphous phase; m indicates the
ratio for BD NN cages

F molar Helmholtz free energy of the system
g; g� degeneracy factor: the number of possible con-

figurations a system may undertake; � indicates
the case of random mixing

G molar Gibbs free energy of the system
h correction factor required in the calculation of g

i the number of B atoms in a NN cage
k Boltzmann’s constant
m; me fraction of atoms surrounded by a BD NN cage;

superscript e indicates the equilibrium fraction
mJ ; me

J fraction of atoms of species J surrounded by a
BD NN cage; superscript e indicates the equilib-
rium fraction

N total number of atoms (or atoms plus vacancies
in a crystalline material) in a system

NJ number of atoms of species J in a system; sub-
script V stands for vacancies

Na Avogadro’s number
pi

J ; pi�
J probability of finding an ideal NN cage with i B

and Zi
J � i A atoms around a J central atom,

equal to CZi
J
� ai

J (or CZi
J
� ai�

J ); � indicates ran-
dom mixing

pim
J ; pim�

J probability of finding a BD NN cage with i B

and Zi
J � 1� i A atoms around a J central atom,

equal to CZi
J�1 � aim

J (or CZi
J�1 � aim�

J ); � indicates
random mixing

P i
J total packing efficiency of a NN cage containing

i B atoms around a J central atom
PJK partial packing efficiency of K atoms around a J

atom, given byP JK ¼ zJK=ZK
J

S molar entropy of the system
XJ mole fraction of species J in the system

X 0J ; X m0
J effective mole fraction of species J in the system,

accounting for differences in average coordina-
tion number between species; m indicates for
BD NN cages

X i
J ;K mole fraction of species K in a NN cage contain-

ing i B and Zi
J � i A atoms around a J central

atom; i.e., X i
J ;B ¼ i=Zi

J and X i
J ;A ¼ ðZi

J � iÞ=Zi
J

zJK partial coordination number of K atoms sur-
rounding a J central atom

Zi
J total coordination number of a NN cage con-

taining i B atoms and Zi
J � i A atoms around a

J central atom
Zmax

J maximum number of B atoms that can fit in a
NN cage surrounding a J central atom

ZK
J coordination number calculated for a J solute

atom surrounded completely by solvent atoms
of species K, calculated from the ECP model

a constant used in estimating the energy of struc-
tural relaxation

di
J fractional deviation of the unoccupied space in a

NN cage from that found in ideal dense random
packing or 0.025

ei0
J NN cage energy prior to structural relaxation;

or the average cohesive energy per atom
ei

J ; eim
J energy of a NN cage containing i B and Zi

J � i A

atoms around a J central atom for ei
J ; and of a

BD NN cage containing i B and Zi
J � 1� i A

atoms for eim
J

eSR energy of structural relaxation
kn Lagrange multiplier associated with the con-

straint Wn; no subscript indicates the Lagrange
multiplier associated with a mass balance con-
straint (W3) in Eq. (16)

K6; K7 ratios related to k4 and k5, equal to
K6 ¼ 1=K7 ¼ e�k5=e�k4

Wn constraint imposed on the NN cage probabilities
pi

J and pi�
J ; no subscript indicates the Lagrange

multiplier associated with a mass balance con-
straint (W3) in Eq. (6)
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This definition, and the lack of well-defined lattice posi-
tions in a glassy metal, allows the remaining atoms in a
NN cage to be redistributed within the cage, minimizing
the cost of BD formation in terms of energy and volume.
In a previous treatment of metallic glasses using CAM,
these BD defects were neglected for simplicity in the previ-
ous treatment. The present effort incorporates them into
CAM, creating a more realistic description of the glassy
structure, which may then be utilized to describe not only
selected structural and thermodynamic properties, but
extra volume associated with the amorphous phase and
kinetic behavior as well.

2. Formulation

2.1. “Ideal” metallic glass

The complete derivation of the equations of CAM can
be found elsewhere [1–6]. From the derivation, assuming
enthalpy and internal energy are equal, the molar Gibbs



Fig. 1. A 2-D schematic representation of a bond deficiency in a metallic
glass. (a) A perfect NN cage surrounding the central atom corresponding
to ideal hexagonal packing. (b) A thermodynamically necessary BD
formed when the light-colored atom switches from a first NN to a second
NN position. The resulting NN cage around the central atom is bond
deficient, i.e., one fewer bond than ideal packing.
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free energy of an “ideal” binary metallic glass (i.e., one con-
taining no defects) is expressed using CAM as:

G ¼ NaX A

XZmax
A

i¼0

pi
Ae

i
A þ NaX B

XZmax
B

i¼0

pi
Be

i
B

þ NakT

ðX A ln X A þ X B ln X BÞ

þ
PZmax
A

i¼0

X Api
A lnðX Api

A
CZi

A

Þ þ
PZmax
B

i¼0

X Bpi
B ln

X Bpi
B

CZi
B

� �

�
PZmax
A

i¼0

X Api�
A ln

X Api�
A

CZi
A

� �
�
PZmax
B

i¼0

X Bpi�
B ln

X Bpi�
B

CZi
B

� �

2
666664

3
777775
ð1Þ

where CZi
J

is the combinatorial factor:

CZi
J
¼ Zi

J !

ðZi
J � iÞ!i! ð2Þ

enumerating the number of different arrangements of i B

atoms and Zi
J � i A atoms. pi�

J and pi
J are the probabilities

of finding a J central atom surrounded by a NN cage con-
sisting of i B atoms and Zi

J � i A atoms, for the case of ran-
dom mixing of the atoms (pi�

J ), and for ordering (or
segregation) of the atoms due to the thermodynamic inter-
action between the species (pi

J ). These probabilities are gi-
ven by the equations:

pi�
J ¼

CZi
J
ðX 0AÞ

Zi
J�iðX 0BÞ

i

PZmax
J

i¼0 CZi
J
ðX 0AÞ

Zi
J�iðX 0BÞ

i
ð3Þ

and

pi
J ¼

CZi
J

exp � ei
J

kT þ ik
� �h i

PZmax
J

i¼0 CZi
J

exp � ei
J

kT þ ik
� �h i ð4Þ

The effective composition variables, X 0J , in Eq. (3), account
for the differences in the average coordination number be-
tween the two species that arise due to differences in atomic
size and the lack of LRO in a metallic glass, and are defined
as:

X 0A �
fAX A

fAX A þ X B
and X 0B �

X B

fAX A þ X B
: ð5Þ

Both fA and k in Eq. (4) are determined by applying a mass
balance constraint, W, on pi�

J and pi
J

W ¼ X A

XZmax
A

i¼0

ipi
A þ X B

XZmax
B

i¼0

ipi
B � X B

XZmax
B

i¼0

Zi
Bpi

B ¼ 0: ð6Þ

This restricts the number of B atoms found in both A and B
atom NN cages to be equal to the total number of B atom
NNs.

2.2. Metallic glass containing defects

2.2.1. Bond deficiencies

The above equations provide the necessary tools for
describing a defect-free amorphous phase using CAM.
Once the possible types of NN cages that can occur, and
their associated enthalpies, are determined for a given sys-
tem, the thermodynamic stability and CSRO of the glass
can then be studied [5,6]. However, the simplification made
above is that only ideal-type NN cages occur within the
glassy structure. Although a useful approximation, actual
metallic glasses contain many topological defects due to
their disordered nature, disrupting these ideal NN configu-
rations. The inclusion of defects in a thermodynamic model
of a metallic glass is therefore essential. Vacancy-like
defects, akin to those found in crystalline materials, are
not appropriate in describing point defects in a metallic
glass because the cost of formation, in terms of energy
and volume, is too large to be consistent with experimental
observation [15]. A BD, introduced by Zhu et al. [12–14], is
a more suitable method of describing the nature of defects
in a metallic glass. Fig. 1 illustrates the idea of a BD for a 2-
D NN cage. The light-colored atom switches from a first
NN to a second NN position from Fig. 1a and b, creating
a bond-deficient NN cage around the central atom.

Like vacancies in a crystalline solid, BDs are thermody-
namically stable because of the increase in entropy associ-
ated with their formation. Thus, there will be an
equilibrium concentration of BDs present in the amor-
phous structure at temperatures above absolute zero.

In a crystal, a vacancy is essentially the absence of an
atom on a lattice site, and thus the formation energy and
volume required for its creation is of the order of the cohe-
sive energy per atom and average atomic volume, respec-
tively. However, for the case of a thermally induced BD,
instead of breaking the entire complement of bonds corre-
sponding to the removal of one atom, only one bond is
broken with the central atom (one atom is missing from
ideal SRO), and the remaining NNs are redistributed. This
significantly reduces the energy cost of defect creation,
which can be as low as 1=ð2Zi

JÞ that of a vacancy [12].
The volume cost of creating a BD is also only a fraction
(�1/5) that of a vacancy. A double BD (similar to a double
vacancy) is also a possible configuration. However, the
probability of their occurrence is quite small, and only
atoms having a single BD in their NN cage are considered
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in the present development. Like vacancies, BDs are ther-
modynamically stable, and there is a finite concentration
present in a metastable equilibrium glassy structure. These
structural defects are considered to provide the primary
vehicle for atomic transport responsible for diffusion, glass
transition and, to some extent, plastic flow [12–14].

2.2.2. Including BDs in CAM

To incorporate a BD in the CAM description, the equa-
tions must be derived in such a way that defects are
included. Consider the free energy of a system in terms of
the internal energy, E, and the number of possible configu-
rations having that energy, g, given as [1–4]:

G � F ¼ E � NakT lnðgÞ: ð7Þ
For random mixing in a simple binary crystalline system,
disregarding defects, g is equal to N !=ðNA!N B!Þ. If vacancies
are included in the description of g for a crystalline phase,
they occupy lattice sites, and thus act as a third species.
Therefore, g becomes:

g� ¼ N !

NA!NB!N V !
: ð8Þ

The asterisk is added to denote a random mixing process.
Unlike vacancies, BDs do not occupy lattice sites (or pseu-
do-lattice sites for the case of a glass). Thus, for a metallic
glass, they can be freely distributed and associated with any
of the atoms in the system. For random mixing, the total
number of possible configurations the system may exhibit
is equal to the total number of ways of arranging the
atoms, multiplied by the number of ways of arranging
some concentration, m, of BD NN cages, around the
atoms. Thus, g� becomes:

g� ¼ ð#ways of arranging atomsÞ
� ð#ways of arranging BDsÞ

¼ N !

NA!NB!
� N !

ðmNÞ!½ð1� mÞN 	!

¼ ðN !Þ2

NA!NB!ðmNÞ!½ð1� mÞN 	! ð9Þ

where N is now the total number of atoms, i.e., pseudo-lat-
tices sites, or NA + NB. In this randomly mixed solution,
any particular central atom, J, may be surrounded by an
ideal NN cage containing Zi

J atoms, or a BD NN cage
having Zi

J � 1 NNs. The probability of each of these
configurations occurring is:

pi�
J ¼ ð1� mÞCZi

J
ai�

J ð10Þ

for ideal NN cages, and:

pim�
J ¼ mCZi

J�1a
im�
J ð11Þ

for BD NN cages, with

ai�
J ¼

ðX 0AÞ
Zi

J�iðX 0BÞ
iPZmax

J
i¼0 CZi

J
ðX 0AÞ

Zi
J�iðX 0BÞ

i
ð12Þ

and
aim�
J ¼ ðX m0

A Þ
Zi

J�1�iðX m0
B Þ

iPZmax
J �1

i¼0 CZi
J�1ðX m0

A Þ
Zi

J�1�iðX m0
B Þ

i
ð13Þ

X m0
J is the effective composition of species J in BD NN

cages, described similarly to Eq. (5), except now consider-
ing the coordination number of BD cages (Zi

J � 1). Simi-
larly, CZi

J�1 is of the same form as Eq. (2), or the number
of different possible atomic arrangements for each value
of i in BD NN cages.

If the atoms are not distributed randomly, and instead
segregation or ordering occurs, the description of g is dif-
ferent than Eq. (9). For this case, if the NA A atom NN
cages and NB B atom NN cages, both containing some par-
tial fraction of cages containing a BD, mA and mB, respec-
tively, are distributed independently of one another, g is
expressed as:

g¼h

� NA!N B!QZmax
A

i¼0 ½ðN Aai
AÞ!	

CZi
A
QZmax

A �1

i¼0 ½ðNAaim
A Þ!	

CZi
A
�1
QZmax

B
i¼0 ½ðN Bai

BÞ!	
CZi

B
QZmax

B �1

i¼0 ½ðN Baim
B Þ!	

CZi
B
�1

ð14Þ

where ai
J and aim

J are now the probability of a J atom sur-
rounded by i B atoms and Zi

J � i or Zi
J � i� 1 A atoms for

ideal and BD cages, respectively. The numerator of Eq.
(14) exhibits the total number of NN cages, while the
denominator accounts for the different types of cages. A
correction factor, h, is added because all NN cages cannot,
in reality, be distributed independently of one another
(each NN atom is a central atom of another NN cage). If
the ai

J and aim
J in Eq. (14) are replaced by their values for

a random mixing process, ai�
J and aim�

J , respectively, and
the result is equated to Eq. (9), the appropriate value of
h is determined. In this manner, g for a defect-containing
metallic glass can be determined, and the expression for
the Gibbs free energy is given by:

G¼Na X A

XZmax
A

i¼0

pi
Aei

Aþ
XZmax

A

i¼0

pim
A eim

A

 !
þX B

XZmax
B

i¼0

pi
Bei

Bþ
XZmax
B �1

i¼0

pim
B eim

B

 !" #

þNakT ½X A lnX AþX B lnX Bþm lnmþð1�mÞ lnð1�mÞ	

þNakT

PZmax
A

i¼0

X Api
A ln

X Api
A

CZi
A

� �
þ
PZmax
B

i¼0

X Bpi
B ln

X Bpi
B

CZi
B

� �

þ
PZmax

A �1

i¼0

X Apim
A ln

X Apim
A

CZi
A
�1

� �
þ
PZmax

B �1

i¼0

X Bpim
B ln

X Bpim
B

CZi
B
�1

� �

�
PZmax
A

i¼0

X Api�
A ln

X Api�
A

CZi
A

� �
�
PZmax
B

i¼0

X Bpi�
B ln

X Bpi�
B

CZi
B

� �

�
PZmax

A �1

i¼0

X Apim�
A ln

X Apim�
A

CZi
A
�1

� �
�
PZmax

B �1

i¼0

X Bpim�
B ln

X Bpim�
B

CZi
B
�1

� �

2
6666666666664

3
7777777777775

ð15Þ

The pi
J and pim

J are determined by first imposing five con-
straints on the probabilities, given by the equations:

W1 ¼
XZmax

A

i¼0

pi
A þ

XZmax
A �1

i¼0

pim
A � 1 ¼ 0

W2 ¼
XZmax

B

i¼0

pi
B þ

XZmax
B �1

i¼0

pim
B � 1 ¼ 0
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W3 ¼ X A

�XZmax
A

i¼0

ipi
A þ

XZmax
A �1

i¼0

ipim
A 	 þ X B½

XZmax
B

i¼0

ipi
B þ

XZmax
B �1

i¼0

ipim
B

�

� X B

�XZmax
B

i¼0

Zi
Bpi

B þ
XZmax
B �1

i¼0

ðZi
B � 1Þpim

B

�
¼ 0

W4 ¼ X A

XZmax
A

i¼0

pi
A þ X B

XZmax
B

i¼0

pi
B � ð1� mÞ ¼ 0

W5 ¼ X A

XZmax
A �1

i¼0

pim
A þ X B

XZmax
B �1

i¼0

pim
B � m ¼ 0 ð16Þ

W1 and W2 confine the NN cage probabilities around each
species to equal 1, W3 is a mass or bond balance of B

atoms, and W4 and W5 arise because the total concentration
of ideal cages and BD cages must be equal to 1 � m and m,
respectively. Utilizing the method of Lagrange multipliers,
and minimizing the free energy in Eq. (15) with respect to
the pi

J and pim
J , the expressions for the NN cage probabili-

ties are derived to be:

pi
A ¼

CZi
A

exp � ei
A

kT þ ik
� �h i

PZmax
A

i¼0 CZi
A

exp � ei
A

kT þ ik
� �h i

þK6

PZmax
A �1

i¼0 CZi
A�1 exp � eim

A
kT þ ik
� �h i

pi
B ¼

CZB
i

exp � ei
B

kT þ ik
� �h i

PZmax
B

i¼0 CZi
B

exp � ei
B

kT þ ik
� �h i

þK6e�k
PZmax

B �1

i¼0 CZi
B�1 exp � eim

B
kT þ ik
� �h i

pim
A ¼

CZA
i �1 exp � eim

A
kT þ ik
� �h i

K7

PZmax
A

i¼0 CZi
A

exp � ei
A

kT þ ik
� �h i

þ
PZmax

A �1

i¼0 CZi
A�1 exp � eim

A
kT þ ik
� �h i

pim
B ¼

e�kCZB
i �1 exp � eim

B
kT þ ik
� �h i

K7

PZmax
B

i¼0 CZi
B

exp � ei
B

kT þ ik
� �h i

þ e�k
PZmax

B �1

i¼0 CZi
B�1 exp � eim

B
kT þ ik
� �h i

ð17Þ

where k4 and k5 (the Lagrange multipliers for W4 or W5,
respectively) have been combined into the two ratios K6

and K7, such that:

K6 ¼
1

K7

¼ e�k5

e�k4
ð18Þ

K6 and K7 are determined by inserting the pi
J and pim

J into
W4 or W5 and expanding the constraint into a quadratic
equation. The resulting quadratic equation for W4 is

½ð1� mÞrm
Arm

B 	K2
6 þ ½ðX A � mÞrm

ArB þ ðX B

� mÞrAr
m
B 	K6 � mrArB

¼ 0; ð19Þ

where rJ and rm
J are the sums of the numerator of each pi

J

and pim
J in Eqs. (17), from i = 0 to Zmax

J (Zmax
J � 1 for BD

NN cages).
The above equations allow for the thermodynamics and

atomic structure of a metallic glass containing defects to be
described using CAM. Because BDs are thermodynami-
cally stable, an equilibrium concentration, me, can be
calculated for a given temperature and composition by
minimizing the free energy expression of Eq. (15). This
equilibrium defect concentration can then be used to gain
some information on the kinetics of the system.
2.3. NN cages and enthalpies

2.3.1. Possible NN cages

How Zi
J varies with i for ideal NN cages depends on the

relative sizes of the atoms and how they most efficiently fill
the space surrounding the central atom. These ideal NN
cage units can be described in a number of ways, such as
considering of the solid angle occupied by NN atoms, as
suggested by Egami [7,8]; or using the more recent efficient
cluster packing (ECP) model of Miracle [9–11]. For solute
of atoms species J, completely surrounded by solvent
atoms of species K, the ECP model yields a coordination
number given by [11]:

ZK
J ¼

4p

6cos�1fsinðp=3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�½rK=ðrJþrK Þ	2
p

g�p
for0:2256 rJ

rK
60:414

4p

8cos�1fsinðp=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�½rK=ðrJþrK Þ	2
p

g�2p
for0:4146 rJ

rK
60:902

4p

10cos�1fsinðp=5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�½rK=ðrJþrK Þ	2
p

g�3p
for rJ

rK
P0:902

8>>>><
>>>>:

9>>>>=
>>>>;

ð20Þ
Eq. (20) maximizes the packing efficiency for a given radius
ratio rJ/rK. When a NN cage contains more than one type
of atom, a partial packing efficiency for each species,
P JK ¼ zJK=ZK

J , is defined. The sum of the partial packing
efficiencies is constrained to not exceed unity. Considering
a binary A–B system, for a given value of i (number of B

NNs), the total packing efficiency, P i
A, must satisfy the

inequality:

i
ZB

A

þ Zi
A � i
ZA

A

6 1 ð21Þ

and similarly for B atom NN cages. Zi
J is calculated by

determining the maximum number of A atoms, Zi
J � i,

for each possible number of B atoms in the NN cage, i.
The coordination numbers calculated in this manner corre-
spond to the most efficiently packed NN configurations
possible for a given value of i. The difference between the
geometrical ECP model and CAM is that in the present
model, all possible clusters satisfying Eq. (21) can be con-
sidered as possible NN arrangements, not only the most
efficiently packed ones. Thermodynamic interactions be-
tween species are used to determine which configurations
occur most often, or the CSRO.

The BD NN cages that may occur are assumed to be
identical to those calculated using Eq. (21), except they
contain Zi

J � 1� i A atoms instead of Zi
J � i. Thus, each

BD NN cage contains one fewer A atom than an ideal con-
figuration. Table 1 shows the possible ideal and BD NN
cage configurations for Cu and Zr central atoms in the
CuAZr binary system. Atomic radii of 0.128 and
0.159 nm are used for Cu and Zr, respectively. As an exam-
ple, for values of i from 5 to 7, Zi

Cu has a value of 11. With a
BD, this results in NN cages containing 10 atoms. The pos-
sible BD cage configurations with 10 total NNs are 5 Cu
and 5 Zr atoms, 4 Cu and 6 Zr atoms, and 3 Cu and 7
Zr atoms. Additional arrangements containing 6 Cu atoms



Table 1
Total coordination numbers for ideal NN cages (columns 1 and 4) and
NN cages containing one BD (columns 2 and 5) as a function of i, the
number of Zr atoms in the NN cage, for Cu and Zr central atoms in the
CuAZr system.

Zi
Cu Zi

Cu � 1 i (# Zr atoms) Zi
Zr Zi

Zr � 1

13 12 0 16 15
13 12 1 16 15
12 11 2 16 15
12 11 3 16 15
12 11 4 15 14
11 10 5 15 14
11 10 6 15 14
11 10 7 15 14
10 9 8 14 13
10 9 9 14 13
10 NA 10 14 13

11 13 12
12 13 12
13 13 NA
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and 4 Zr atom, 7 Cu atoms and 3 Zr atom, or 8 Cu and 2
Zr atoms are also possible configurations containing 10
total NNs; however, these are double BD configurations,
i.e., i = 2, 3 and 4 Zr atoms with two fewer Cu atoms than
the ideal Zi

Cu instead of only one, and are not considered in
the present treatment.

2.3.2. NN cage enthalpy and structural relaxation

The enthalpy of each NN cage is calculated by summing
the energies of all the bonds that the central atom makes
with its NNs. Atomic-level interaction energies have been
extracted from CALPHAD-type thermodynamic data
using a technique previously developed by the present
authors [16]. Because the CALPHAD assessments are opti-
mized to best fit experimental data, the atomic interaction
parameters calculated using this method are consistent with
other calculations and experimental observation. Three-
body interactions, described elsewhere, are used in the pres-
ent work because of their advantages when the model is
extended to a ternary system [5,6,16]. The thermodynamic
data for the CuAZr and NiAZr binary systems used in the
following calculations can be found elsewhere [5].

As Zi
J varies with i, jumps in energy occur when Zi

J

changes because fewer (or more) atoms can fit around
the central atom. In a real system, these energy jumps are
lessened by the redistribution of the surrounding atoms
to more uniformly occupy volume, often termed structural
relaxation. This is analogous to the idea of “ghost” bond-
ing in vacancy formation [17]. A rigorous treatment of the
energy associated with atomic relaxation requires detailed
calculations of local electron densities and atomic-level
stresses. A simple approximation can be made by assuming
that, for small deviations in packing efficiency, the energy
associated with this process, eSR, is linearly proportional
to the amount of unoccupied space around the central
atom. For the case where rA/rB = 1 (pure-component pack-
ing), Eq. (20) yields a value of ZK

J ¼ 13:33, implying that 13
atoms of identical size can fit in a NN cage surrounding a
central atom. This results in a total packing efficiency of
13/13.33, or 0.975; and a fraction of unoccupied space is
1-0.975 or 0.025. In the following calculations, eSR is esti-
mated as �a � di

J � ei0
J , where di

J is the fractional difference
between the unoccupied space in the NN cage and the ideal
value of 0.025. The parameter a is an adjustable parameter.
It is assigned a value such that eSR where di

J is largest
(where Zi

J changes) is �ei0
J=ð3Zi

J Þ. This is also the approxi-
mate energy of a ghost bond in a crystalline material
[12,17]. For the CuAZr and NiAZr systems under consid-
eration here, a value of a = 0.3 yields a reasonable estimate
of eSR. Fig. 1a illustrates the energy per atom for ideal Cu-
atom NN cages in the CuAZr system before and after add-
ing the estimated energy of structural relaxation.

The above approximation is a good estimate of eSR as
long as the deviation from ideal packing efficiency is small
(a linear relationship). However, BD NN cages have a
much larger fraction of unoccupied space. In addition to
that arising from the atomic size mismatch described
above, a BD NN cage is also missing one entire atom.
To account for the additional relaxation caused by the
missing atom, an additional ei0

J=ð3Zi
J Þ is added to the energy

calculated using the above approximation. Fig. 2b shows
the calculated NN cage energies for ideal and BD Cu
NN cages in the CuAZr system. Also shown is the differ-
ence between ideal and BD cages with the same number
of Zr atoms. This difference between ideal and BD cages
is ei0

J=ð3Zi
J Þ; a reasonable estimation of the formation

energy of a BD, which should be on the order of
ei0

J=ð2Zi
J Þ [12].

3. Application to Zr-based metallic glasses

3.1. BDs and atomic structure

Fig. 3 shows the distribution of ideal and BD NN cages
for CuAZr and NiAZr alloys at a composition of
XZr = 0.5, calculated at 773 K. The BD NN cage probabil-
ity distributions show a similar shape to those for ideal NN
cages. The total and partial equilibrium concentrations of
BDs present in each system are summarized in Table 2
(Table 2 also presents the equilibrium concentration of
defects in alloys of different compositions, calculated at
their respective Tg, and will be discussed below). The
CuAZr alloy has an equilibrium BD concentration of
3.6 � 10�2, and a partial concentration around Cu that is
about twice that around Zr atoms. The total concentration
of BDs in the NiAZr alloy, 2.17 � 10�2, is less than that of
CuAZr, and the difference between those around Ni and Zr
atoms is smaller. Differences in the calculated partial BD
concentrations of each species are not surprising. The ener-
getic cost of creating a BD should be related to the
enthalpy, or energy cost, of breaking a bond between a cen-
tral atom and a NN, and the BD concentration will scale
this energy. For Cu50Zr50 at 773 K, the average bond ener-
gies between a central atom and NN are �0.42 and



Fig. 2. (a) The enthalpy of Cu NN cages in the CuAZr binary system as a function of I without accounting for structural relaxation (solid); and when
�a � di

J � ei0
J is used to estimate the energy of structural relaxation (dash). (b) The calculated enthalpies of ideal, ei

J (solid), and BD, eim
J (dashed), Cu NN

cages in the CuAZr system as a function of i. The enthalpy difference between ideal and BD NN cages with the same number of Zr atoms, also shown
(dotted), is � 0:3ei0

J , the estimated energy of a ghost bond [17]. Calculations are performed at 773 K with a = 0.3.

Fig. 3. Probability distributions of ideal NN cages, pi
J (solid), and BD NN cages, pim

J (dashed), for a composition of XZr = 0.5, for (a) Cu and (b) Zr central
atoms in the CuAZr system, and for (c) Ni and (d) Zr central atoms in the NiAZr system. All calculations are performed at a temperature of 773 K.

Table 2
Equilibrium concentration, me, of BDs in an alloy of composition
XZr = 0.5 at 773 K in the CuAZr and NiAZr systems, along with the
partial concentrations, me

M (M@Cu or Ni), and me
Zr, surrounding each

individual species.

me (�10�2) me
M (�10�2) me

Zr (�10�2)

Cu50Zr50 3.64 5.25 2.03
Ni50Zr50 2.17 1.27 3.06
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�0.47 eV for Cu and Zr, respectively; and �0.51 and
�0.53 eV for Ni and Zr, respectively, for Ni50Zr50. The
higher BD concentration around Ni than Zr in Ni50Zr50,
despite the weaker bond strength, may be because of the
large negative heat of mixing between Ni and Zr. From
Fig. 3, Ni atoms are surrounded primarily by Zr atoms.
NiAZr bonds are more stable than ZrAZr, making it more
likely a BD will form from a ZrAZr bond than from a
NiAZr one.

The inclusion of BDs in CAM can be used to study the
extra volume associated with the amorphous structure. The
original FV model of a liquid phase defines any excess
volume above a certain minimum atomic volume (close
to that of a crystal) as free volume, i.e., it can be moved
or redistributed with no energy of migration. When applied
to a glassy phase, this excess volume is defined as a devia-
tion from ideal dense random packing (DRP); because of
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the solid nature of the glass, however, its migration
requires an activation energy. In both cases, there is no
clearly defined atomic structure. Using CAM, an ideal
amorphous phase is considered to be a set of ideal NN
cages (no BDs) with densely packed configurations. Devia-
tions from this ideal structure are the CAM equivalent of
“extra” volume in the FV model. These deviations occur
in the form of BD NN cages, or as ideal-type NN cages
with low packing efficiencies. Additional contributions to
the extra volume in the glassy phase also arise via geomet-
rically required defects for MRO, but cannot be treated in
the current model using only first NNs.

For CuAZr binary glasses, if a BD is assumed to have a
volume of �1/5 of an atomic volume, the 2–5% equilibrium
concentration of BDs listed in Tables 2 and 3 suggest 0.5–
1% in excess volume in the glassy structure, compared to a
defect-free amorphous structure. The contribution to extra
volume from ideal-type NN cage packing efficiency is
around ±0.4% for the three compositions in Table 3. The
extra volume is actually decreased by efficient ideal NN
cage packing in the alloy Cu64Zr36, which has been shown
experimentally to possess the highest glass-forming ability
(GFA) in the CuAZr binary system. Metallic glasses typi-
cally have densities of 97% that of their crystalline counter-
part, with alloys having the highest GFA approaching 99%
[11]. Combining the two sources above, CAM yields an
estimate of 0–2% excess volume in the amorphous struc-
ture; a good first approximation of the experimentally
determined extra volume in metallic glasses.

3.2. BD concentration and glass transition

The properties of a metallic glass are governed not only
by the thermodynamics of the system, but also by kinetics.
The dependence of the glass transition temperature, Tg, on
sample processing history and differential scanning calo-
rimetry (DSC) heating rate in experiments is one example
of this behavior. The introduction of defects into the
CAM of a metallic glass allows the kinetic processes asso-
ciated with the glass to be examined. If a BD is assumed to
be the primary transport mechanism [14], insight can be
gained into the role that kinetics plays in the glass
Table 3
Equilibrium concentration of BDs, me, and partial concentration sur-
rounding M (M@Cu or Ni) and Zr atoms, me

J , calculated at Tg for various
compositions in the CuAZr and NiAZr systems.

CuAZr Tg (K) me (�10�2) me
M (�10�2) me

Zr (�10�2)

XZr = 0.36 773 4.84 6.94 1.11
XZr = 0.5 693 2.51 3.76 1.26
XZr = 0.6 653 1.66 2.30 1.23

NiAZr
XZr = 0.34 858 2.85 3.15 2.26
XZr = 0.36 833 2.55 2.68 2.32
XZr = 0.5 733 1.74 1.00 2.48
XZr = 0.6 693 1.59 0.54 2.29
transition. Table 3 shows the equilibrium concentration
of BDs, me, and the partial concentration surrounding
Cu/Ni and Zr atoms, me

M (M@Cu or Ni) and me
Zr, respec-

tively, for various compositions in the CuAZr and NiAZr
systems, each calculated at that composition’s correspond-
ing glass transition temperature. The Tg values of 773, 693
and 653 K for CuAZr alloys of compositions XZr = 0.36,
0.5 and 0.6, respectively, are experimentally determined
in the present work from an average of at least three
DSC scans for each composition, following synthesis of
the glasses by melt spinning at 30 m s�1 in a He atmo-
sphere. The NiAZr alloy glass transition temperatures are
taken from the work of Jiang et al. [18].

Notice in Table 3 that both me and me
M vary by a factor

of 2 or more at Tg for the two systems. Looking at me
Zr,

however, reveals that the concentration of BDs surround-
ing Zr atoms is roughly constant at Tg for a given system,
regardless of composition. For CuAZr alloys this “critical”
concentration is 1.1–1.3 � 10�2, and for the NiAZr system
it is found to be 2.3–2.5 � 10�2. Although these values are
for a glass in metastable equilibrium, while experimentally
prepared alloys are removed from this equilibrium state,
this constant value indicates a strong correlation between
the calculated defect concentration and the glass transition
temperature. These critical values calculated for the CuAZr
and NiAZr systems are also comparable to the equilibrium
vacancy concentration found in a crystalline material near
the melting temperature, i.e., �10�3 [20].

It has been suggested that Tg will correspond to a
temperature where some characteristic concentration of
defects is reached that will allow for structural relaxation
and increased atomic mobility [12]. The equilibrium BD
concentrations given in Table 3 demonstrate that it is not
the total concentration of BDs that reaches a critical value
at Tg; rather, it is the concentration surrounding a specific
species, here Zr for both systems. The Zr atoms must reach
a certain concentration of BDs for significant atomic move-
ment, and thus the glass transition, to occur. This hypoth-
esis is in agreement with the argument that atoms of
smaller size diffuse at the same rate as larger ones in a
multicomponent metallic glass, and thus the larger atoms
(Zr here), dictate the diffusivity and ultimately the glass
transition [21].

Assuming that the glass transition occurs when the
concentration of defects surrounding Zr atoms reaches
some critical value, it is possible to estimate the expected
values of Tg as a function of composition. Using an
average value of me

Zr in Table 3, an expected glass transi-
tion temperature is estimated by calculating the tempera-
ture at which me

Zr reaches this critical value. Fig. 4 plots
this temperature as a function of composition for the
CuAZr and NiAZr systems, and shows a window of
±25 K from this temperature. Also plotted are experimen-
tally determined values of Tg for CuAZr [22–25] and
NiAZr [18,19] alloys. There is good agreement between
the predicted glass transition temperature and those deter-
mined experimentally. Tg increases with decreasing Zr



Fig. 4. Predicted glass transition temperature as a function of composition (solid), calculated using the average values of me
Zr at Tg, found in Table 3, for

(a) the CuAZr and (b) the NiAZr systems. The dotted lines are ±25 K, yielding a 50 K window for expected Tgs. Also shown are experimentally
determined values of Tg for several compositions (diamonds).
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content for both CuAZr and NiAZr alloys. At higher Cu
and Ni concentrations, e.g., XZr < 0.5, the predicted glass
transition begins to rise rapidly. The likely reason is that,
although me

Zr remains roughly constant, me
M is becoming

high, of the order of several per cent for Cu. There is a
correlation effect between the mobility of Cu/Ni and Zr
atoms. Most Zr atom NN cages will contain one or more
Cu atoms with a BD, and the mobility of Zr atoms will be
affected by the mobility of Cu atoms. Therefore, at com-
position extremes, the BD concentration surrounding
both species becomes important. This reiterates the idea
that Tg is a property related to both the thermodynamics
and kinetics of the system. It is determined by a balance
between defect concentration, primarily a thermodynamic
property, and the atomic mobility of all species in the
system.

3.3. Extension to higher-order systems

CAM can readily be applied to ternary and higher-order
alloy systems. However, the model becomes increasingly
complex when an additional component is added—primar-
ily because of the rapidly increasing number of NN cages
that must be considered. For instance, in the CuAZr binary
alloy, there are 25 (11 Cu and 14 Zr) ideal-type NN cages
and 23 BD cages (see Table 1), or 48 in total. If Al is added
as a ternary element, the number of ideal NN cages alone
increases to �70 for Cu, �100 for Zr, and �80 for Al, or
by a factor of 10 compared to binary CuAZr. Adding com-
ponents to CAM also increases the number of constraints,
Eq. (16). A second mass balance constraint, W3, for C

atoms is needed; and a second Lagrange multiplier similar
to k in the above equations will be needed to determine the
NN cage probabilities. Finally, if BDs are included in the
model, W4 and W5 become more complex; and solving for
k4 and k5 (or K6 and K7) becomes more difficult. These
issues can be overcome by utilizing increased computer
power and/or minor simplifications. Extension of CAM
to ternary and quaternary alloys is demonstrated in Ref.
[6]; it will also be the subject of a future report.
4. Conclusions

The presence of defects, termed bond deficiencies
(BDs), was introduced into the CAM model of a metallic
glass. A single BD is defined as the absence of one atom
from the ideal NN cage surrounding a central atom. The
defect is similar to a vacancy in a crystalline material,
though the energy and volume cost of formation is much
smaller. Like vacancies, BDs are thermodynamically sta-
ble entities, and an equilibrium concentration of BDs can
be calculated at a given temperature. The calculated
equilibrium BD concentration was found to be �10�2

at the glass transition temperature for CuAZr and
NiAZr binary metallic glasses. This concentration is sim-
ilar to the vacancy concentration in a crystalline material
at its melting temperature. The partial concentration of
BDs surrounding each species was found to be depen-
dent upon the average bond energy between a central
atom and its NNs. The larger this energy, the larger
the energetic cost of creating a BD.

In studying equilibrium BD concentration as a function
of composition for the two Zr systems, the concentration of
BDs surrounding Zr atoms was found to be relatively
constant at the glass transition temperature. This critical
concentration is found to be 1.1–1.3 � 10�2 and 2.3–
2.5 � 10�2 for CuAZr and NiAZr glasses, respectively.
From this critical defect concentration, expected glass
transition temperatures were calculated as a function of
composition. The calculations correlated well with experi-
mentally determined glass transition temperatures for both
the CuAZr and NiAZr systems.
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