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Abstract—The instantaneous frequency of a rapidly tuned
continuous-wave (CW) laser is measured through linear optical
sampling against dual-frequency combs. This dual-comb interfer-
ometer determines the instantaneous frequency of the CW laser
during a quasi-sinewave frequency sweep of 3 THz amplitude with
a 10 ms period. More complicated waveforms are also measured
with instantaneous chirps exceeding 1500 THz/s (12 000 nm/s). The
uncertainty is 1.5 MHz at 20 ns time resolution, averaging down
to 5 kHz at 5 μs time resolution. The absolute frequency accuracy
can be calibrated to within 2.5 kHz provided there is a brief pe-
riod (<1 ms) of low laser chirp (<160 GHz/s) during the waveform
measurement to allow for a dual-comb Vernier measurement of the
absolute frequency, modulo 3 THz. This approach allows for the
characterization of arbitrary CW waveforms with instantaneous
frequencies that change rapidly and over wide optical bandwidth.

Index Terms—Frequency combs, laser tuning, metrology.

I. INTRODUCTION

A FREQUENCY-AGILE, continuous-wave (CW) laser is
an ideal source for a range of laboratory and remote-

sensing experiments. It can produce a high flux of photons in
a single spatial mode allowing for shot noise limited detection
with high SNR. Spectral coverage from these devices is lim-
ited compared to blackbody sources but still much broader than
typical RF sources and growing with advances in lasers. Also,
the tuning speed and flexibility of these devices has been in-
creasing [1]–[5]. As CW lasers become more agile, one can
envision moving away from the conventional linear-frequency
sweep often used with tunable lasers toward more arbitrary CW
optical waveforms where the intensity and frequency profile of
the laser are tailored for the specific application. For example, in
spectroscopy one can dwell on important spectral bands without
wasting observation time on the uninteresting intervening spec-
tral regions. In ranging with coherent laser RADAR (LIDAR),
one can dynamically tailor the waveform to trade off range res-
olution with acquisition period depending on the scenario.
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There has been much recent interest in developing fully arbi-
trary optical waveforms from coherent pulsed sources, i.e., fre-
quency combs [6]–[8]. However, the full implementation of ar-
bitrary optical waveforms remains challenging and the detection
equally so. Here, we consider a system to support CW arbitrary
optical waveforms, where the term “CW” indicates an intensity
and instantaneous laser frequency that are well-defined over the
subnanosecond timescales associated with typical high-speed
photodetection. There are two obvious challenges to generating
CW arbitrary waveforms. First, one must have a CW laser that
is capable of achieving the desired waveform. Second, one must
be able to accurately control or characterize the optical wave-
form, in particular the frequency output. (The intensity is easily
calibrated with a photodetector.) While a rough calibration of
the frequency output is given by the input control parameters
used to tune the CW laser, the actual frequency is typically only
crudely known compared to the laser linewidth, particularly at
high tuning speeds. This paper addresses that second challenge
by refining measurement capabilities.

This problem of achieving a known frequency profile has
been addressed in a number of different systems that use ei-
ther active feedback to control the CW laser frequency or pas-
sive measurements of the CW laser output [9]–[18]. The ac-
tive systems avoid the complexity of postprocessing but do re-
quire high-bandwidth and high dynamic-range feedback. This
level of feedback is not always possible or may restrict pos-
sible waveforms. Passive approaches based on monitoring the
waveform and correcting for distortions in postprocessing can
be more flexible. However, conventional frequency metrology
instruments such as optical spectrum analyzers and wavelength
meters have nowhere near the necessary combination of speed,
resolution, and accuracy. Measurements against etalons or in-
terferometers can provide relative frequency measurements at
reasonable resolution and speed but the accuracy is limited by
dispersion or thermal/mechanical changes in the reference de-
vice. Additionally, the absolute frequency must be determined
separately.

Many of the approaches to creating a known frequency pro-
file have exploited frequency combs [9]–[16]. Frequency combs
have set new standards for frequency metrology of static CW
lasers [19], [20], and it is indeed natural to extend their use
to metrology of dynamic CW lasers. The broad spectral out-
put of femtosecond frequency combs provide a high accuracy
spectral ruler across a broad bandwidth when properly stabi-
lized to a frequency reference. Early comb work has allowed for
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Fig. 1. (a) Schematic of the setup. The laser controller inputs the approximate
desired waveform to the MEMS-based tunable CW laser. The output is split with
a small portion directed to the coherent dual-comb interferometer that acts as a
fast optical frequency counter to measure the actual output waveform. The CW
laser is briefly held constant for ∼1 ms to acquire the absolute frequency prior to
rapid modulation. (b) Measured frequency swept waveform with a 3 THz peak-
to-peak amplitude and a modulation frequency that varies from 125 to 50 Hz.
The time resolution is 20 ns. The output waveform only approximately follows
the control voltage. The measured waveform can be used in postprocessing
of the experimental results or, optionally used to tailor the control voltage, as
indicated by the light gray line in (a).

high-resolution active control or passive measurement of CW
waveform, but frequency tuning rates have been limited. More
recently, in [21] the relative frequency profile of a tuned CW
laser was tracked through its successive crossings of comb teeth.
Tuning speeds as high as 1 THz/s are possible with this method.
In our recent work [22], we used a highly coherent dual-comb
interferometer to make rapid, absolute measurements of a CW
laser frequency at high time resolution and accommodating fre-
quency sweeps up to 100 GHz/s or 1 THz/s depending on system
parameters. An earlier version of the system presented here was
also used to provide calibration of a broadly swept laser system
at frequency sweeps of 10 THz/s [23].

The goal of the current work is to push the maximum observ-
able tuning speed of the dual-comb interferometer as high as
possible by handing off between relative and absolute measure-
ments of optical frequency. We achieve a significant increase in
tuning speed by implementing IQ (in-phase/quadrature) detec-
tion and relying on mode-hop free tuning of the laser. In that
case, we require only a short stable period at the start of the
waveform for acquisition of the absolute frequency before tran-
sitioning to a much more rapid relative frequency measurement.
With these modifications, we are able to track lasers changing
as rapidly as 1500 THz/s or 12 000 nm/s.

The system is shown in Fig. 1. It consists of a frequency-agile
CW laser, in our case a microelectromechanical system (MEMS)
based external cavity diode laser [24] that is rapidly tuned by
an arbitrary function generator (AFG). We assume that most of
the light would be directed to an external experiment requiring
high sensitivity over a broad bandwidth. A remaining fraction
is diverted toward our dual-comb interferometer, which acts
as a fast and high-resolution-frequency counter. The frequency
(and intensity) of the swept waveform can be recorded and the
experimental data corrected in postprocessing, or potentially,

Fig. 2. Simplified picture for frequency metrology of a quasi-static laser (gray)
with a frequency comb (red). In the frequency domain (left side), the detected
heterodyne frequency, fV , is the difference between the CW laser frequency, fL ,
and nearest tooth frequency, fn . Similarly, in the time domain (right side), the
detected overlap between the comb pulses and the CW laser yields the sampled
voltages, V(t), shown as green circles. Ignoring intensity variations, this signal
is simply the cosine of the phase difference between the comb pulse and the
CW laser at each sampling time.

the measured frequency could be fed back to correct deviations
in the waveform. The waveform starts with a brief (<1 ms)
stable period so that the dual-comb system can acquire the ab-
solute frequency using our fast coherent implementation [22] of
the dual-comb Vernier approach of Ma et al. [25] and Peng et al.
[14]–[16]. After that, the frequency is changed rapidly and
tracked through linear optical sampling with a frequency comb.
This approach allows us to follow changes in speed and direction
of the swept CW laser frequency (unlike the standard approach
of tracking crossings of etalon fringes which is consistent with
only unidirectional quasi-linear sweeps). We can track tuning
speeds exceeding 1500 THz/s and extending over bandwidths
in excess of 3 THz. The uncertainty is 1.5 MHz at a 20 ns time
resolution and improves linearly with observation time to 5 kHz
at 5 μs time resolution. The accuracy of the system is based on
the CW reference laser underlying the combs; here, it can be as
good as ∼2.5 kHz but might more typically be 100 kHz.

The ability to measure the instantaneous frequency can help
characterize the basic behavior of the tunable MEMS laser. We
find, as one might expect, that abruptly reaching the edge of
the MEMS tuning range results in oscillations in the laser out-
put frequency, presumably because of mechanical resonances.
Also, as one might expect, the dc-derived transfer function for
the frequency output versus the input control voltages fails to
accurately reflect the true high-speed output waveform. Perhaps
most promising, and not necessarily expected, we find that the
waveforms are quite reproducible over time. Successive wave-
forms differ by less than 1 GHz, or within the bandwidth of
a photodetector. These results indicate it would be possible to
“demodulate” the output of one laser with a second tailored
waveform. Such capability would allow for ranging at rates
much faster than current FM linearly swept LIDAR systems
since the demodulated beat could always be tuned to be within
a detector bandwidth.

II. MEASUREMENT APPROACH

For metrology of a static CW laser, the comb picture shown in
Fig. 2 works well, and the frequency of the heterodyne signal,
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Fig. 3. (a) Simplified picture of the dual combs (red and blue) and the CW
laser (gray). (b) Heterodyne signal between the CW laser and nearest pair of
comb teeth yields two RF frequencies that vary with time identically, but with
a relative offset corresponding to the separation between the comb teeth. This
difference can be used to identify the mode number n and thereby yield fn .

V(t), between the CW laser at optical frequency fL and the
nearest comb tooth is

fV = fL − fn (1.1)

where fn = fceo+ nfr is the frequency of the nth comb tooth,
defined in terms of the comb’s carrier-envelope offset frequency,
fceo , and repetition rate, fr . Thus, fL is known precisely if the
comb index, n, is known and if fceo and fr are sufficiently
quiet. A similar picture can be generated in the time domain,

where the comb pulses effectively sample the optical phase of
the CW laser at discrete times.

As is clear from Fig. 2, a major challenge with frequency
combs is to know which comb tooth one is measuring against,
i.e., the value of n in (1.1). We determine n by a Vernier approach
using two combs with slightly different repetition rates, fr and
f ′

r , separated by Δfr = fr − f ′
r , as shown in Fig. 3 [14]–[16],

[22], [25]. The CW laser is separately heterodyned against each
comb yielding RF frequencies, fV and f ′

V that differ exactly by
the separation between the nth pair of comb teeth (provided the
two combs are optically coherent with each other). It is also
worth noting that with IQ detection the sign and magnitude of
fV can be measured.

In the locking scheme shown in Fig. 3(a), this difference,
fV − f ′

V , is zero at a particular comb index, nref , whose fre-
quency corresponds to the cavity-stabilized CW reference laser
underlying the combs. The frequency difference, fV − f ′

V thus
identifies the offset of the tooth index n from nref , modulo an
integer fr /Δfr (31 883 in our case). After the value of n is cal-
culated from the measured frequency difference, it is adjusted
for the ambiguity of fr /Δfr using a priori information on the
laser frequency, and then used in (1.1) for an absolute frequency
determination.

For this procedure to succeed, one must be able to resolve
the difference in the two beat frequencies to better than Δfr .
However, if the CW laser is sweeping very rapidly there may
be insufficient time to achieve this level of resolution before
the CW laser crosses comb teeth and n is changed. One can
still measure the laser spectrum, if an appropriate correction is
applied for the laser chirp, as discussed in the supplementary
material given in [22]. However, here, we simply will require
that the laser tune by less than fr /2 for a period of 1/Δfr to
determine the comb tooth number.

With the absolute frequency determined, the dual-comb inter-
ferometer need only track relative changes (positive or negative)
in the laser frequency. This measurement can be made by com-
paring to a single comb, where we track the now time-varying

Fig. 4. (a) Simplified picture of the unshifted (red, solid) and shifted (orange,
dotted) comb and the swept CW laser spectra (gray, solid). This picture cor-
responds to a long time window so that the comb teeth are well defined, but
the laser frequency has swept over multiple teeth. In practice, we generate a
shifted copy of the CW laser rather than the comb, but the principle is the same.
(b) Actual measured heterodyne frequencies, fV and fVS between the unshifted
and shifted swept CW laser and the comb. The frequency is always constrained
between −fr /2 and +fr /2. The laser frequency is determined by effectively
unwrapping the fV and fVS signals as described in more detail in Section III.B.

Fig. 5. Spectrum of a CW laser with fast chirp (gray) and a frequency comb
(red) over a short period. Over the short period during which the CW laser
frequency falls between comb teeth, there are only a few comb pulses and
therefore the time-bandwidth-limited comb teeth are quite broad.

comb index, n → n (t), as the CW laser crosses comb teeth. The
challenge is to avoid any confusion resulting from the awkward
regions where the CW laser lies directly between adjacent teeth
and to continuously track the changes in comb index n at ever
increasing CW laser tuning speeds.

The first problems can be solved by a parallel measurement
of the CW laser against a second version of the comb, shifted
by fr /2, which allows for continuous measurements of the laser
frequency through either the heterodyne frequency with the un-
shifted comb, fV , or the heterodyne frequency with the shifted
comb, fVS , as shown in Fig. 4 [10], [22]; when one hetero-
dyne beat is at a crossing point with an ambiguous frequency of
±fr /2, the other is at a well-defined frequency near zero. In our
implementation, we actually generate a shifted version of the
CW laser by an acoustooptic modulator (AOM), but the concept
is the same.

The tracking of the mode number of course becomes pro-
gressively more challenging as the chirp of the laser frequency
C ≡ ḟL (t) increases. As the interaction period between the
swept laser and a single tooth becomes shorter the tooth becomes
significantly time-bandwidth limited (as depicted in Fig. 5). Cer-
tainly once the laser frequency changes by more than a comb
tooth spacing fr in a period T = f−1

r (i.e., C > fr /T), the inter-
action of the swept CW laser with a single-comb tooth is not
defined as comb teeth are not defined over a single pulse. As a
rough upper limit then, we require two samples before the laser
crosses between comb teeth giving a limit of C < f 2

r /2. This
limit is of course closely related to the sampling theorem for
nonbaseband measurements.

As the comb picture breaks down for short observation times,
it becomes more appropriate to work in the time domain since
this avoids subtleties related to the comb formation at short
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times, and we can define an instantaneous frequency. As dis-
cussed in more detail in the Appendix, from the I and Q signals,
we can extract the phase of the signal V(t) sampled at the kth
pulse at time tk = k/fr . The sampled phase is given by

θV (tk ) = θL (tk ) − 2πtkfceo − 2πkn (1.2)

in analogy with (1.1). From the sampled phases, we define an
instantaneous frequency from the central phase difference

fV (tk ) ≡ θV (tk + T ) − θV (tk − T )
4πT

. (1.3)

The central difference, rather than a two-point derivative, avoids
distortions at high chirp level and reduces the noise. A similar
instantaneous frequency is calculated for the “shifted” measure-
ment, fVS , and it is these frequencies that are graphed in Fig. 4.
(The noise seen whenever fV or fVS reaches ±fr /2 corresponds
to the breakdown in the implicit assumption of (1.3) that the
index n is constant across the phase measurements.) As noted
in Fig. 4 and discussed in more detail in Section III-B, the laser
frequency is then calculated by unwrapping the frequency mea-
surements to retrieve the laser frequency through (1.1). Given
this time-domain description, we can calculate a tighter limit on
the maximum chirp. We require at least three measurements of
the instantaneous frequency to allow for tracking the frequency
trajectory between handovers, with each using a three-point cen-
tral difference calculation. Including the overlap between these
calculation, this translates to a requirement that the CW laser
frequency falls within a bandwidth fr for a time 4 T, or a max-
imum chirp C < f 2

r /4. For our values of fr ∼ 100 MHz, the
limit is C < 2500 THz/s. We operate here very close to this
maximal chirp.

III. EXPERIMENT

A. Experimental Setup

The experimental layout is depicted in Fig. 6. The combs
are femtosecond erbium fiber lasers with repetition rates fr ∼
f ′

r ∼ 100 MHz that differ by Δfr = 3.14 kHz. Comb spectra are
shown in Fig. 7 and overlap the tuning range of the CW laser.
To realize the Vernier measurement of the absolute frequency, a
high degree of coherence is established between the combs by
phase locking two teeth from each comb to two cavity-stabilized
CW reference lasers at 1535 and 1560 nm. The combs and the
locking process are described in detail in [26]. The 1560-nm
reference laser in combination with counted comb repetition
rates provides the absolute frequency calibration of the system;
the frequency of the 1560 nm laser can be known to 2.5 kHz
through calibration against a self-referenced frequency comb.
However, for much of the data shown here the calibration is
not current and the absolute reference laser frequency is only
known to ∼100 kHz. This is more than sufficient for most LI-
DAR or spectroscopy measurements and on the order of most
experimental systematics discussed in the Appendix.

The swept CW laser is an MEMS-based tunable diode laser
[24]. The laser can be chirped with rates exceeding 2000 THz/s
and is controlled by applying voltages to MEMS mirror actu-
ators for coarse tuning and to a piezoelectric transducer (PZT)

Fig. 6. Experimental layout of the dual-comb interferometer. The output of an
AFG is used to generate control signals for the MEMS actuator in the laser (and
for the PZT tuning, not shown). The output of the MEMS laser is split, with most
of the power being directed toward an external application (not shown) and the
remainder to an AOM used to generate a shifted and unshifted version of the CW
laser. This light is then sampled by comb 1 using IQ demodulators and comb
2 using a 3×3 demodulator followed by BD. A phase-locked loop (PLL) phase
locks the combs to a pair of cavity-stabilized CW laser (to provide absolute
frequency information). Polarization controllers used to align the polarization
into the IQ demodulators are not shown. The low-pass filters (LP) are at 150 Hz
for the laser control voltages and 50 MHz for the detection channels.

Fig. 7. Normalized spectra of comb 1 (red, solid), comb 2 (blue, dotted)
and the swept CW laser (gray). The CW laser is continuously swept, although it
appears as discrete lines due to sampling effects in the optical spectrum analyzer.

for fine tuning. For fast sweeps, the PZT is tuned only to prevent
mode hops. The control voltage is generated by a 4000-point,
16-bit AFG, and low-pass filtered at 150 Hz to remove bit noise.
The filtered signal is passed to three separate high-voltage am-
plifiers, low-pass filtered again at 150 Hz, and then, applied to
both the clockwise and counterclockwise MEMS actuators and
to the PZT. By independently tuning the gain and offsets of the
three amplifiers, the CW laser can be swept mode hop free over
25 nm (3 THz) centered around 1560 nm.

The CW laser light is directed through an AOM driven with
a frequency exactly equal to fr /2 ∼ 50 MHz. Both the unshifted
and shifted CW light are combined with comb 1 and detected
with an optical IQ demodulator followed by a pair of 100 MHz-
bandwidth balanced detectors, low-pass filtered at 50 MHz to
keep the signal within the ±fr /2 Nyquist bandwidth of the sys-
tem, and digitized at 12 bits synchronously with fr . IQ detection
is particularly helpful, as it removes Nyquist folding effects that
can be cumbersome in processing [22]. The resulting in-phase
and quadrature voltages are then stored for processing, but it
would be possible to implement real-time processing by use
of a field-programmable gate array (FPGA). In the processing
steps, the IQ voltages are first digitally filtered with a 30 kHz to
47 MHz bandpass, and then, normalized to a mean of 0 and a
standard deviation of 1. After unwrapping, the arctangent of the
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Fig. 8. Hand-off between shifted and unshifted measurement for a slowly
tuned laser. (Bottom) Instantaneous RF frequencies for the unshifted measure-
ment, fV (t) (red), and shifted measurement, fVS (t) (orange). (Top) Calculated
instantaneous laser frequency relative to the frequency at t = 0, fL (t)–fL (0),
stitched together from fV (t) and fVS (t) as described in the text and indicated
above the figure.

ratio of the normalized in-phase and quadrature voltages yields
the instantaneous phase of the CW laser light versus the comb
for the unshifted and shifted measurements, θV [see (1.2)] and
the analogous θVS , respectively.

The measurement of the CW laser against comb 2 is identical
except that a 3×3 coupler is used rather than an IQ demodulator
(since a third one was unavailable). Two of the output ports of the
3×3 coupler are detected on 100 MHz detectors. The 120◦ phase
shift provided by the 3×3 coupler can be corrected in postpro-
cessing to provide true I and Q data [27]. The 3×3 approach has
the advantage of low price and easy availability; however, the
IQ demodulators with balanced detection (BD) allowed more
power on the detector and a significant increase in SNR.

Because the digitizer is clocked synchronously with comb 1,
there is a potential issue with the varying time delay between
the clock and the arrival time of the comb 2 pulses. This delay
is a problem during periods of high chirp as comb 2 could be
delayed by as much as T/2, and thus, samples a very different
CW frequency than comb 1. If the phase of this varying delay is
known, this effect can be corrected in processing. However, we
safely ignore this complicating issue as we use only the comb 2
measurement when the chirp is below 160 GHz/s to determine
the absolute frequency.

For maximum SNR, we increase both the CW laser power and
comb power as high as possible while still avoiding detector
saturation. This results in a stronger CW power because the
comb pulses saturate the detector at a lower average power. For
our commercial balanced detector, powers on each port of the
balanced detectors were ∼18 μW of comb 1 light and ∼75 μW
of the swept CW laser. The unbalanced detectors each received
20 μW of comb 2 light and 55 μW of the swept CW laser.

Detector saturation will lead to additional measurement noise
and systematic error. For the data shown in Figs. 11 and 12, the
shifted channel received nearly twice the above power leading
to 3 MHz scatter in the data and a 1.5 MHz shift relative to the
unsaturated channel at sweeps of 1 PHz/s.

Fig. 9. Hand-off between shifted and unshifted measurement for a rapidly
tuned laser at a chirp of ∼800 THz/s but otherwise as in Fig. 8. Data from
Figs. 8 and 9 are the data as shown in Fig. 12.

B. Processing

After taking the arctangent of the IQ data for the unshifted and
shifted measurements against comb 1, we have retrieved θV (t)
and θVS (t), which are used in (1.3) to calculate fV (t) and fVS (t).
We also obtain the phase samples against comb 2, labeled θ′V (t),
which are used in (1.3) to calculate f ′

V (t). As noted earlier,
we first use f ′

V (t) and fV (t) (or fVS (t)) over a “quiet” 1/Δfr =
320 μs window to acquire the absolute laser frequency using the
method outlined in Section II [22]. For this period, we require
that the laser frequency changes by less than 50 MHz, corre-
sponding to a chirp below 160 GHz/s. The absolute frequency is
known modulo the ambiguity of (frf

′
r )/Δfr ∼ 3 THz (25 nm)

as discussed in Section II. This 3 THz is well within the rough
calibration of the laser wavelength versus control voltage. The
time window required for the measurement is inversely propor-
tional to the ambiguity; if an ambiguity of 300 GHz is suffi-
cient, the system could be set up such that only a 32 μs time
window (or chirp < 1.6 THz/s) is required for the absolute
frequency determination. After this absolute calibration, we ig-
nore the f ′

V (t) and continuously track the CW laser frequency
by “handing over” or toggling the instantaneous frequency cal-
culated from fV (t) and fVS (t), as outlined in Section II. We
assume no mode hops; if one occurs, then the absolute fre-
quency must be reacquired.

We use two different algorithms depending on the chirp. For
lower chirps, we simply handover the instantaneous frequency
from the unshifted to the shifted measurement (or vice versa)
whenever the absolute value of the measured RF signal crosses
±30 MHz. Specifically, when handing over between fV (t) and
fVS (t), we include or remove the factor of ±fr /2 and increment
or decrement the index number n as appropriate. This handover
is illustrated in Figs. 8 and 9.

At higher chirps (C > 50 THz/s), the frequency noise can
cause “glitches” of fr = 100 MHz due to either a missed or pre-
mature handover of the signal. Therefore we switch to a more
predictive algorithm. First, the handover occurs only when the
RF signal crosses +30 MHz for a positive chirp and –30 MHz
for a negative chirp. Moreover, if the value of fV (t) (or fVS (t)) is
just below 30 MHz, it might be that the next value far exceeds
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Fig. 10. Example waveform measured for a 125 Hz sinewave modulation
applied to the MEMS-based tunable CW laser. The CW laser frequency is plotted
at 10 ns intervals. The measurement accuracy is 100 kHz and the uncertainty is
∼1.5 MHz per point using the central difference calculation. It drops linearly
with averaging time as shown later in Fig. 14. The brief unswept period at the
beginning allows for absolute frequency calibration. The middle plot shows the
derivative (chirp), which is boxcar smoothed to a 2 μs resolution. Distortions
in the waveform from a true sinewave are evident. Finally, the lower plot shows
the maximum deviation observed between 10 successive waveforms over a
measurement period of a few minutes. This graph indicates the MEMS-based
tunable laser is remarkably reproducible in its output.

the threshold since (10 ns) × (1500 THz/s) = 15 MHz. There-
fore, we project the value of the next frequency fV (t) and if the
projected value exceeds 30 MHz, we anticipate the handover
of the signal at the next sample. This handover is illustrated in
Fig. 9 for a chirp at half the maximum chirp. This approach dra-
matically reduces the number of “glitches” that occur. However,
on occasion, this simple algorithm can fail at a point resulting
in a glitch. This happened at most once in the waveforms shown
later in Figs. 11 and 12, and only a few times for Fig. 10, at
points of low SNR. The glitches are easily visible and removed
by manually unwrapping the frequency by fr at those points.
Since they occur because of a combination of the lower SNR
and simple unwrapping algorithm, they could be removed en-
tirely by either a higher SNR or a more sophisticated automated
processing. Note the exact value of chirp at which we switch
to this predictive algorithm is not critical and can fall anywhere
between 10–200 THz/s.

If there is a significant time delay between the effective sam-
pling pulse arrival time, with respect to the CW laser, for the
shifted and unshifted channels then the two channels will dis-
agree on the instantaneous frequency for high chirp rates. This
will manifest itself as a repetitive frequency shift occurring
whenever the unwrapped laser frequency toggles between the
shifted and unshifted measurements. We minimize this by ad-
justing the delays. We verify that this effect is small by com-
paring fV (t) and fVS (t) over a time period of strong chirp and
find the relative delay to be less than 100 ps or 150 kHz er-
ror at a 1500 THz/s chirp. This equivalency between delay and
frequency shift is of course, exactly the same as one uses for
ranging with a chirped RADAR or LIDAR system. Moreover,
this same time offset can in principle be present between the
dual comb interferometer measurement and the experiment [see

Fig. 11. Example waveform with a 3-THz peak-to-peak amplitude and a
modulation frequency that varies from 125 to 50 Hz. As shown in Fig. 10,
the top graph is the measured instantaneous laser frequency, the middle graph
is the smoothed chirp, and the lower plot is the deviation measured over three
successive waveforms. (This waveform is also shown in Fig. 1(b).) The observed
structure in the chirp is real and reflects the uneven tuning of the CW laser.

Fig. 12. Example waveform, chirp, and reproducibility for a fixed 100 Hz
modulation frequency with varying frequency-modulation amplitude. Other
more complex arbitrary CW waveforms can be produced and accurately mea-
sured, limited only by the agility of the tunable CW laser and the maximum
chirp discussed in the text.

Fig. 1(a)] and must always be measured and properly accounted
for.

IV. RESULTS

A. Sweep Data

We demonstrate an array of swept waveforms measured with
high fidelity in Figs. 1(b) and 10–13. For these waveforms, the
MEMS-based tunable laser was swept over 3 THz in frequency
at modulations rates from 50 Hz to 125 Hz. The optical band-
width was chosen as the maximum mode-hop free range of the
laser at these tuning rates and with our control system. The comb
spectra roughly matched this bandwidth, as shown in Fig. 7.

We also plot the measured derivative of the waveform, or
chirp. From data in Fig. 11, it is clear the dual-comb inter-
ferometer can track the laser at chirps exceeding 1500 THz/s
(12 000 nm/s).
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Fig. 13. High resolution and update rate of the system can reveal mechanical
effects of the swept laser. The features at 15.4 ms are the response of the swept
CW laser as it encounters what is apparently a mechanical stop at the edge of
its tuning range.

Finally, we acquired multiple scans using the same arbitrary
waveform. The final plot for each waveform shows the maxi-
mum frequency deviation, ΔfL , between successive scans. The
waveforms are reproducible to 1 GHz, suggesting that one can
fairly precisely tailor the waveform of this laser just by pre-
adjusting the modulation signal. We note that the deviations for
the pure sine waveform are lower than for the other waveforms,
presumably because it is a pure tone.

Finally, Fig. 13 shows an expanded view about a time where
the MEMS-based tunable laser turns around in frequency after
hitting what appears to be a mechanical stop. These data are a
simple example of the type of characterization and diagnostics
possible given the high frequency and time resolution of the
system.

B. Measurement Uncertainty

The central difference method for calculation of frequency
[see (1.3)] yields a 1.5 MHz uncertainty in a 20-ns measure-
ment window, dominated by the uncertainty in the individual
phase measurements. This frequency uncertainty is a relatively
low number for a fast swept laser. However, the instantaneous
frequency can be extracted with higher precision given a larger
measurement window. One can incorporate more points into the
frequency determination by averaging over temporally adjacent
frequency or by fitting a line to the time dependant phase. The
Allan deviation plot in Fig. 14 shows the measurement uncer-
tainty as a function of time for the unmodulated MEMS-based
laser and a quieter CW fiber laser. The frequency uncertainty of
the current system is limited by the SNR of the samples, which
leads to a ∼0.22 rad noise on the measured phases, θV (VS) , and
a corresponding ∼ 5 MHz uncertainty for a two-point differ-
ence calculation of the instantaneous frequency over the 10 ns
time between phase measurements. Higher SNR on the phase
measurement could be achieved with higher comb power, which
is currently limited by detector saturation. Therefore, a higher
dynamic range detector or better balancing in the IQ demod-
ulators could allow for an increase in signal and even lower
uncertainties. The Appendix discusses other systematic effects

Fig. 14. Allan deviation plot showing the frequency measurement uncertainty
as a function of measurement window for the MEMS-based tunable laser (red
symbols) and a CW fiber laser (black symbols). The circles show the uncertainty
using the two-point frequency determination averaged over a window τ . The
triangles show the uncertainty using the multipoint linear phase fit spanning τ .

when the laser is moving, with the primary contribution arising
from group-delay (GD) dispersion in the RF filters.

The uncertainty versus time is characterized by the Allan
deviation, which is plotted in Fig. 14 for a two-point phase dif-
ference. The two-point method avoids overlapping effects that
might distort the Allan curve; however, it yields a slightly higher
uncertainty (2.5 MHz over a 20 ns window) than the 1.5 MHz
uncertainty of three-point central-difference calculation of (1.3).
The uncertainty averages down as 1/τ for the two-point phase
derivative technique and slightly faster for an alternate linear
phase fit over the same time window (τ ). While the MEMS-
based CW laser is unmodulated it is not stabilized and at 1 μs
the effects of laser drift become apparent as the Allan deviation
begins to diverge. A CW fiber laser (also shown) is less prone
to drift and one can see the measurement uncertainty average
down to 2 kHz.

The method of frequency extraction presented here is differ-
ent from the FFT based approach presented in [22] in that we
measure a center frequency as opposed to a full spectrum. There
are a few advantages to this approach that are worth mentioning.
First, the method presented here is less processor intensive than
an FFT and much more compatible with real-time processing,
particularly in an FPGA where processing is naturally point
by point. Secondly, this approach accommodates much faster
frequency sweeps because instantaneous frequency can be de-
termined to within 1.5 MHz in 20 ns with a single three-point
measurement. The drawback of this approach is that one does
sacrifice some information. We have reduced all spectral infor-
mation about the CW laser to a weighted mean frequency, and
features such as sidebands or multimodal behavior are largely
invisible. Of course, if one is concerned about such effects it
is still possible to return to the raw data and perform the FFT
analysis.

C. Verification of Accuracy

The absolute frequency accuracy of the system was verified
by comparing to measurements made with a self-referenced
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Fig. 15. Absolute-frequency measurements performed with the dual-comb
interferometer (red crosses) and a self-referenced comb/wavemeter combination
(black triangles).

comb [28] and commercial wavemeter readings to simultane-
ous measurements made with the dual-comb interferometer. We
used an erbium fiber laser with a 1 kHz linewidth in place of the
tunable MEMS laser so that the CW laser linewidth would not
limit the measurement and to ensure that the laser does not cross
a comb tooth during the ∼1 s long wavemeter measurement.
To synchronize the measurements, the CW laser was modu-
lated with a 1 Hz square wave applied to an intercavity PZT.
This modulation periodically shifts the CW laser frequency by
800 kHz. The modulation was much smaller than the wavemeter
resolution (10 MHz) and did not affect the readings. During the
measurement the heterodyne beat between the CW laser and the
self-referenced comb was carefully monitored on a spectrum
analyzer to ensure that the tooth number did not change.

Measurements with the dual-comb interferometer were per-
formed as before; however, the slow modulation allows for very-
high-resolution measurements. The calibration of the cavity-
stabilized lasers underlying the dual-comb interferometer was
done immediately prior to the measurement. Measurements
made by the two systems are in agreements to within ±2.5 kHz
(see Fig. 15). This ±2.5 kHz limit is almost certainly due to
unstabilized fiber paths in the experiment [29].

In practice, our absolute accuracy is not 2.5 kHz. The rea-
son is that the frequency of the cavity stabilized reference laser,
which we use to calibrate and stabilize our combs, does drift over
time. If the reference laser is monitored with a self-referenced
comb, as is done for the data in Fig. 15, its frequency can easily
be known to a part in 101

2 . However, for the rest of the data
shown here this level of accuracy is unnecessary and the refer-
ence laser not continuously monitored. The reference laser drift
has been measured at 30 kHz in a day and 100 kHz in a month.
For Figs. 10–14, the absolute accuracy of the system is con-
servatively 100 kHz which is completely sufficient for the mea-
surement. Of course, greater accuracy is achieved with regular
calibration of the reference laser or improved temperature stabil-
ity of the reference cavity. Alternatively, with some increase in

complexity one could also perform the dual-comb measurement
with self-referenced frequency combs as is done in [14]–[16]. In
this case, calibration of the reference laser could be continuous
and kHz level accuracy would always be achieved.

It is also worth noting that for fast sweeps it becomes critical to
specify where in the system the frequency is being measured as
any timing delay is equivalent to frequency shift. At 1.5 PHz/s
chirp the CW laser frequency changes 5 kHz over a physical
delay of a millimeter. If one were to use the comb system to
calibrate a simultaneous gas spectroscopy measurement (see
Fig. 1(a)), a difference in paths from the splitting of the CW
laser to the point where the signal is recorded would have to be
carefully considered. Differential dispersion between one arm
of the experiment and the other could also lead to spectrally-
dependent errors. For any system needing very high accuracy
these timing delay effects would have to be calibrated out. To be
clear the dual comb system effectively measures the CW laser
frequency at the point where the CW laser and the combs are
combined.

V. CONCLUSION

Dual-comb systems have proven to be capable of high reso-
lution and accurate measurement in both LIDAR [30]–[32] and
spectroscopy [26], [33]–[43]. However, the signal-to-noise lim-
itations of these systems make high-SNR rapid measurement
difficult [44]. Frequency-agile lasers make an ideal pairing with
the dual-comb system providing the resolution and accuracy of
the dual-comb system and the sensitivity of a CW laser [22].

We demonstrated a fast, high-precision optical frequency
counter based on a dual-comb interferometer. This system can
measure the output of a fast swept CW laser with chirp up to
1500 THz/s. Provided there is a brief 320 μs window with a
chirp below 160 GHz/s, the absolute frequency is calibrated
with an accuracy to better than 100 kHz. Since the maximum
chirp scales as the square of the comb repetition rate, higher
repetition rate combs [45], [46] could allow for calibration of
even faster waveforms.

This system can be used in the laboratory currently to fully
characterize the CW waveform from frequency-agile CW lasers.
With continued improvements in robust frequency comb sources
[47] and with more flexible comb-stabilization techniques [43],
one could envision a broadly accessible device or even an arbi-
trary optical CW waveform generator.

It is also worth noting that combs can access broad regions of
the spectrum and one is certainly not constrained to work in the
near IR. Therefore, this technique will be compatible with the
continued advances in the speed and spectral coverage of agile
CW lasers.

APPENDIX

We evaluate potential systematic errors that might occur at
this high chirp due to a number of effects including the approx-
imation of the derivative by discrete samples, variations in the
spectral phase of the sampling comb pulses (i.e., chirp in the
comb pulses), the low-pass filtering of the detection system,
time delays between the two separate measurements of the CW
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laser, and shifted CW laser. We do not consider effects of timing
delay discussed previously (see Section IV-C).

Assuming a perfectly stable, the comb electric field as a func-
tion of time, t, is given by

Ec(t) =
∑

m
eimθc e o EP (t − mT ) (1.4)

where θceo is the carrier envelope offset (ceo) phase shift [19],
[20], Ep (t) is the field of a single pulse, m is the pulse num-
ber, and T is the pulse period. The repetition rate is fr = T−1

and the ceo frequency is fceo = frθceo/ (2π). For an input CW
laser field EL (t) = |EL (t)| cos (θL (t)), the real-valued volt-
ages from the heterodyne beat from the in-phase and quadrature-
detection channels are

VI (t) = R(t) ⊗ Re[EL (t)E∗
c (t)]

VQ (t) = R(t) ⊗ Re[eiπ/2EL (t)E∗
c (t)] (1.5)

where ⊗ indicates a convolution with an overall detection re-
sponse R(t), which includes the photodetector gain, RF amplifier
response, low pass filter, and ADC conversion gain. The I and
Q voltages add to create the complex V (t) = VI (t) + iVQ (t).
Inserting (1.4) into (1.5), this complex voltage is

V (t) =
∑

m

R(t − mT )
∫

|EL (t)|E∗
P (t − mT )

× exp(i[θL (t) − mTfθc e o
r ])dt (1.6)

since R(t) has a duration much longer than that of the comb
pulse, Ep (t). We assume the voltage samples are digitized syn-
chronously with the pulse arrival time to yield a set of complex
voltages at times tk = kT. If we assume the detector response
is such that R(t)vanishes for |t| > T/2 (we will return to this as-
sumption later), then only one pulse contributes to each digitized
signal, and (1.6) gives

V (kT ) = R(0) |EL (kT )| exp(i[−kTfrθceo ])

×
∫

eiθL (t)E∗
P (t − kT )dt (1.7)

for a slowly varying CW laser field intensity. The pulses are very
short (∼ ps or less) so the CW laser phase can be expanded as
θL (t) = θL (kT ) + (t − kT ) 2πfL (kT ), where the instanta-
neous laser frequency is defined as fL (t) ≡ θ̇L (t)/(2π). Equa-
tion (1.7) then becomes

V (tk ) = |EL (tk )||Ẽ∗
P (fL (tk ))|R(0)

× exp(i[θL (tk ) − tkfr θceo − θ̃P (fL (tk ))]) (1.8)

where the Fourier transform of the pulse is ẼP (f) ≡
|ẼP (f)|eiθ̃P (f ) ≡

∫
EP (t)e−i2πf tdt, with spectral phase

θ̃P (f), which might vary slowly across the spectrum if the
pulse is chirped. (Note the tilde over the phase indicates only
that it is spectrally dependent rather than implying a Fourier

transform of the time-dependent phase.) We extract the phase
of this signal from the arctangent of the ratio of the real and
imaginary components to find

θV (tk ) = θL (tk ) − θ̃P (fL (tk ))

−tkfr θceo − 2πkn + θσ (tk ) (1.9)

or (1.2) with some additional terms.
We have added a term θσ to reflect noise on the phase mea-

surement due to detection noise or high frequency phase noise
on the combs. For our system, this noise is white and 〈θσ 〉 = 0.
The second-to-last term reflects the fact that the phase could
change by any integer multiple of (2π) between measurements
and we would be none the wiser. We have specifically chosen
the phase offset to be zero for the first sample and to incre-
ment by 2πn between samples; there is no particular reason n
will be constant and, in fact, it corresponds to the nearest-comb
tooth in a frequency picture, so that for a frequency swept CW
laser n will change. We will require, however, that the value
of n increments slowly, so that it is at least constant over more
than three or four samples. Over this range, we can define the
instantaneous measured frequency as in (1.3). We next expand
the CW laser phase at time tk in the Taylor series,

θL (t) = θL (tk ) + 2π(t − tk )fL (tk )

+π(t − tk )2C(tk ) +
π(t − tk )3

3
D(tk ) (1.10)

where fL (t) is the instantaneous laser frequency, C (tk ) =
ḟL (tk ) the instantaneous first-order chirp, and D (tk ) = f̈L (tk )
the instantaneous second-order chirp. Substituting (1.10) into
(1.9) and assuming the integer n is constant from (tk− T) to
(tk + T), the central difference calculation of (1.3) gives

fV (tk ) = fL (tk ) − fn − dθ̃P (fL )
2π dfL

C − T 2D/6 + fσ (tk )

(1.11)

where fn =
(
frθceo + 2πnT −1

)/
(2π) = fceo + nfr is the fre-

quency of the nth comb tooth. fσ is the central difference of θσ

and leads to the time dependant uncertainty of Fig. 14. For zero
comb noise and a constant CW laser frequency (C = D = 0),
we have the usual result that the frequency of the heterodyne
beat signal, fV (t), is just the difference between the laser fre-
quency and nearest comb tooth frequency, i.e., (1.1). In the case
that C �= 0 or D �= 0 the last two terms could bias the frequency
measurement.

The T2D/6 term is deterministic and could be corrected in
the data, in principle; however, for our system, the maximum
second-order chirp was D ≤ 2π(100)C∼2π×1017 Hz2 /s, so that
the correction T2D/6 ≤ 10 Hz is insignificant. (Here, and below
we have assumed a 100 Hz sinusoidal frequency modulation
over a 3 THz bandwidth with a maximal chirp of 1.5 PHz/s.)
Note that use of a simple difference between successive samples
for the derivative, rather than (1.3), can lead to a more significant
correction that is linear in chirp, C.

The third-to-last term reflects the interplay of chirp and dis-
persion in the system. For our system, we estimate that less
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than 10 m of single-mode fiber exist from the point that the
pulses are time-bandwidth limited to the point where they com-
bine with the CW laser. This fiber will lead to a GD for the
pulses, given by the term (2π)−1 dθ̃P (f)/df . A constant GD is
no different than the other time delays in the system discussed
in the main body of the text. However, a variation of the GD
with frequency, i.e., GD dispersion, can cause systematic uncer-
tainty. The GD dispersion of the 10 m of fiber causes a variation
of dθ̃P (f)/df ≤ 2πβ2(10m)(1.5THz) ∼ 2ps, with a fiber dis-
persion of β2 ∼ −20 ps2 /km, giving a maximum systematic
uncertainty of (2 ps) C ∼ 2 kHz. While we have focused on the
effect of dispersion on the comb pulse the formalism is identical
for the CW laser. Thus, if the CW light is used in a simultaneous
experiment, and the paths between the two measurements differ
by 10 m of fiber, there would be an equivalent systematic 2 kHz
shift over the frequency ramp.

The final important effect that has not yet been included is
the low-pass filter in the detector response. The low-pass filter
serves two purposes. First, it strongly suppresses the direct de-
tection signal from the comb pulses that occurs at harmonics of
fr . Second, it relaxes the requirements between the synchronicity
of the pulse arrival and the clock signal for the digitizer. How-
ever, its presence introduces dispersion into the measurement
system similar to the fiber dispersion discussed above except
that it acts on the RF frequency fV . The added term to (1.11)
is δfV = (2π)−1(dθ̃F (fV )/dfV )C, where (2π)−1 dθ̃F (f)/df
is just the GD of the filter. Again, any constant GD is sub-
sumed in the overall time delay of the measurement discussed in
Section IV. C, but a variation in the GD, ΔGD, over the 30 MHz
range where we utilize the signal can cause systematic shifts.
The added uncertainty in the measured heterodyne frequency,
and therefore, laser frequency, is δfV = (ΔGD)C. For our fil-
ters, ΔGD is specified at 2.17 ns, giving a frequency error as
large as (2.17 ns)(1.5 PHz/s) = 3 MHz. This is the most sig-
nificant systematic error we have found, rising just above the
point-to-point measurement uncertainty. However, it switches
sign as the heterodyne frequency, fV , crosses zero and should
average out for symmetric handover. A flatter phase response
for the filter could suppress this effect, or, given that both C and
ΔGD can be known quite well, it is probably simplest to remove
the error in post processing.
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