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Synopsis The differences and distinguishing characteristics of incoherent scattering vis-à-vis 

diffuse coherent scattering due to atomic disorder are delineated and demonstrated experimentally.  

Abstract In a neutron diffraction measurement, including small-angle scattering, there is 

generally a featureless (i.e. Q-independent) component due to incoherent scattering.  This scattering 

contains no information about the atomic structure, or structure on any scale.  There may also be 

scattering that is featureless that arises from atomic disorder in multi-element materials.  This 

scattering is sometimes referred to as compositional or mixture incoherent (Cotton, 1991) 

scattering.  However, this designation is misleading.  A much better designation is diffuse coherent 

scattering.  Here the differences and distinguishing characteristics of incoherent scattering vis-à-vis 

diffuse coherent scattering due to atomic disorder are delineated and demonstrated experimentally.  
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1. Introduction 

Most textbooks on neutron scattering discuss the concept of incoherent scattering in detail only for 

materials consisting of a single atomic species (e.g., Bacon, 1962; Squires, 1978; Roe, 2000).  Such 

discussions are adequate for introducing the concepts of nuclear spin incoherence and isotopic 

incoherence.  Most materials, however, consist of more than one atomic species and hence the 

question arises as to how to calculate the incoherent contribution to the scattering from such 

materials.   

 

When considering the neutron scattering from a multi-element material, whether it be a compound, 

a solid or liquid solution, or a molecular solid or liquid, it is important to distinguish between the 

incoherent scattering and any diffuse coherent scattering that may be present and is related to the 

degree of atomic disorder in the material.  In the extreme case of complete atomic disorder, there 

will in general be a component of the coherent scattering that is essentially Q-independent, similar 

to the true incoherent scattering that arises from the isotopic and nuclear spin distributions. 



1.1. Scattering Formalism  

The scattering cross section from a system of N atoms in a volume V is given in the Born 

approximation by 
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where the angle brackets denote averaging over an ensemble of equivalent systems1.  In this 

expression, bi, is the scattering length of the atom at location, ri.  If all of the atoms are of a single 

atomic species (i.e. a single element), then the ensemble average can clearly be written as 
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because there is no correlation between an atom's location and the isotope or nuclear spin state at 

that location.  What may be less obvious is that (2) also applies when there is more than one type of 

atomic species in the sample.  In that case, there is, in general, a correlation between a given 

location and the type of atom at the location.  However, even though a given site may be more 

likely populated by one type of atom than another, there is still no correlation with a particular 

isotope or nuclear spin state of that atomic species at that site.  Hence (2) remains valid even for 

multi-element materials. 

 

For the same reasons the average of the product of scattering lengths can be written as 
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So that (2) becomes 
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Only the first term in (4) contains information about the arrangement, or structure, of the 

                                                           
1 Equivalent systems refer to all possible configurations of the atoms, including their nuclear isotopes and 
spin states, which may affect the scattering of a neutron beam incident on a sample.  



atoms and is called the coherent scattering 
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The second term in (4) contains no structural information and is called the incoherent 

scattering 
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To reduce (4) further to a useful form for computations, one must indicate how many of each type 

of atom is present in V.  If there are say, m, elements represented, and Nj atoms of element j, then 

the fraction of atoms of type j is 
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Now if all the atoms are disordered, then  
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Substituting (8) into (4) leads to 
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Notice the similarities, and differences, between (9) and (4).  The first and third terms of (9) 

correspond to the first and second terms of (4), and represent coherent and incoherent scattering, 

respectively.  It is the middle term in (9) which is new, arising from the presence of more than one 

element, and, more importantly, the assumption that the atoms are randomly distributed among the 

available sites.  This term is Q-independent and thus is sometimes referred to as compositional or 

mixture incoherent (Cotton, 1991) scattering.  A better designation, however, is diffuse coherent 

scattering.  Diffuse because of the lack of Q-dependence, and coherent because this term provides 



information about the structure of the system, namely, that the atoms are disordered.  It may at first 

seem odd to refer to disorder as a type of structure, yet that is exactly what it is.  The essence of the 

assumption leading to (9) is that there is no correlation between the type of atom occupying a given 

site and the type occupying any other site, which is, in fact, a strong statement about the structure of 

the system; quite strong, for as we shall see, it does not apply to most real materials. 

2. Specific Examples 

2.1. NaCl 

Consider polycrystalline NaCl, a system with two atomic species (A and B), which has a face-

centered-cubic crystal structure with mass density ρ = 2.165 g/cm3, MW = 58.44, and N/V = 1/vm = 

2.231 1022 molecules/cm3.  For such a material, the coherent cross section, from eqn. (5) becomes 
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where Ghkl = ha* + kb* + lc* is a reciprocal lattice vector and  
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n
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nnnebF π2  is the structure factor for the (h,k,l) Bragg reflection, and the 

sum is over the atoms in the unit cell.  For the NaCl rock salt structure, 
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The bound coherent scattering lengths, <b>= bc, are: bc(Na) = 3.63 fm, and bc(Cl) = 9.566 fm 

(Sears, 1992). 

 

The incoherent cross sections for each element are (Sears, 1992): 
 
 σinc = 4π (<b2> - <b>2) = 1.62 barns (Na) 
               = 5.3 barns (Cl) 
 
Hence the corresponding macroscopic cross section is 
  
 Σinc = N/V Σi σinc = 0.1544 cm-1 
 
For hypothetical, disordered NaCl, in which the sites in the rock salt structure are occupied at 

random by either Na or Cl, the first term in eqn. (9) gives 
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In addition, there is the diffuse coherent scattering2 (second term in eqn. (9)), 
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as well as the incoherent scattering 
 
 Σinc = N/V Σi σinc = 0.1544 cm-1  
 
These two cases are summarized in Figure 1 below (where the multiplicity factors for the individual 

Bragg peaks have been ignored to emphasize the structure factors). 

2.2. H2O 

From eqn. (6), the macroscopic incoherent scattering cross section for light water is 
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where  

( )22
, 4 jjjincoh bb −= πσ , and nj = the number density of atoms of type j. 

  
Using the values in Table 1, and nH = 2 (ρ NA/MW) = 6.69 x 1022 atoms of H per cm3 (nO = 3.35 x 

1022 per cm3) yields 

 

        (13) Σ incoh (H 2O) = 5.37 cm -1

                                                          

 

This cross section is calculated using the bound scattering lengths for the nuclei.  The actual cross 

section for water depends on the incoming neutron energy and the water temperature.  The 

measured incoherent scattering cross section from water is, for example, ~ 5.7 cm-1 for 5 meV 

neutrons at 290 K, and ~ 7.7 cm-1 for 1 meV neutrons at 290 K (BNL 325). 

 

 
2 This diffuse scattering due to site disorder is called the Laue monotonic scattering (Warren, 1969). 



What about the other Q-independent term in equation (9)?  Should the middle term in equation (9)3 

be added to the result obtained in equation (12) to give the “total incoherent scattering”?  The 

answer is no, because the assumption leading to equation (9) that any atom is equally likely to 

occupy any available site does not apply to a molecular liquid like water4.   

 

Another way to obtain this result (equation (12)) for the incoherent scattering, and one that will give 

additional insight when we consider H2O/D2O mixtures next, is to treat the water molecule as the 

primary scattering entity.  This approach is valid at low Q where the internal structure of the 

molecule is unresolvable (Q rm<<1, where rm is any intramolecular distance). 

 

We start again from eqn. (1) and proceed as before to eqn. (4) 
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where Nm is the number of molecules in volume V, and 
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 which is equivalent to eqn. (12).  

2.3. H2O/D2O Mixtures (not including H/D exchange) 

Since H2O/D2O mixtures are used extensively to control scattering contrast in aqueous solutions, 

this is an important case to consider.  At low-Q, we can again treat the individual water molecules 

as the primary scattering entities (thereby ignoring their internal structure) as discussed in the 

previous section.  We start again from eqn. (1), written as follows 
 

                                                           
3 The middle term in (10) integrated over dΩ for H2O would be ( )24 OHOHlaue bbffn −=Σ π , 
where n = # atoms/volume.  For fH=2/3, fO= 1/3, <bH> = -3.74 fm, <bO> = 5.8 fm, and n = 3 (3.35 x 1022) 
atoms/cc,  Σlaue = 0.255 cm-1. 
4 For equation (10) to apply to water, all possible molecular permutations (H2O, HO2, H3, and O3) would have 
to be present in the liquid. 
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where Nm is the number of molecules in the volume V, ri is the position (e.g. the center of mass) of 

molecule i, and bi is the scattering length for the molecule.   

 

If we assume there is no correlation between a site, ri, and the type of molecule, H2O or  

D2O, at that site, then eqn. (14) can be developed as was done in arriving at eqn. (9), i.e. 
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where vm is the volume of one molecule, and φH2O (φD2O) is the volume fraction of H2O (D2O).  

Equation (15) shows explicitly that the flat “background” seen at low-Q from such mixtures 

consists of a combination of diffuse coherent scattering (second term), and true incoherent 

scattering (third and fourth terms). 

 

From the scattering lengths and cross sections tabulated in Sears (1992), 
 

= 2 bH + bO = 2(−3.74 fm) + 5.80 fm = −1.68 fm

bD2O

  

= 2 bD + bO = 2(6.67 fm) + 5.80 fm =19.14 fm   

( )
( ) ( ) ( )( ) fm) 74.3(2fm 

242
2

22222
212

−+

+++=++= HOHOHOHHOH bbbbbbbbb

barns 12.81           
80.5fm 74.34barns 0.337barns 53.62          

=
−++=  (16) 

( ) ( ) ( )( )
barns 3.99=          

2(6.67fm)+fm 80.5fm 67.64barns 337.0barns 0.6082          

242)(
2

22222
212

++=

+++=++= DODODODDOD bbbbbbbbb

  (17) 

 
Hence, eqn. (15) becomes 
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or, in terms of the total cross section per molecule 
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Notice that eqn. (15) is the basis for the high concentration labeling technique used to study the 

conformation of polymer chains in mixtures of protonated and perdeuterated chains in the melt 

(Akcasu, 1980).  Eqn. (15) can be extended to larger molecules by including the molecular form 

factor in the second term, which is another demonstration that this term represents coherent, not 

incoherent scattering. 

2.4. H2O/D2O Mixtures (including H/D exchange) 

For water there is exchange of H and D.  For this reason, the second (coherent scattering) term in 

equation (20) is reduced in real water, as pointed out by Arleth & Pedersen (2000).  To show this 

explicitly we begin again from equation (4’) 
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In this case we have three types of molecules to consider: H2O, D2O, and HDO or DHO (HDO and 

DHO are indistinguishable in terms of their scattering lengths, hence there are 3 and not 4 types of 

molecules to consider). Hence 
 

 
b = f H 2O

bH2O + fD2O
bD2O

+ f HDO bHDO

with f H 2O + fD2O + f HDO =1
     (20) 

where f H 2O , f D2O , and f HDO  are the fractions of H2O, D2O and HDO (or DHO) molecules in the 

mixture, respectively. 

   



The number of H atoms in the mixture is N H = 2φ H 2O N m , where Nm is the number of molecules 

and φ H 2O  is the volume fraction of H2O that is mixed with a volume fraction (1− φ H 2O )  of D2O.  

Similarly N D = 2(1 − φ H 2O ) N m .  Hence when the mixture is at chemical equilibrium, 
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Similarly, 
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The terms 2
2D

2
2 b and OOHb  are given in equations (17) and (18), respectively; and,  
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Substituting (22), (23) and (24) into (4”) gives, after some manipulation, 
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For comparison, equation (16) can be written as 
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The only difference between (25) and (15’) is in the diffuse coherent scattering term (the last term 

in each) which is reduced by a factor of 2 when H/D exchange is included.  It is instructive to note 

that the “true” incoherent scattering terms in both (15’) and (25) are the same as they must be since 

this scattering does not depend on where the atoms are located. 

 

The coherent (fourth term in (25) and (15’)), and incoherent (terms 2 and 3 in eqn. (25) and (15’)) 

contributions to the total low-Q scattering from H2O/D2O mixtures are plotted in Figure 2.  

 

The reduction in the diffuse coherent scattering when H/D exchange is included in the calculation 

begs the question, where does the diffuse scattering go?  To understand this, we compare the Q-

dependent coherent scattering terms in equations (25) and (15’) which are proportional to <b>2.   

 

[ 22

2222
)1( ODOHOHOHwo

bbb φφ −+= ]  without H/D exchange   (26) 

 

[ ]2222 )1(2)1(
222222 HDOOHOHODOHOHOHw

bbbb φφφφ −+−+= , with H/D exchange 

 

( )( ) and  22
wowwowwow

bbbbbb +−=−  

( ) ( )
[ ] 02)1(            

)1()1(2)1(

2222

2222222222

22

=−−−=

−+−−+−+=−

ODOHHDOOHOH

ODOHOHOHHDOOHOHODOHOHOHwow

bbb

bbbbbbb

φφ

φφφφφφ

 

Hence the reduction in the diffuse coherent scattering due to H/D exchange is not accompanied by 

a corresponding increase in the intermolecular Q-dependent coherent scattering.  The reduction in 

diffuse coherent scattering therefore likely appears (although not shown here) in the intramolecular 

coherent scattering (at larger Q), which we have neglected in this treatment. 



3. Demonstration Experiment 

To demonstrate the distinction between diffuse coherent scattering and true incoherent scattering, 

we have measured the small-angle neutron scattering (SANS) from titanium dioxide, TiO2. This 

molecular material was chosen because titanium is one of only a few elements with a negative 

coherent scattering length.  In addition the isotopic and nuclear spin incoherent scattering for both 

oxygen and titanium are small compared to most elements.  As a result, if there is a diffuse 

scattering term (the middle term in equation (10) or (16)) in the cross section, it would dominate the 

measured SANS and be easily identified by putting the scattering on an absolute scale.  However, 

for such a term to exist in the cross section for TiO2, the positions of the titanium and oxygen atoms 

must be completely uncorrelated, which is physically not the case. 

 

From equation (13) the incoherent macroscopic cross section for TiO2 is 
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From the mass density (ρ = 4.23 g/cm3) and molecular weight (79.9 amu) of TiO2, the atomic 

number densities are: nTi = 3.19 x 1022/cm3 and nO = 2 nTi.  The elemental incoherent cross sections 

are (Sears, 1992): σι,Ti = 2.87 barns, and σι,O ≈ 0.  Hence 
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The additional Q-independent scattering that would arise if the Ti and O atoms were completely 

disordered is given by the second term of equation (10), which we call Σc,Laue as in the NaCl 

example 
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where <bTi> = bc,Ti = -3.44 fm and <bO> = bc,O = 5.80 fm (Sears, 1992).  The disordered scattering 

term is three times larger than the true incoherent scattering and hence should be readily apparent 

from the scale of the Q-independent SANS. 
 



For the SANS measurements a 2 mm path length quartz cell was filled with a coarse TiO2 powder.  

The cell was weighed before and after filling to estimate the bulk density of the powder in the cell.  

This was found to be 0.99 g/cm3.  Hence the cross sections per unit volume given in equations (28) 

and (29) should be multiplied by 0.99/4.23 for comparison with the scattering from this particular 

sample.  The measurements were made at a wavelength of 6 Å and a sample-to-detector distance of 

1 meter.  The tens of microns particle size does produce SANS at very low Q which decays roughly 

as Q-4.  At larger Q, still in the SANS region, the scattering becomes essentially flat at a level that 

was put on an absolute scale by measuring the neutrons per second incident on the sample.  In 

addition to the scattering from the sample in its cell, scattering from the empty cell was also 

measured and subtracted taking into account room background and the transmission of the sample.  

The resulting SANS for the TiO2 is shown in Figure 3 along with the scattering from a reference 

sample of D2O treated in the same way.  The Q-independent scattering is slightly lower, perhaps 

due to overestimating the bulk density of the sample, than the calculated level of incoherent 

scattering but far below the level expected from the sum of incoherent plus disordered coherent 

scattering.   

4. Discussion 

The incoherent scattering discussed here, which arises solely from the lack of any correlation 

between an atom’s location and that atom’s nuclear spin state or nuclear isotope, is unique to 

neutron scattering.  There is no analog in x ray scattering.  Scattering that arises from atomic 

disorder, such a Laue monotonic scattering (Warren, 1969), is present in both x ray and neutron 

scattering.  Because atomic disorder scattering may be nearly Q-independent, like the incoherent 

scattering, authors of neutron scattering papers and texts have in some cases referred to this 

scattering as compositional or mixture incoherent scattering.  However, this designation blurs the 

distinction between true incoherent scattering, which has no structural information, and what is 

more properly referred to as diffuse coherent scattering, which does contain structural information 

pertaining to the degree of atomic disorder. 

 

The salient point is that incoherent cross sections are simply additive.  Hence the macroscopic 

incoherent scattering cross section for a material is readily calculated from 
 

         (12) Σincoh = n j
j

N

∑ σ incoh, j



where N is the number of atomic species in the material, nj is the number density of atomic species 

j, and σincoh,j is the tabulated incoherent scattering cross section for element j.  For any material with 

an appreciable amount of hydrogen, a good approximation for the bulk incoherent cross section is 

simply, Σincoh ≈ nH σincoh,H since the incoherent cross section for hydrogen is so much larger than that 

for other elements. 

Caveat:  The coherent and incoherent cross sections tabulated by Sears (1992) are calculated from 

the bound scattering lengths for nuclei.  The actual cross sections depend on the incoming neutron 

energy and sample temperature, especially for light elements.  For cold neutrons, the tabulated cross 

sections are generally a lower limit.  The measured incoherent scattering from hydrogen, for 

example, can be considerably larger than its bound value.  For example,  
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Figure 1 Depiction of the neutron scattering from polycrystalline NaCl including the Q-independent 

incoherent scattering (a).  If the Na and Cl atoms were completely disordered (b) there would be additional 

diffuse coherent scattering due to the atomic disorder. 

Figure 2 The calculated coherent, incoherent and total (sum of coherent and incoherent) cross sections per 

molecule from mixtures of H2O and D2O.  The coherent scattering is calculated both for the case where the 

exchange of hydrogen and deuterium between molecules is allowed, as in real water, and when there is no 

exchange.  

Figure 3 The measured SANS from a powder sample of TiO2 with a bulk density of  ~0.99 g/cm3.  The rise 

at low-Q is due to scattering from the surfaces of the particles in the powder.  The flat scattering from 0.2 Å-1 

to 0.5 Å-1 is consistent with the calculated incoherent scattering given in equation (28), but is far below the 

level calculated by including the disorder scattering term in equation (29).  These data clearly demonstrate the 

absence of any so-called ‘compositional incoherent’ scattering.  Also included for reference is the scattering 

measured from a 2 mm thick sample of D2O under the same conditions and treated the same way, which gave 

the expected value5 of dΣs/dΩ ~ 0.05 cm-1. 

 

Table 1 The mean and mean square scattering lengths for Hydrogen and Oxygen from Sears (1992). 

Element  <b> (x10-12 cm) <b2> = σs/4π (barns)

Hydrogen -0.374 6.53 

Oxygen 0.580 0.337 
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5 The incoherent contribution to the low-Q scattering from D2O is, from the last term of eqn. (18), only 0.011 
cm-1.  Most of the scattering is coherent, and from the cross section per molecule at λ = 6 Å, σs = 22 b (BNL 
325), the total cross section per unit volume is dΣs/dΩ = 0.059 cm-1.  
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