
 

 

1 

1 

Statistical Modeling Cement Heat of Hydration  
 

Paul Stutzman1 Stutz@nist.gov 301-975-6715, (corresponding author) 
Stefan Leigh2 
Kendall Dolly2 

 

Abstract 
 
 The heat of hydration of hydraulic cements results from the complex sets of phase 
dissolution and precipitation activity accompanying the addition of water to a cement. Heat of 
hydration is currently measured in one of two ways: 1) through an acid dissolution of the raw 
cement and a hydrated cement after seven days, or 2) isothermal calorimetry.  In principal, the 
heat of hydration should be predictable from knowledge of the cement composition, and perhaps 
some measure of the cement fineness or total surface area. The improved mineralogical estimates 
provided by quantitative X-ray powder diffraction, together with improved statistical data 
exploration techniques that examine nonlinear combinations of candidate model constituents, are 
used to explore alternative predictive models for 7-day heat of hydration (HOH7).  An All 
Possible Alternating Conditional Expectations (APACE) exploratory tool, created by combining 
All Possible Subsets Regression with Alternating Conditional Expectation (ACE), is used to 
determine which variables within an explanatory variable class and which subsets of variables 
across explanatory variable classes exhibit the highest potential predictive power for additive 
nonlinear models for HOH7. While a single, strong model for HOH7 did not emerge from these 
analyses, some general conclusions did result. Good fitting models include a key structural 
mineralogical phase (belite preferred), a calcium sulfate phase (bassanite preferred), a total 
fineness or surface area component (Blaine fineness preferred), and ferrite in conjunction with 
Fe2O3, or aluminate, or cubic aluminate.  
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 Introduction 
 
 Hydraulic cements react with water through a process called hydration via a series of 
chemical reactions, ultimately resulting in the precipitation of interlocking hydration products 
that provide strength to the structure.  The hydration process produces heat that in some concrete 
placements may cause expansion and, potentially, cracking upon cooling to ambient conditions. 
The temperature rise can also be beneficial in the case of cold-weather concrete placements, 
where the heat facilitates hydration and keeps the concrete from freezing [1].  
 
 ASTM C186, adopted in 1944 as a standard test method for determining the heat of 
hydration of hydraulic cements, involves measurement of the heat of solution of dry cement 
specimens that have been hydrated for 7 d and for 28 d.  The difference between the heat of 
solution values between the dry and the partially hydrated cement specimens is taken as the heat 
of hydration for that time period.  The heat values range from 261 kJ kg -1to 468 kJ kg -1, 
expressed in SI units3. This test is time-consuming, involves a hazardous mixture of nitric and 
hydrofluoric acids, and has low precision with the 95 % limits on the difference between two test 
results (d2s) values of 48 kJ kg -1 for measurements between different laboratories.  Conduction 
calorimetry provides an alternative with ASTM C1679, “Standard Practice for Measuring 
Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry”.  This 
method has been shown to be useful in the estimation of total heat, in assessing early-age 
reactions and setting problems, and in measuring the influences of sulfate additions and mineral 
admixtures on heat evolution [2].  
 
 The rate of hydration of a cement depends upon its mineralogy, the mass fraction of each 
phase, the particle size distribution, the water-to-cement ratio, and the temperature and relative 
humidity of curing [3].  Copeland et al. [4] ascribe the total heat of hydration as emanating from 
two processes: 1) the chemical reactions in the formation of hydration products, thought to be 
responsible for 80 % of the heat, and 2) the heat of wetting of the subsequent colloidal hydration 
product accounting for the remaining 20 %. The C186 test utilizes a fixed water/cement ratio but 
the curing temperature may differ depending upon the rate of heat evolution.  
 
 Limits on composition and fineness in ASTM C150 and AASHTO M85 reflect their 
influences on the heat of hydration. Type II cement with the moderate heat option has two 
alternative restrictions on either the sum of mass % C3S+4.75*C3A≤100 (the heat index 
equation), or a seven-day heat release amount of 290 kJ kg -1 when measured by ASTM C186. 
Type IV (low heat cement) has limits on either phase mass fraction for C3S, C2S, and C3A of 35 
%, 40 %, and 7 %, respectively, or a C186 heat value limit of 250 kJ kg -1 at seven days. Type III 
cements generally have higher heats of hydration and Type IV the lowest [1].  
 
 These phase estimates are Bogue-calculated values as described in ASTM C150 and 
AASHTO M85. Errors in these estimates arise from the variability of clinker phase chemistry 
relative to the assumed compositions, from the failure to account for minor constituents, and 
from inaccuracy in measured analytical values [5,3]. Phase abundance directly determined by 

                                                
3 Non-SI units (cal/g) may be converted by multiplying by the conversion factor 4.1868. 
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quantitative X-ray powder diffraction analysis (XRD) and some non-phase variables (particle 
size distribution, fineness) considered to affect heat evolution are considered in this work in 
modeling 7-day heat of hydration (HOH7).  A standard test method for clinker and cement XRD 
may be found with ASTM C1365 [6]. XRD is ideally suited for fine-grained materials (like 
clinker and cements) for direct phase analysis, as each phase produces a unique diffraction 
pattern independent of the other phases, the intensity of which is proportional to its concentration 
[7,8,9]. 

Effects of Cement Phase Characteristics 
 
 Early work on developing predictive models for heat of hydration focused on the 
contributions of the individual clinker phases, the synergistic effects of multi-phase cement 
hydration, and the heat of precipitation of the resulting hydration products [4,10,11,12]. Lerch 
[13] concluded that gypsum retards early hydration of cements that have high tricalcium 
aluminate content, while accelerating hydration of cements with low tricalcium aluminate 
content, and that the akali aluminate (the orthorhombic form) is more reactive and requires a 
larger gypsum addition than a low-alkali aluminate (the cubic form).  More recently, the 
accelerating effects of potassium oxide (presumably from the alkali sulfates and alkali-
substituted tricalcium aluminate) on alite, ferrite, and aluminate have been demonstrated 
[14,15,3].  Calcium sulfate additions have an accelerating effect on hydration of the silicates and 
ferrite while retarding the initial set and the reactions of the aluminate phases.  Gypsum has also 
been seen to retard heat development in mixtures of clinker phases.  In cases where gypsum may 
have been partially dehydrated during cement processing forming bassanite (hemihydrate), heat 
(192 kJ kg -1) would evolve upon rehydration to gypsum [10,11]. Overall, this reflects the 
complex synergy of the mineral constituents of the portland cement system during the hydration 
process. Confounding this further is the influence of mineral surface areas exposed upon 
grinding and the potential change in some mineral forms upon grinding.  
 
 Taylor [3] summarized multilinear predictive models of the form of eqn. 1 for heat (Ht) 
derived by least-squares regression analyses using Bogue potential phase mass fraction (µ), and a 
coefficient accounting for degree of hydration of each phase for a specific age (Table 1). Note 
that the aluminate (C3A) reaction can result in ettringite (AFt) at early ages and monosulfate 
(AFm) at later ages, with differing enthalpy of hydration, underscoring the complexity of the 
cement hydration process. Taylor [3] notes that the enthalpies of formation of clinker phase 
hydration products would refine estimates of potential heat evolution, but the uncertainties in 
their values and variability in the reaction stoichiometry of hydration would also introduce 
additional errors into the estimates. 
 
Ht = a⋅µC3S + b⋅µC2S + c⋅µC3A + d⋅µC4AF  Eqn. 1 
 
 Poole summarized work relating Bogue phase composition to heat of hydration and 
developed a multilinear regression model (eqn. 2) that utilized aluminate and alite with an R2 of 

89 % on the data used to develop the model, exhibiting apparently little bias, and a ± 21 kJ kg -1 

95 % confidence interval on the regression [16].  The cement fineness, as measured by Blaine 
permeability, was not found to be a significant variable. 
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HOH7 (kJ kg -1) = 133.9 + 9.36⋅µC3A + 2.13⋅µC3S  Eqn. 2 
 
 Phases not included in these predictive models, like the alkali and calcium sulfates and 
the different forms of tricalcium aluminate, can exert significant influences on a cement’s 
hydration characteristics. It is reasonable to ask whether a more complete accounting for cement 
phases and fineness measures will provide a better set of predictive variables.  More generally, 
would one expect relatively simple multilinear models to work well given the complexity of 
hydration processes?   
 

The Data 
 
 The variables analyzed in this work are organized into logical groupings as shown in 
Table 2. Data were collected for 22 cements from the CCRL proficiency test program, 18 
cements from a NCHRP program 18-05 on cement performance [17], and 4 cements provided by 
the US Army Corps of Engineers.  The QXRD data were the average of three replicates each of a 
bulk cement and an extraction residue after a salicylic acid / methanol extraction to facilitate 
identification and quantitative estimates. Bulk oxide and Bogue-calculated values were used for 
comparative purposes and setting times and 3-day strength were selected as they had been 
mentioned in studies as being relevant [3].  
 

Fineness Measures 
 
 All other variables held equal, a more finely ground cement might be expected to react 
more rapidly than a coarser cement. However, this does not always seem to be the case in actual 
practice. The Blaine fineness is an indirect measure of total particle surface area, denominated by 
volume of material, based on time for unit volume air to flow through a cement powder packed 
cylinder [18]. An alternate means of measuring cement fineness is through particle size 
distribution. Laser diffraction of cements provides size distribution data using measures of D10, 
D50, and D90, indirect measures of 10th/50th/90th percentiles of particle size distribution. Span, 
an additional variable is a function of these three, measuring the approximate range of the 
particle size distribution.  

Time of Setting 
  
 The Vicat test measures the penetration depth of a standardized needle, where initial and 
final set times are when the needle penetrates a cement paste less than prescribed limits of 25 
mm and zero mm, respectively [19].  Since it is the difference between the final and initial times, 
(VicatF - VicatI), which is the true test correlative with speed of setting, HOH7 may be expected 
to correlate with [1/(VicatF - VicatI)]. This simple example illustrates the occasional need to 
transform raw variables in order to achieve meaningful variable response.  A potential 
confounding factor with this test procedure is the use of normal consistency paste, where the 
prescribed water content for the Vicat test will vary by cement, which may affect the setting 
times, and may be different from the HOH test conditions.  
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Statistical Modeling 
 
 Historically, modeling responses like HOH7 typically have involved multilinear modeling 
of raw (test data) inputs or judiciously transformed inputs, with transformations motivated by 
established engineering relationships. Examples of this are the multilinear Bogue models relating 
oxide compositions to mineralogical phase compositions. Typically the existing models have 
been derived by straightforward multilinear fitting, or by forwards or backwards selection 
techniques that progress in an automated fashion through choices of subsets of potential 
predictor variables, comparing explanatory power gained by successive addition or deletion of 
variables through reductions or decreases in R2, or residual variance, or F statistic. Over the last 
forty years, however, sophistication in model selection techniques for both multilinear candidate 
models and interesting nonlinear extensions of multilinear models has increased tremendously. 
 
 In our initial approach to modeling HOH7 based on the mineralogical, fineness, and 
particle size distribution data, we employed All Possible Subsets Regression (APSR) [20] and a 
nonlinear-addend multilinear fits obtained by the use of Alternating Conditional Expectation 
(ACE) [21].  While these techniques are not new, using them separately and in conjunction 
offers significant improvements over backwards / forwards selection techniques. 
 
 Our key tool, though, was All Possible Alternating Conditional Expectations (APSACE) 
created by combining the All Possible Subsets Regression, APSR, with Alternating Conditional 
Expectation, ACE. Using APSACE, we can easily explore which variables within an explanatory 
variable class and which subsets of variables across explanatory variable classes exhibit the 
highest potential predictive power for additive nonlinear models for HOH7. An additive 
nonlinear model is a weighted sum of nonlinear function summands. We find APSACE linked 
with the use of automated parametric fitting tools4,5 to be an easy-to-use, easy-to-interpret, and 
insightful approach to meaningful model search that offers an enormous extension of the 
classical automated model search employing only multilinear functions. 
 
 Since our algorithm assays combinations by exhaustion, we limit ourselves to 
combinations of less than or equal to 10 variables. But for the size of the dataset being examined, 
and the number of explanatory variables being considered, that does not appear to be unduly 
restrictive. Nonetheless, since a number of the basic techniques used in developing and selecting 
multilinear models are still applicable, in practice or at least in motivating more modern 
approaches, we spend a little time discussing APSR and associated statistics. 

Prescreening Variables: Scatterplots 
 
 A fundamental principle of modern exploratory data analysis, including model selection, 
is to prescreen data. Graphical prescreening enables the modeler to (1) scan for outlying data or 
obviously anomalous patterns in data, (2) to gauge the potential statistical explanatory power and 
                                                
4 Certain commercial materials and equipment are identified to adequately specify experimental 
procedures.  In no case does such identification imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor does it imply that the items identified are necessarily the best 
available for the purpose. 
5 TableCurve 2D, http://www.sigmaplot.com/products/tablecurve2d/tablecurve2d.php 
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potential model meaningfulness of each explanatory variable assessed against the response 
[variable] of interest (HOH7). 
 
 A cross-correlation table of the variables serves another purpose. Variables that cross-
correlate highly may contain much the same explanatory information for the proposed model. 
Incorporating both in a model may lead to either an unnecessary degree of redundancy, or over 
fitting, in the model or to numerical instabilities (e.g., multicollinearities) in the numerical fitting 
procedure. Alite and belite (variables C3S and C2S, respectively) are highly anticorrelated.  This 
is a natural result of their physical co-occurrence as calcium silicates at the expense of one 
another. The natural modeling solution is to employ one or the other, selecting the variable for 
the model situation that gives the best goodness-of-fit statistics. 

All Possible Subsets Regression (APSR) 
  
 All Possible Subsets Regression regresses a response variable (HOH7) against all 
possible multilinear combinations of a pre-selected set of explanatory variables, typically 
screening for the best model fits from among the many fitted using criteria such as R2 and 
exhibiting only the best models fit as judged by the goodness-of-fit criteria. In standard 
software6, the many regressions performed in APSR are multilinear regressions with up to 32 
input variables. While it is a linear tool, it is still an excellent screening device, and to be 
preferred to forward or backwards model subset selection. 
  
 So, for example, if there are 10 candidate explanatory variables, APSR software performs 
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Eqn. 3 
 
or 1,023 regressions, where "10C1" means all possible 1-variable-at-a-time models, "10C2" means 
all possible 2-variable-at-a-time-combination models, and so forth. Goodness-of-fit is typically 
assessed by Residual Sum of Squares (RSS).  
 

! 

RSS =
HOH7 " Model Prediction[ ]

2

N " P( )all data

# Eqn. 4  

 
where the sum is taken over all the data points, N is the number of data points, P is the number of 
parameters being fitted (typically either number of explanatory variables or number of 
explanatory variables + 1 if an additive constant is being fitted as well). Since an RSS of zero 
denotes a perfect error-less fit, the closer to zero the RSS from a real data fit the better [22]. 
 
The Coefficient of Determination, or R2, 
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R
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pred HOH7( ) "mean HOH7( )( )
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HOH7 "mean HOH7( )( )

2

#
Eqn. 5  

                                                
6 BMDP: http://www.statistical-solutions-software.com/products-page/bmdp-statistical-software/ 
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quantifies the improvement of the model-under-investigation's predictive performance over the 
naive mean model’s (the most primitive model) prediction. It is often referred to as quantifying 
the percent of variation in the data explained by the model; the statistic is multiplied by 100 to 
express it in percent. Expressed in that way, it is clear that the closer the value of the R2 to 1, or 
100, the better as a value of 1 or 100 connotes a perfect fit. 

Misspecification: Model Bias 
 
 In comparing candidate models' performance, it is not enough to restrict attention to 
goodness-of-fit statistics. Because, in general, the more variables (parameters) one adds to a 
model, the better the fit will be. There is also the issue of protecting against model 
misspecification, or model bias, referring to the possible inclusion of too few or too many 
predictor variables in the model. For example, on any given pass of an all possible subsets 
routine if variables are being included that shouldn't be in the model, the variances (noise levels) 
of model coefficients and predictions increased and pushes predictions off target. On the other 
hand, if too few variables are being included in the model, the model will be biased and 
predictions pushed off target. 
 
 Since simply increasing the number of variables incorporated in a model will 
automatically tend to improve such goodness-of-fit statistics, reference must also be made to an 
adjustment for bias statistic such as Mallow's Cp, where the "bias" in question refers to the 
biasing of a model by the incorporation of too few or too many explanatory variables  
 

Mallow's Cp 
 
Mallow's Cp statistic is very useful for assessing misspecifications when comparing multilinear 
models. It assesses the balance between bias due to too-few variable and too-many variables by 
evaluating 
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where p is the number of parameters in the candidate model, s2 is the residual mean square for 

the candidate model, and 

! 

" 2

#

is an estimate of the true model variance. 
 
 A Cp value close to p indicates minimal misspecification in a candidate model. The use of 
Cp in conjunction with a goodness-of-fit metric like R2 is probably the single most reliable 
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approach to "fitting blind", i.e. searching by statistical trial-and-error for a model where no 
scientifically derived candidate model exists [23,24,25]. 
 

Ensuring Model Validity 
  
To ensure model validity generally, one seeks a number of objectives: 
 

1. physical meaningfulness: use of scientifically meaningful variables in the model, 
2. goodness-of-fit: in the RSS or R2 metric, 
3. parsimony: employing as few variables as possible in the model without overly under-
fitting and without sacrificing too much goodness-of-fit, 
4. avoiding misspecification, 
5. cross validation: testing the goodness-of-model achieved on a set of training data by 
cross-validating against a non-training set (not performed in this study). 

  

APSR Analysis 
 
 In this work, we subjected various combinations of the chief untransformed variable 
classes to APSR analysis. The results of the best for each combination are summarized in Table 
3. From these combinations, key variables were selected, generating grouping 7 in Table 3, noted 
as the “best of best” and reflecting the comparatively high R2 and Cp statistic close to the number 
of variables.  It is interesting to note that the combination of alite and aluminate that form the 
basis for the ASTM and AASHTO heat index equation does not appear in this table, although 
alite in combination with other phases, fineness measures, and oxides does. The results suggest 
that Blaine fineness may be the best predictor from among the fineness variables considered.  
While the R2 values are not strong for these models, they serve to indicate potentially interesting 
candidate variables for the subsequent step of nonlinear transformation of the data.  
  
 In each instance of class combination, the combination with the best statistics is reported. 
In categories where the mineral variables were included (five of seven), some form of calcium 
sulfate is selected as a key variable, specifically bassanite and/or anhydrite. The Fe2O3 and TiO2 
significance may lie in their occurrence primarily in the ferrite phase, and to a lesser extent co-
occurrence with the aluminates and belite [3]. When the particle size distribution variables are 
included among the candidate predictor variables, most often the Blaine fineness is chosen. 
Interestingly, TiO2 recurs frequently in conjunction with Fe2O3 and ferrite in good models. We 
will see this again when we explore nonlinear transformations with APSACE-selected models 
with R2 > 0.90.  

Alternating Conditional Expectation 
 
 Alternating Conditional Expectation (ACE) is a technique that greatly extends the scope 
of classical multilinear model selection techniques [26].  Given HOH7 data with associated 
candidate predictor variables Xk, the ACE algorithm finds transformations of the predictor 
variables and of the HOH7 response variable that maximize the correlation between f(HOH7), the 
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transformed HOH7, and ∑gk(Xk), the sum of the transformed predictor variables. The 
transformations are produced nonparametrically in the forms of pictures [28], relating 
transformed to original variable for each of the variables, including HOH7 response. Such 
pictures can be parametrically modeled either from first principles or by the use of automated 
software. As the transformation graphs can assume many forms, they need to be evaluated for 
credibility for incorporation into the predictive model. Analyzing each transformation picture for 
smoothness performs this evaluation. Transforms that would appear to be approximately straight 
lines, low order polynomials, exponential or logarithmic functions, or circular functions are 
candidates for incorporation in a model. Transforms with severe inflection points or that have the 
appearance of multiple distinct behaviors adjoined, for example, might not be considered 
candidates for incorporation in the model, or might be modeled distinctly for each simple sub-
model regime. 
 
 In using the ACE algorithm, one notices very quickly that ACE drives R2 up 
dramatically. If one feeds 7 or 8 candidate explanatory variables into a model of HOH7, one can 
easily obtain R2 values on the order of 0.80 to 0.95, possibly irrespective of how meaningful the 
incorporated variables are for the "true" prediction of HOH7. Some of the transformations will 
look smooth and easily parameterizable, but some will not. Since re-ACE-ing subsets of 
variables can give different transformations from ACE-ing the original full set, it is clear that the 
appropriate way to proceed for optimal variable selection purposes is to perform an All Possible 
Subsets ACE (APSACE) of the original full set of variables. That is, match HOH7 response to 
one variable at a time, then two variables at a time, then three variables at a time, etc., ACE-ing 
each distinct combination. That is what we have done, using a nested loop of S-plus code7 
[27,28]. Doing this guarantees that the ACE transform outputs for each distinct combination of 
variables is mathematically meaningful and complete. For future work, one might consider 
augmenting the APSACE statistics with a Cp analog and then outputting only the highest R2 with 
Cp closest to p combinations. In doing so, however, one might easily ignore interesting subsets of 
variables that are consistent contributors to good models and that consistently transform cleanly. 
 

Explicit Parameterization of ACE outputs: an example 
 
 Running APSACE on a candidate predictor set that includes aluminate, ferrite, bassanite, 
Blaine, and 1/Vicat yields four different high-R2 subclusters (Table 4). It is interesting that the 
ACE transform for 1/Vicat is close to linear for all subclusters until bassanite is added. This is an 
example of the kind of persistence of inclusion in high R2 models coupled with persistence of 
transformation shape that might signal the importance of a variable. Why might a model 
incorporating these variables be good? Blaine fineness is an indirect measure of the total particle 
surface area, which should affect the rate of heat release. Ferrite occurs as medium- to fine-
grained crystals that should exhibit greater surface area than some of the other "structural" 
mineral phases and its enthalpy of complete hydration ranks just below that of alite. 
Additionally, at 7 days, the reaction coefficient is almost twice that of alite (Table 1).  And, as 
explained above, high HOH7 may also promote a rapid setting time, associated with a low Vicat. 
 

                                                
7 http://spotfire.tibco.com/products/s-plus/statistical-analysis-software.aspx 
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 For illustration purposes only, we show how using automated software can parameterize 
one of the APSACE-suggested models of Table 10. The second example from Table 10 
combines relatively smooth or linear transforms with a relatively high R2 (0.88), the plots of each 
transformed variable being shown in Figure 1. From a large menu of potential parametric fits to 
any given ACE transform, we generally select the model that seems to give the best combination 
of high R2, visual goodness-of-fit, and is parsimonious in the number of parameters used in the 
parameterization. 
 
 If ACE (HOH7) can be modeled, either as a simple linear function (which in practice it is 
often) or more generally as an explicitly invertible function (e.g., log-to-exp or sin-to-arcsin), we 
obtain a completely explicitly parameterized model for HOH7 in terms of ferrite, bassanite, and 
(1/Vicat). The three-variable ACE model developed here, without the explicit parameterization, 
gives an R2 on the data modeled of 0.88. The two-variable Poole model in Eqn. 2 gives an R2  = 
0.76 [16]. However, the model considered here for illustrative purposes only, is just one among 
dozens of high- R2 (R2> 0.90) candidate models that APSACE has identified. 
 
 As illustrated in Figures 2 - 4, a simplified cubic fit coarsely captures the main structure 
in the ferrite transform, a x-(1/x) quadratic captures Blaine structure, and a line captures some of 
the descent of the (1/Vicat) transform. It should be clear that approximate parametric fitting of 
each ACE transformation will contribute to a diminution of the overall model fit's R2 (0.88), as 
each approximate parametric fit reduces that variable's contribution to R2. 
 
Substituting the best-fit parameterizations into the APSACE candidate model gives 
 

! 
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) + "120V +1.3( )

where 
 F = ferrite 
 V = 1/Vicat 
 B = Blaine 
 
 If ACE(HOH7) were easily parametrically invertible (approximately a straight line), the 
application of the inverse of ACE(HOH7) to the right hand side of the equation would yield a 
parametric equation for HOH7 in terms of ferrite, Blaine, and inverse Vicat.  In this example, 
however, the ACE transform of HOH7 is sufficiently scattered that a simply invertible 
parameterization is unavailable. 

Summary 
 
 This work has not resulted in a simple parametric model for HOH7. Instead, we have 
found simple conclusions concerning the variables and the data considered that offer general 
guidance on the modeling of HOH7. It is to be strongly emphasized that the one explicitly 
parameterized model presented is meant to be illustrative of the power of the technology only. 
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Good fitting models for HOH7 often incorporate a number of attributes: 
 

1. A structural mineralogical phase component (belite preferred); 
2. A sulfate phase component (bassanite preferred); 
3. A total fineness or particle surface area component (Blaine preferred); 
4. Ferrite in conjunction with Fe2O3, and possibly TiO2 or aluminate or C3Ac, but not    
    C3Ao 

 
 The prevalence of noisy and multi-structured ACE plots in this study can possibly be 
attributed to multiple potential causes: 
  
1. The inclusion of all cement Types in the dataset is inappropriate. In the future, attention 
should be focused for this kind of modeling on one specific Type of cement, representing 
possibly different heat evolution mechanisms. 
 
2. The occasionally sharp transition, or inflection, points in the ACE plots could correspond to 
transition points in the variable being ACE transformed from a range of values characteristic of 
one Type of cement to a range of values characteristic of another Type. The break in the Blaine 
transform curve that consistently occurs is at a value that roughly corresponds to the differences 
between Type III (mean Blaine of 556 m2/kg) and Types I, II, and V (roughly 380 m2/kg) 
suggests that these should be modeled separately.  
 
3. The variables are inappropriate: variables are included that have no true HOH modeling 
content, and variables which should be included, like precipitation products known to influence 
heat evolution, are not. 
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TABLE 1 Heat of hydration values for clinker phases, and at 7 d and 28 d.  From Taylor 
[3].  

  Value of the coefficient (kJ kg -1) for age (d) 
Compound Coefficient 7 d 28 d Enthalpy of complete hydration (kJ kg -1) 
C3S a 222 126 -517 ± 13 
C2S b 42 105 -262 
C3A c 1556 1377 -1144; -1672 (AFm, AFt reactions) 
C4AF d 494 494 -418 
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TABLE 2 Predictor Variables and Classes used in the exploratory data analysis. 
Mineral Phase by XRD 
( % mass fraction) 

alite, belite, aluminate, cubic aluminate, orthorhombic aluminate, 
ferrite, periclase, alkali sulfates, gypsum, bassanite, anhydrite 

Bulk oxide content 
( % mass fraction) 

CaO, SiO2, Fe2O3, Al2O3, SO3, MgO, Na2O, K2O, TiO2, P2O5, ZnO, 
Mn2O3 

Fineness Blaine; and particle size by laser diffraction: D10, D50, D90, Span 
calcite 
Set time (Vicat) 

Extras (other physical 
measurements) 

3d strength 
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TABLE 3 APSR regression results according to the untransformed variable class 
combinations.  

Variable Class Combinations Cp R2 R2 adj. 
1) alite, ferrite, bassanite, Fe2O3, TiO2 5.55 .50 .45 
2) alite, bassanite, span -0.92 .32 .28 
3) SiO2, Fe2O3, MgO, SO3, TiO2 2.95 .37 .30 
4) C3Ao, anhydrite, bassanite, 3d str 2.52 .42 .37 
5) SiO2, Fe2O3, MgO, SO3, TiO2, Blaine 3.40 .39 .31 
6) bassanite, 3d strength, Blaine 3.19 .35 .31 
7) alite, ferrite, anhydrite, bassanite, Blaine, Fe2O3, TiO2     (best of best) 7.44 .55 .48 
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TABLE 4.  Small clusters of variables that provide high R2 and smooth transformations.  
Individual variables and a description of the transform shape are provided. 

R2      
.78 
 

Aluminate 
smooth, with 
edges 

  Blaine 
smooth with cusp 

1/VICAT 
almost linear 

.88 
 

 Ferrite 
smooth with drop-off 

 Blaine 
smooth with asymptote 

1/VICAT 
almost linear 

.90 
 

Aluminate 
rough 

Ferrite 
line with tent 

 Blaine 
smooth 

1/VICAT 
almost linear 

.86 Aluminate 
multi-modal 

Ferrite 
rough 

Bassanite 
high-low 
disconnect 

Blaine 
rough 

1/VICAT 
tent 
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FIGURE 1 ACE transforms for ferrite, Blaine, and 1/Vicat yields a combination of a 
smooth transform and high R2 of 0.88. This is the combination chosen to illustrate explicit 
parameterization. 
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Figure 2 Ferrite ACE transform is approximately described by a simplified cubic function. 
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FIGURE 3 Transformed Blaine fineness can be described by a mixed  
x-(1/x) quadratic. 
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FIGURE 4 Transformed 1/Vicat results in an almost linear structure. 
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