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Experimental Verification of Formulas for Variances
of Plane Parameters Fitted to Three-Dimensional

Imaging Data
Marek Franaszek, Geraldine S. Cheok, and Kamel S. Saidi

Abstract—Nonlinear least squares method is applied to fit a
plane to 3-D imaging data. Two different error functions used in
fitting are tested: orthogonal and directional. Variances of fitted
parameters are calculated either from a single data set using
derived earlier analytical formulas or by repeating the scans at
the same experimental settings. In the latter case, the variance is
equal to the square of the standard deviation from the repeated
scans. The results show that the orthogonal error function severely
underestimates the variances calculated by using the mathemat-
ical formulas when compared to the variances calculated from
multiple scans. The variances calculated from formulas based on
the directional error function are in good agreement with the
estimates calculated from multiple scans. Thus, the variances of
the fitted plane parameter can be determined correctly from a
single scan when proper formulas are used. This is important
because multiple scans from the same location are typically not
performed in the field.

Index Terms—Directional error function, nonlinear least
squares (NLS), orthogonal error function, variances of fitted plane
parameters, 3-D imaging systems.

I. INTRODUCTION

THREE-dimensional imaging systems allow rapid mea-
surements of the surface of an object using light reflected

from that surface. For the class of instruments in which the
detector and emitter lines of sight coincide, the range r(ϑ, ϕ)
is measured along a ray from the instrument’s center to the first
intersection of the ray with an object. Parameters ϑ and ϕ are
the elevation and the azimuth angles from a reference axis to
that point of intersection. The scanning process is very fast, and
current systems can collect point clouds containing hundreds
of thousands of points within a few seconds [1]. These large
data sets are frequently segmented to allow the modeling of
individual objects contained in a scanned scene. More complex
models, such as computer-aided design models of mechanical
parts or models of entire buildings or bridges, are composed of
many geometrical primitives, among which a plane is one of the
most frequently used; therefore, fitting a plane to range data has
been extensively studied [2]–[10]. Modeling is often performed
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by fitting a model to point cloud data using a nonlinear least
squares (NLS) method [11]–[15]. An important issue is how to
propagate an instrument’s uncertainty (for example, uncertainty
of measured ranges) to the uncertainties of fitted parameters.
These uncertainties are essential in quality control processes
in which an as-built model (derived from a point cloud) is
checked against an as-designed model [16]. The tolerances used
in the design process and the uncertainties of the fitted model
parameters are both needed to accept the as-built model. For
example, the uncertainties of the fitted plane coefficients are
needed to check, with a given confidence, if two walls (modeled
as a pair of planes) are perpendicular or parallel.

The variance (i.e., squared uncertainty, which, in this paper,
we quantify using the standard deviation) of the fitted parameter
may be determined in several ways. In one approach, many
point clouds are acquired by scanning the same object many
times under the same experimental conditions. The same model
is then fitted to each data set, yielding many slightly different
values of the model parameter. From the ensemble of fitted
values, the mean and corresponding variance can be evaluated.
This approach does not require explicit knowledge of how the
instrument uncertainty propagates into the variances of fitted
parameters; however, this approach is very time and labor
consuming and, therefore, impractical and rarely used in the
field. The other approach is conceptually similar to the previous
one, i.e., a model is fitted to many data sets; however, only
one data set is actually acquired during the experiment, and the
remaining data sets are generated in the computer by perturbing
the experimental measurements. This approach is implemented
in some commercial software packages, but it is also time
consuming and only works well for small data sets. In yet
another approach, the variances of the fitted parameters can
be evaluated for a single data set, but analytical formulas are
needed to propagate the instrument uncertainty into the fitted
parameters. In this paper, we compare the outcome of the first
and the last approach for fitting a plane to a point cloud. If both
approaches give similar values for variances, then we conclude
that the analytical formulas are correct; otherwise, they are not.

Closed formulas for the variances of the fitted plane parame-
ters have been derived under the assumption that the uncertainty
in the measured range r is typically much larger than the
uncertainty in the angular measurements [17]; thus, the eleva-
tion and the azimuth angles, ϑ and ϕ, respectively, are treated
as noise-free control variables. This assumption is commonly
recognized by users and manufacturers of the instruments from
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the class discussed in this paper. We apply the formulas to
data sets acquired in a laboratory under many different experi-
mental settings (different target-to-scanner distances, angles of
incidence (AOIs), and target reflectivities). In addition, results
based on computer simulations were obtained. For every point
cloud, a plane was fitted using orthogonal and directional error
functions (defined in Section II), yielding two sets of fitted
plane coefficients. For most data sets, corresponding plane
coefficients obtained with two error functions were different.
The fact that different definitions of the error function may
lead to different best fit parameters is not surprising. Observed
differences may be interpreted as a result of postprocessing
bias introduced to the final results by individual error functions.
However, this bias is fundamentally different from the bias in
collected experimental measurements. The experimental bias
(which may be reduced by proper calibration of the measuring
instrument) does not affect the variances of the measured
parameters. In this paper, we demonstrate for the first time that
postprocessing bias, introduced by the choice of error function,
can also substantially change the variances of fitted parameters
calculated from closed formulas.

This paper is organized as follows. In Section II, a general
framework for fitting a plane to point cloud data is revisited,
and in Section III, details of data acquisition and computer
calculations are discussed. Results are presented in Section IV,
followed by a discussion and conclusions in Sections V and VI,
respectively.

II. FITTING A PLANE TO A POINT CLOUD

Points P (x, y, z) in a 3-D Cartesian coordinate system lie on
a plane when they satisfy the following equation:

P (x, y, z) • w(ϑ, ϕ) = D (1)

where w(ϑ, ϕ) is a unit vector perpendicular to a plane and
• denotes the dot product of two vectors. Vector w may be
parameterized by two angles: the elevation ϑ and the azimuth
ϕ. The Cartesian coordinates of w(ϑ, ϕ) may thus be written as

w(ϑ, ϕ) = [cos ϑ cos ϕ, cos ϑ sin ϕ, sin ϑ]. (2)

The absolute value of parameter D is the distance from the
plane to the origin of the coordinate system that, in this paper,
is defined by the location of an instrument. A plane is fitted to
the experimental data set P {N} = {P j , j = 1, . . . , N}, where
N denotes the number of points. The purpose is to estimate the
numerical values of the three parameters defining the plane: ϑ,
ϕ, and D. Within the framework of the least squares method,
the estimated parameters are obtained by minimizing the error
function

E
(
ϑ, ϕ,D,P {N}

)
=

1
N

N∑
j=1

E2
j (ϑ, ϕ,D,P j) (3)

where Ej is the distance between the experimental point P j

and its corresponding theoretical point. Different definitions of
the theoretical point yield different error functions. In this pa-
per, we study two error functions: the orthogonal error function

Fig. 1. Measured ranges rn and rj are affected by uncertainties, and there-
fore, experimental points Pn and P j are not located exactly on (heavy line)
a scanned planar surface. Points On and Oj are perpendicular projections of
Pn and P j onto a plane. Points Dn and Dj are intersections of rays passing
through the instrument and points Pn and P j with a plane. Distances PnOn

and P jOj are used in orthogonal fitting while distances PnDn and P jDj

are used in directional fitting. The difference between both fittings depends on
the AOI.

EO and the directional error function ED, as explained in Fig. 1
and in the next two sections. Due to the nonlinear dependence
of the normal vector w on both angles ϑ and ϕ, plane fitting
requires nonlinear minimization; however, as is shown in the
next two sections, for both error functions EO and ED, the
distance Ej depends linearly on the third parameter D. When
the error function reaches a minimum, its gradient has to be
zero; therefore, distance D may be explicitly expressed as a
function of both angles (ϑ, ϕ) and P {N}

D ≡ D
(
ϑ, ϕ,P {N}

)
. (4)

This implies that the original 3-D search space in the mini-
mization problem may be reduced to a 2-D space and the error
function may be rewritten as

E
(
ϑ, ϕ,P {N}

)
=

1
N

N∑
j=1

E2
j (ϑ, ϕ,P j). (5)

The location of the minimum for the error function E de-
pends solely on experimental points P {N} as follows:

ϑ∗=ϑ∗(P {N}
)
, ϕ∗=ϕ∗(P {N}

)
, D∗=D

(
ϑ∗, ϕ∗,P {N}

)
. (6)

As already mentioned in Section I, the range measurement
uncertainty is typically much larger than the uncertainty in
the angular measurements; thus, an acquired point P j can be
expressed as

P j = rjpj(ϑj , ϕj) (7)

where rj is the range measured at bearings (ϑj , ϕj) and
‖P j‖ = rj . In this approximation, the bearings are treated as
noise-free control variables, and a unit vector pj is defined as

pj(ϑj , ϕj) = [cos ϑj cos ϕj , cos ϑj sin ϕj , sin ϑj ] (8)

hence, the analytical formula for the variances of the fitted
plane parameters may be derived by applying the uncertainty
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propagation formula [18] to (6) as follows:

var(ϑ∗) ≈
N∑

j=1

[
∂ϑ∗ (

P {N}
)

∂rj

]2

var(rj) (9a)

var(ϕ∗) ≈
N∑

j=1

[
∂ϕ∗ (

P {N}
)

∂rj

]2

var(rj). (9b)

The analytical formula for the variance of the third para-
meter D∗ may be obtained from the uncertainty propagation
formula applied to the general function D(ϑ, ϕ,P {N}) defined
in (4) as

var(D∗) =
N∑

j=1

[
∂D

∂ϑ

∂ϑ∗

∂rj
+

∂D

∂ϕ

∂ϕ∗

∂rj
+

∂D

∂rj

]2

var(rj) (10)

where the derivatives of D are calculated at [ϑ∗, ϕ∗,P {N}]. The
individual sensitivities ∂ϑ∗/∂rj and ∂ϕ∗/∂rj used in (9) and
(10) and the derivative ∂D/∂rj may be calculated as in [17].
In the aforementioned analytical formulas for var(ϑ∗), var(ϕ∗)
and var(D∗), a variance of the individual measured range
var(rj) must be known for each j. In general, this variance
depends on the range rj , the AOI, and the reflectivity of
the scanned surface; however, the exact dependence is rarely
known. Whenever experimental conditions allow neglecting
variations of var(rj), its value may be approximated by the
residual value of the error function E(ϑ∗, ϕ∗,P {N})if the right
model is fitted to the data set (see [19, Ch. 15.1]).

The aforementioned general formulas are applied to two
specific error functions: the orthogonal error function EO and
the directional error function ED in the next two sections,
respectively.

A. Orthogonal Error Function

For orthogonal plane fitting (see Fig. 1), the theoretical point
Oj corresponding to the experimental point P j is defined as
the orthogonal projection of P j on a plane. Thus, (3) takes the
form

EO

(
ϑ, ϕ,D,P {N}

)
=

1
N

N∑
j=1

[w(ϑ, ϕ) • P j − D]2 . (11)

Using the condition for zero gradient ∇EO, (4) can be
expressed as

D
(
ϑ, ϕ,P {N}

)
= w(ϑ, ϕ) •

⎛
⎝ 1

N

N∑
j=1

P j

⎞
⎠ = w • P 0 (12)

where P 0 is the centroid of all experimental points P {N}.
From the last equation, it follows that the plane fitted with
the orthogonal error function has to contain the centroid P 0.
Substituting (12) into (5) and (11) takes the form

EO

(
ϑ, ϕ,P {N}

)
=

1
N

N∑
j=1

[w(ϑ, ϕ) • (P j − P 0)]
2 . (13)

B. Directional Error Function

For the directional plane fitting (see Fig. 1), the theoretical
point Dj corresponding to the experimental point P j is defined
by the intersection of a ray originating from the instrument (and
passing through P j) with the plane as

Dj = tjP j (14)

where tj > 0 is a scalar parameter. If the instrument could
measure ranges without error, points P j would be located
exactly on the plane, Dj = P j , and tj = 1. Range errors are
small compared to measured ranges, and therefore, tj has
values close to one when the fitting parameters are close to their
best fit values (ϑ∗, ϕ∗). The theoretical points Dj satisfy (1)

Dj(xj , yj , zj) • w(ϑ, ϕ) = D. (15)

The distance Ej in (3) is the Euclidian norm, and the direc-
tional error function ED can thus be written as

ED

(
ϑ, ϕ,D,P {N}

)
=

1
N

N∑
j=1

‖Dj − P j‖2 (16)

where the parameter tj can be calculated from (14) and (15)
using the pj defined in (8) as

tj =
D

rjw • pj

(17)

if the vector pj is not orthogonal to w. Two vectors pj and w
are orthogonal only if the corresponding AOI = ±90◦, in which
case the theoretical point Dj is undefined. For all other AOIs, tj
can be calculated and substituted into (14). Then, using (8) and
the fact that rj = ‖P j‖, (16) yields the following expression
for the directional error function:

ED

(
ϑ, ϕ,D,P {N}

)
=

1
N

N∑
j=1

(
D

w • pj

− rj

)2

. (18)

Applying the condition for zero gradient ∇ED to (18), (4)
can be expressed as

D
(
ϑ, ϕ,P {N}

)
=

N∑
j=1

rj

(
w • pj

)−1

N∑
j=1

(
w • pj

)−2
. (19)

Equation (5) in this notation can be written as

ED

(
ϑ, ϕ,P {N}

)
=

1
N

N∑
j=1

(
D

(
ϑ, ϕ,P {N}

)
w(ϑ, ϕ) • pj

− rj

)2

. (20)

III. EXPERIMENT AND DATA PROCESSING

Details of the experimental setup were described in [20].
Here, we briefly summarize the data collection procedure. A
square planar target (0.61 m × 0.61 m) was placed on a holder.
Four experimental factors were varied: 1) scanner-to-target
distance; 2) reflectivity of target surface; 3) AOI; and 4) relative
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TABLE I
EXPERIMENTAL SETTINGS IN WHICH POINT CLOUDS WERE ACQUIRED IN

THE LABORATORY. FOR EACH COMBINATION OF SETTINGS, SCANNING

WAS REPEATED THREE TIMES

azimuth angle between the instrument’s nominal direction and
a ray passing through the instrument and target center. The first
three factors were set at four different levels, and the last one
was set at two levels as shown in Table I.

Scanning density was chosen so that the number of points
on the target was approximately the same for all AOIs and dis-
tances to the scanner (N ≈ 1600). For each set of experimental
conditions, three point clouds were acquired by scanning a
target three times.

In addition to point clouds collected with an instrument,
data sets were generated from computer simulations. Plane
parameters (ϑ0, ϕ0,D0) and a target center P c were chosen.
For every pair of angles (ϑj , ϕj), the corresponding noise-free
range qj was calculated as

qj =
D0

w(ϑ0, ϕ0) • pj(ϑj , ϕj)
(21)

where w and pj are defined by (2) and (8). The noisy range rj

was then calculated as

rj = qj + σεj (22)

where εj is a pseudorandom number from a normal distribution
N(0, 1) and σ is a scale factor (σ2 approximates constant
variance of measured ranges var(rj)). Spherical coordinates
were generated from the simulations and then converted to
Cartesian coordinates (xj , yj , zj).

A plane was fitted twice to each point cloud, using first
the orthogonal error function EO and then the directional
error function ED, defined in (13) and (20). A standard
quasi-Newton minimization algorithm as implemented by
Davidon–Fletcher–Powell (DFP) in [19] was used in both
cases. Thus, for every point cloud, two sets of fitted parameters
were obtained: (ϑ∗

O, ϕ∗
O,D∗

O) and (ϑ∗
D, ϕ∗

D,D∗
D). Then, for

every data set, the variances of the fitted parameters were
evaluated using the appropriate analytical formulas (9) and (10)
which were applied to the orthogonal and the directional error
function. In both (9) and (10), a variance of the measured
range var(rj) was approximated by the residual value of the
directional error function, var(rj) ≈ ED(ϑ∗

D, ϕ∗
D). Finally, all

fitted parameters and their respective variances were grouped
according to experimental conditions. For each of the 128 com-
binations of experimental settings (see Table I), the standard de-
viation of every fitted parameter was calculated from repeated
scans. These standard deviations were obtained directly from
experimental results, without knowledge of analytical formulas
for propagating uncertainties from measured ranges to fitted

parameters. In the following sections, we indicate all these
standard deviations with the subscript E

stdE(S∗) =

√√√√ 1
K(M)

M∑
m=1

(
S∗

m − S∗
)2

for S∗ = {ϑ∗, ϕ∗,D∗} (23)

where S∗
m is a value of the corresponding plane parameter

fitted to the mth data set while S∗ is the average of all S∗
m,

m = 1, . . . ,M , and all M data sets were acquired for the same
experimental settings. In the laboratory experiments, M = 3,
and in computer simulations, M = 100; therefore, we use a
corrected estimator (sample standard deviation) with K(M) =
M − 1 for data sets acquired in a laboratory and an uncorrected
estimator (standard deviation of the sample) with K(M) = M
for computer-generated data sets. This standard deviation was
calculated independently for planes fitted with orthogonal and
directional error functions, yielding a pair of deviations for each
plane, stdE(S∗

O) and stdE(S∗
D), respectively. In addition, an

average analytical variance was calculated as

var(S∗) =
1
M

M∑
m=1

var (S∗
m) for S∗ = {ϑ∗, ϕ∗,D∗} (24)

where var(S∗
m) is the variance calculated from the analytical

formula for the mth data set. Then, a corresponding standard
deviation of analytical variances was calculated as

stdA(S∗) =
√

var(S∗) for S∗ = {ϑ∗, ϕ∗,D∗}. (25)

The ratio of the two standard deviations

η(S∗) =
stdA(S∗)
stdE(S∗)

for S∗ = {ϑ∗, ϕ∗,D∗} (26)

can be used to verify the prediction of the analytical formula
for the variance of the fitted plane parameter. If η ≈ 1, then the
formula is accepted as correct, whereas large deviations from
the value of one indicate an incorrect analytical formula. Again,
depending on the error function used, two ratios were evaluated:
η(S∗

O) and η(S∗
D). These calculations were repeated for all 128

combinations of experimental settings.
Point clouds generated in computer simulations were

processed in a similar manner. In addition, since ground truth
parameters (ϑ0, ϕ0,D0) were known, the deviations of the
plane parameters fitted to the noisy mth data set could be
evaluated as ϑ∗

O,m − ϑ0, ϕ∗
O,m − ϕ0, D∗

O,m − D0 for orthog-
onal fitting and as ϑ∗

D,m − ϑ0, ϕ∗
D,m − ϕ0, D∗

D,m − D0 for
directional fitting.

IV. RESULTS

In Fig. 2(a)–(f) and Table II, typical results from fit-
ting a plane to simulated data are shown. Plane parameters
(ϑ0, ϕ0,D0) were (0◦, 40◦, 8 m), the center of a target P c was
chosen such that the corresponding AOI was equal to 70◦, and
the standard deviation of the range noise was σ = 7 mm in (22).
M = 100 noisy data sets were generated, and the deviation ΔS
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Fig. 2. Deviation Δm from ground truth of the plane parameters fitted to mth simulated noisy point cloud using (left column) orthogonal error function and
(right column) directional error function. (a) Δm = ϑ∗

O,m − ϑ0. (b) Δm = ϕ∗
O,m − ϕ0. (c) Δm = D∗

O,m − D0. (d) ϑ∗
D,m − ϑ0. (e) Δm = ϕ∗

D,m − ϕ0.
(f) Δm = D∗

D,m − D0. An error bar for each individual point was calculated using the appropriate analytical formulas.

TABLE II
DEVIATIONS ΔS FROM GROUND TRUTH (27), THE EXPERIMENTAL

STANDARD DEVIATION stdE(S∗) (23), ANDTHE RATIO η(S∗)
(26) FOR PLANE PARAMETERS FITTED TO DATA SETS

GENERATED IN THE COMPUTER

of the average fitted parameter from the corresponding ground
truth S0 was calculated

ΔS = S∗ − S0 for S = {ϑ, ϕ,D}. (27)

Results from fitting a plane to experimental point clouds
acquired in the laboratory are presented in Fig. 3(a)–(f) and
Table III. Error bars for all points shown in Fig. 2(a)–(f) were

calculated using the appropriate analytical formulas. Typically,
10 to 20 iterative steps were needed by the DFP minimization
algorithm to converge.

In Fig. 4, a histogram of the ratios of the final values of the
orthogonal and the directional error function is shown.

V. DISCUSSION

Simulated point clouds (generated on a computer) allow the
direct comparison of fitted plane parameters to ground truth
values (ϑ0, ϕ0,D0). Fig. 2(a)–(c) shows that, for M = 100
noisy data sets (which simulate M repeated scanning under
the same experimental conditions), the orthogonal fitting yields
plane parameters which are, on average, statistically different
from the ground truth (see Table II). Similar behavior was
also observed for another orthogonal error function where
individual distances Ej in (13) were normalized by statistical
weights [3]. This behavior has, of course, serious and undesired
consequences for the parameters of an as-built model. For
example, if the scanner is placed between two walls modeled
as a pair of parallel planes, the biases in individual parameters
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Fig. 3. (Left column) Histograms of ratios η and (right column) differences between fitted parameters obtained from orthogonal and directional fitting calculated
from data sets acquired in the laboratory. (a) η(ϑ∗

O) and η(ϑ∗
D). (b) η(ϕ∗

O) and η(ϕ∗
D). (c) η(D∗

O) and η(D∗
D). (d) ϑ∗

D − ϑ∗
O . (e) ϕ∗

D − ϕ∗
O . (f) D∗

D − D∗
O .

TABLE III
RESULTS FROM FITTING A PLANE TO POINT CLOUDS ACQUIRED

IN THE LABORATORY

D∗
O,1 and D∗

O,2 will add up. This will cause the distances
between the modeled planes (D∗

O,1 + D∗
O,2) to be different

from the as-designed model and, depending on the acceptable
tolerances, may lead to the rejection of the as-built model. The
bias shown in Fig. 2(a)–(c) is not caused by a constant offset in
the measured ranges but is introduced to the final results during
postprocessing by the choice of an incorrect error function.
Table II shows that the same NLS minimization procedure,
when applied to the same data set, yields different results for
two different error functions.

Fig. 4. Histogram of ratios of residual error values EO(ϑ∗
O, ϕ∗

O)/
ED(ϑ∗

D, ϕ∗
D) averaged over different scanner-to-target distances, reflectivity

coefficients, and azimuths between nominal scanner direction and target center,
calculated from data sets acquired in the laboratory. Standard deviations for all
bars are smaller than 0.02.

The second striking feature visible in Fig. 2(a)–(c) is a clear
underestimate of the variances evaluated from the analytical
formulas derived from the orthogonal error function. The values
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of the ratios η(ϑ∗
O), η(ϕ∗

O), and η(D∗
O) provided in Table II are

much smaller than one.
Contrasting with these observations is the behavior of the

directional error function. The deviations ΔS of the average
fitted plane parameters from their corresponding ground truth
are negligibly small, and the values of the ratios η(ϑ∗

D), η(ϕ∗
D),

and η(D∗
D) provided in Table II are close to one. We may

conclude that the analytical formulas for variances derived from
directional error are correct while the formulas based on the
orthogonal error function are not.

The results obtained from fitting a plane to point clouds
acquired in the laboratory support the aforementioned con-
clusions. For almost 80% of the experimental settings, all
three ratios η(ϑ∗

O), η(ϕ∗
O), and η(D∗

O) are smaller than 0.2
[see Fig. 3(a)–(c)]. For directional fitting, almost 60% of all
settings yield η(ϑ∗

D), η(ϕ∗
D), and η(D∗

D) larger than 0.5 and
smaller than 1.2. Median values of ratios included in Table III
also confirm that directional fitting yields a median closer to
one than the orthogonal fitting. Thus, on average, the values
calculated from the analytical variances based on the directional
error function are much closer to the experimental estimates
than the values obtained from the analytical variances based on
the orthogonal error function. More detailed inspection of large
outliers for η(ϑ∗

D), η(ϕ∗
D), and η(D∗

D) did not reveal partic-
ular experimental conditions for which analytical predictions
disagree with experimental estimates. This lack of correlation
with any particular experimental conditions may suggest that
inaccurate estimate of stdE from only three repeated scans may
be responsible for outliers in η.

In analytical evaluations of variances (9) and (10), we as-
sumed constant variance of measured range var(rj) and ap-
proximated it by the residual value of the directional error
function ED(ϑ∗

D, ϕ∗
D). In general, this approximation may not

be valid when the size of a scanned planar surface (e.g., a length
of scanned wall) is comparable with the distance from the
plane center to the instrument. In such situations, the difference
between the smallest and the largest AOI in the acquired data
set may be large, and the assumption of constant var(rj) may
be wrong. Point clouds used in this project were collected in
different settings: the width and height of the targets were small
relative to the distance to the scanner. Thus, all rays passing
through the recorded points P {N} could be approximated as
parallel, and the dependence of variance var(rj) on the jth AOI
and range could be neglected.

Fig. 3(d)–(f) show a histogram of the differences between the
plane parameters fitted with the orthogonal and the directional
error function. For all three plane parameters, the majority
of the differences cluster around zero. While the distribution
of ϑ∗

D − ϑ∗
O is approximately symmetrical around zero, the

distribution of ϕ∗
D − ϕ∗

O is systematically skewed (i.e., for
most of experimental conditions ϕ∗

D > ϕ∗
O). The distribution

of the third parameter D∗
D − D∗

O follows the pattern shown in
Fig. 3(e) (recall that D is the distance of the coordinate origin
to the fitted plane, not to the target center). Histograms shown
in Fig. 3(d)–(f) do not approximate any smooth probability
distribution, for example, Gaussian. It is not surprising because
the data used to create the histograms were obtained from
point clouds acquired in different experimental conditions. Very

large differences between D∗
D and D∗

O shown in Fig. 3(f) were
observed for large target-to-scanner distances (110 and 160 m),
and they clearly illustrate how even small angular differences
in the orientation of the normal vector may result in large
differences between two fitted planes.

The differences between the orthogonal and the directional
fitting are more important for larger AOIs as is shown in Fig. 4.

VI. CONCLUSION

The results presented in this paper confirm that the choice
of error function in fitting a plane to range data is important,
particularly for a large AOI. The commonly used orthogonal
error function yields fitted plane parameters which are, on av-
erage, underestimated. Analytical formulas based on this error
function also severely underestimate the values of variances of
the fitted plane parameters when compared to experimental es-
timates based on repeated scans. The directional error function
yields fitted plane parameters very close to the ground truth.
Analytical formulas based on the directional error function re-
sult in variances of fitted parameters that are in agreement with
experimental estimates. Thus, the variances may be correctly
and quickly determined even for a large single point cloud when
the right error function is used in NLS fitting.

The analytical formulas for variances tested in this paper are
applicable only to a point cloud acquired from one scanner
location. If a data set contains point clouds obtained from
different scanner locations and then later registered to a com-
mon coordinate system, the formulas cannot be used. Fitting a
geometrical model to many data sets acquired from different
instrument locations can be performed in two different ways. In
the first approach, all point clouds are first registered, and then
a model is fitted to one large data set. The advantage of this
approach is that more points covering presumably the whole
surface of the scanned object are used for fitting. Thus, one
may expect that the variances of the fitted parameters would
be smaller. The disadvantage of this approach is that the data
are contaminated by the registration error. The influence of the
registration error on the model parameters fitted to a large data
set is not obvious. This is because the common practice of
reporting the registration error as the average displacement be-
tween corresponding target points is not helpful. In the second
approach, a model is fitted first to each point cloud, and then, the
average model parameters are calculated. Parameters which are
invariant with respect to the coordinate system (for example, the
radius of a cylinder or the dimensions of a rectangular box) can
be directly averaged; other parameters (like the location of an
object or its orientation) need to be first registered to a common
coordinate system. It still remains an open question whether the
two approaches are equivalent or whether one of them is better
and, if so, under what experimental settings.
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