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The Beaucage model is used to analyze small-angle scattering (SAS) data from
fractal and particulate systems. It models the Guinier and Porod regions with a
smooth transition between them and yields a radius of gyration and a Porod
exponent. This model is an approximate form of an earlier polymer fractal
model that has been generalized to cover a wider scope. The practice of allowing
both the Guinier and the Porod scale factors to vary independently during
nonlinear least-squares fits introduces undesired artefacts in the fitting of SAS
data to this model. Such artefacts as well as an error in the original formulation
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1. Introduction

Small-angle scattering (SAS) is a popular characterization
technique at the nanometre length scale. SAS data analysis
consists of standard linear plots (such as the Guinier and
Porod plots) as well as nonlinear least-squares fits to models.
The Guinier plot yields a radius of gyration that characterizes
the size of the scattering particles, while the Porod plot yields
an exponent that suggests a substructural dimensionality from
which the overall particle shape can be guessed. Porod
exponents between 1 and 3 describe mass fractals, while
exponents between 3 and 4 indicate surface fractals. A number
of books have been published in the field (Guinier & Fournet,
1955; Glatter & Kratky, 1982; Feigin & Svergun, 1987; Roe,
2000; Lindner & Zemb, 2002). Many models are available to
describe various molecular architectures. These include
polymer coils and particles of many shapes. Models that
describe non-particulate systems that are characterized by
bicontinuous (or multiphase) structures are also available
(Teubner & Strey, 1987; Chen & Choi, 1997). Uniform density
particles are used to describe multiphase systems, globular
scattering objects, microdomains, colloids, precipitates and so
on.

The Guinier model consists in a linear plot of log[/(Q)]
versus Q°, where Q is the scattering variable and I(Q) is the
scattered intensity for compact objects. The slope is Ré/S,
where R, is the radius of gyration of the scattering objects. A
generalized Guinier plot (Glatter & Kratky, 1982) is used to
obtain the radii of gyration for nonspherical particles such as
cylinders or platelets. For cylinders, a plot of log[QI(Q)]
versus Q gives a slope of Ré /2, where R, is the cross-sectional
radius of gyration (R, = R/2'?, where R is the cylinder
radius) at intermediate Q. The low-Q Guinier plot remains of
the form log[I(Q)] versus Q?, with R, representing the overall
size [R, = (L?/12 + R?/2)'/*, where L is the cylinder length].
For square platelets, there are also two Guinier regions. One is
at intermediate O, for which the Guinier plot changes to

of the model are discussed. This model is compared with other published

log[Q*I(Q)] versus Q. The slope is R2/1, with R, = T/12'/2
given in terms of the platelet thickness 7. The other Guinier
region, at low Q, is the standard log[I(Q)] versus Q® plot,
which yields R, = (L2/6 + T?/12)"/?, where L is the platelet
length. Particles with three orthogonal sizes are characterized
by three Guinier regions. The lowest-Q Guinier region is
always the standard one and yields the overall particle radius
of gyration.

The Porod plot consists of a linear plot of log[I(Q)] versus
log(Q). The slope is the Porod exponent (also referred to as
power law). This exponent points to either mass fractals
(Teixeira, 1988) or surface fractals (Bale & Schmidt, 1984).
Fractals are self-similar structures that appear analogous at
different length scales. A quick Porod plot of reduced SAS
data gives clues as to the nature of the scattering structures.
Some structures display multiple Porod regions at the various
size scales. For example, a 1/Q” behavior at low Q may point to
platelets (for example, crystalline lamellae) or to a network of
rigid rods, while the same 1/Q? behavior at high Q could point
to Gaussian polymer coils.

The SAS scattering intensity is proportional to a single
particle (or single polymer) form factor and to an interparticle
structure factor. Form factors have been modeled for particles
of different shapes. Elongated shapes require an orientational
averaging integration. Modeling of structure factors is more
involved. Interparticle structure factors are usually described
by the Ornstein—Zernike equation in its various closure forms,
while homogeneously mixed polymers are described by the
random-phase approximation. Empirical models help analyze
SAS data without involved modeling effort.

The Beaucage model was introduced some 15 years ago and
was presented as an empirical model to fit SAS data and
obtain a radius of gyration and a Porod exponent. This model
has been used widely in the SAS community. A literature
search using the advanced search feature of the Google search
engine and the keywords ‘Beaucage model’ resulted in over
250 hits. This model is critically analyzed in the present paper
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and compared with other molecular models as well as with a
recent empirical model called the Guinier—Porod model.

2. The polymer fractal model

A model describing polymer chain conformations with
excluded volume has been used as a template for describing
mass fractals. The form factor for this model (Benoit, 1957)
was originally presented in the following integral form:

P(Q) =2 g‘ dx(1 — x) exp[—(Q%a?/6)n>x*"]. (1)

Here v is the excluded volume parameter, which is related to
the Porod exponent d as v = 1/d, a is the polymer chain
statistical segment length, n is the degree of polymerization
and x is the integration variable. This integral was later put
into an analytical form (Hammouda, 1993) as follows:

1 1 1 1
PO = y(g, U) - y(;, U). )

Here, y(x, U) is the incomplete gamma function, which is a
built-in function in computer libraries:

y(x, U) = }/dt exp(—1)rL. 3)
0

The variable U is given in terms of the scattering variable Q as
U=Qan™/6 = Q’R;(2v+1)(2v +2)/6. 4)

The radius of gyration squared has been defined as

2.,2v
) an

A=ty ®

Note that this model describing polymer chains with excluded
volume applies only in the mass fractal range (5/3 <d < 3)
and does not apply to surface fractals (3 <d < 4). It does not
reproduce the rigid-rod limit (d = 1) because it assumes chain
flexibility from the outset, nor does it describe semi-flexible
chains (1 <d <5/3).

The low-Q expansion yields the Guinier form and the high-
O expansion yields the Porod form, which is given by

1 1 1 1
P(Q — o) = Wi F(E) U F(;) 6)

Here I'(x) = y(x, 00) is the gamma function. The asymptotic
limit is dominated by the first term:

P(Q - o0) =~ %F(g)
_d 6> T o
~ (OR,)" [(2 +d2+ 2d)} (5> @

The special case when v = 0.5 (or d = 1/v = 2) corresponds to
Gaussian chains for which the form factor is given by the
familiar Debye function:

2
P(Q) = oR [exp(—Q°R}) — 1+ O°R;]. ®)
g
The form factor given by equation (2) is plotted in Fig. 1 for
specific Porod exponents d.

3. The Beaucage model

Beaucage introduced a model based on the polymer fractal
model. He used the numerical integration form (Benoit, 1957),
although the analytical integral form was available
(Hammouda, 1993). The Beaucage (1995, 1996) model is
characterized by three fitting parameters: a Guinier scaling
factor G, a radius of gyration R, and a Porod exponent d. The
scattering intensity is given by

_ 2R2 C R 3d
1(Q) = Gexp< Q3 g) +@ [erf(%)] ) 9)

Since the Guinier form applies at low Q and the Porod form
applies at high Q, the [erf(QR,/6" P! term provides a
smooth transition between the two regions.

The Porod scaling factor C is related to the Guinier scaling
factor G using the high-Q expansion of the polymer fractal
model as follows:

Gd 6> w2
:R_s[(2+d>(z+2d)] F<5>' (10

The original form [equation (8) given by Beaucage (1996)] was
in error; it was missing the factor {642/[(2 4+ d)(2 + 2d)]}"/
and therefore is correct for Gaussian chains only (d = 2). Here
I'(d/2) is the gamma function. This form comes from the high-
Q expansion of the polymer fractal model [equation (7)
above].
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Figure 1

The polymer fractal model for R, = 100 A and for various Porod
exponents: d = 5/3 for fully swollen chains, d = 2 for ideal Gaussian chains
and d = 3 for collapsed chains. The 1/Q* Porod law limit is also shown,
although it does not apply to the polymer fractal model.

J. Appl. Cryst. (2010). 43, 14741478

1475

Boualem Hammouda -« Analysis of the Beaucage model



research papers

Fig. 2 shows the various terms of the Beaucage model.

In order to correct for the mismatch between the Guinier
and Porod scale factors caused by the aforementioned error, a
fudge factor k was introduced (Beaucage, 1996). This fudge
factor works only partially since it is trying to correct for a
‘vertical’ mismatch through a ‘horizontal’ rescaling.

The corrected Beaucage model is a good approximation to
the exact polymer fractal model, as shown in Fig. 3. Fig. 3
compares these two models as well as the original form of the
Beaucage model with equation (10) missing the square
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The various terms for the Beaucage model for G =1, R, =100 Aandd=3.
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Comparison of the corrected Beaucage model [equations (9) and (10)]
and the polymer fractal model [equation (2)] for G =1, R, = 100 A and
d = 3. These two fall on top of each other. The original Beaucage model
with the square bracket term in equation (10) missing is also included.

bracket factor. Note that the Beaucage model is presented as
an empirical model even though, originally, it was obtained
from the polymer fractal model. After the correction to match
equation (10), the Beaucage model and the polymer fractal
model agree well without any need for a fudge factor. The
small difference in the transition region between the two
models is due to the [erf(QR,/6"*)* term used to provide a
smooth transition.
Letting the Porod scale factor C vary independently yields
an erroneous artefact that shows up as a kink (break in the
slope) in the Porod region. This artefact is obvious in papers
using the Beaucage model in the literature as well as in papers
by Beaucage. For instance, Figs. 11-14 in one of the original
papers (Beaucage, 1995) show the artefact clearly, as does
Fig. 4(b) from a more recent paper (Beaucage & Kulkarni,
2010). In order to demonstrate this artefact, parameters from
Fig. 12 of the original paper (Beaucage, 1995) are used here to
plot Fig. 4. These parameters are G = 100, R, = 87.9 and d =
4.91. Three curves are plotted with various choices for the
Porod scale factor. Curve (a) uses C = 1.9 x 10~° (value used
in the legend of Fig. 12), curve (b) uses C = 1.804 x 10~ [value
corresponding to equation (10) above with the square bracket
term missing] and curve (c) uses C = 7.338 x 1077 [value
corresponding to the full equation (10) above]. All of these
curves show the artefact except for the one using the full

equation (10) of this paper.

4. The Guinier—Porod model

An empirical Guinier—Porod model was recently introduced
(Hammouda, 2010). The scattering intensity is given by the
two contributions

100

G P(Q)

0.1

0.01

0.01

0.001
0.1

, Q (A)
Figure 4
The artefact caused by letting both the Guinier and the Porod scale
factors vary independently is seen in curves (a) and (b). Curve (c), which
corresponds to equation (10) of this paper, is the only curve without the
artefact. Arrows point to the break in slope.

Boualem Hammouda + Analysis of the Beaucage model

1476

J. Appl. Cryst. (2010). 43, 14741478



research papers

Table 1
Comparing fits to the Beaucage and the Guinier—Porod models for 0.5%
P85/d-water at a temperature (7)) of 303 and 323 K.

The 303 K case corresponds to a mass fractal (copolymers in solution), while
the 323 K case corresponds to well formed spherical micelles.

T (K) Model G R, (A) d O range (A7)
303  Beaucage 0287 (3) 53.51(79) 1.65(2)  0.0107-0.385
303 Guinier—Porod 0279 (3) 45.41(49) 1.30(1)  0.0107-0.385
323 Beaucage 767(1)  47.09(5) 839(99) 0.0038-0.075
323 Guinier-Porod 7.55(1)  46.03(9) 3.97(9)  0.0038-0.075

1(Q) = Gexp(=Q’R;/3) for Q<0

11
1(Q)=D/Q" for Q= 0. (v

Imposing the condition that the values of the Guinier and
Porod terms and their slopes (derivatives) be continuous at a
value Q) yields the following relationships:

1 (3d\"*
o=5(3) -

g

(12)
D = Gexp[ iR 0! =Ge ATEAN
=Gex =Gexp|—z)|=) =
P )2 Pl2)\2) =

It should be emphasized that, in order to connect up the two
(Guinier and Porod) functions, two conditions are required.
This ensures smoothness in the horizontal as well as in the
vertical directions at the transition region.

In order to compare the performance of the Beaucage and
the Guinier—Porod models, nonlinear least-squares fits were
performed for small-angle neutron scattering data from 0.5%
Pluronic P85 in deuterated water (d-water) at 303 K, repre-
senting copolymer coils in solution, and at 323 K, where
spherical micelles are formed (Hammouda, 2010). Table 1
compares the results.

Both the Guinier—Porod and the Beaucage models yield
reasonable results for the 0.5% P85/d-water at 303 K. This
corresponds to a polymer mass fractal. For the 323 K case
where well formed spherical micelles are present, the Guinier—
Porod model yields the expected Porod exponent for spherical
micelles, while the corrected Beaucage model yields values of
the Porod exponent that are too high. The polymer fractal
model and its approximate form, the Beaucage model, work
best for Porod exponents in the range 5/3 < d < 3. They do
not do well for Porod exponents higher than 3, such as for
spherical micelles.

5. Comparison of various models

The Beaucage model and the Guinier—-Porod model are
compared with various known form factor models. The
polymer fractal model and its approximate form, the
Beaucage model, are characterized by

CR? 6d> “"w g
< = d[(z T2+ 2d):| F(E)' (13)

Table 2

Comparison of the ratios CRg/G (Beaucage model) and DRg/G
(Guinier-Porod model) with known values obtained from exact form
factor calculations.

Model d=1 d=2 d=3 d=4
Beaucage model 1253 2 4170  10.24
Guinier-Porod model 0.743 1.104 2130 4872
Thin rigid rod 0895 - - -
Gaussian coil - 2 - -
Thin disc - 1 - -
Uniform density sphere - - - 1.62
Randomly oriented cylinder with R=L - - - 1.94
D Rd d/2
£ = exp _4\ (3 : (14)
G 2/\ 2

These are compared in Table 2 for discreet values of d. Known
values of these ratios obtained from the high-Q expansions of
the following form factors are also included:
(a) Thin rigid rod of uniform density and length L (case
with d = 1):
2

oL sin(QL) —

P(Q) = [S“‘(QL/Z)TQL_»; 3.1 _08%

(QL/2) OL ~ OR,’
(15)
The radius of gyration for a thin rod of length L

(R, = L/12') has been used.
(b) Gaussian coil (case with d = 2):

2 OR;»1 2
P(Q) = —— —Q°RH -1+ QR = ——.
(@ =G P QR) ~ 1+ PR =5
(16)
(¢) Thin disc of radius R (also case with d = 2):
2 JI(ZQR):| OR»1 2 1
P(Q) = 1-— — = .17
= oy [ OR ory ~wory

J1(20QR) is the cylindrical Bessel function, and the radius of
gyration for a thin disc of radius R (R, = R/2'?) has been
used.

(d) Uniform density sphere of radius R (case with d = 4):

. 2
3]1(QR)i| Qor>1 9 1 1.62 (18)

OR 2(0R)  (QRY"

j1(OR) is the spherical Bessel function, and the radius of
gyration of a sphere of radius R [R, = (3/5)'*R] has been
used.

(e) Randomly oriented cylinder of radius R and length L
(case with d = 4). The case where R = L is considered for
simplicity in order to estimate the high-Q asymptotic limit:

_! [ [sinQuL/2)] 211[Q(1—u2>”2R]}2
P(Q)_zf an [ ouL/2 “ o0 —1)'"R

P(Q) = [

B L>1 5.7 1.94
G gt = (19)
- . . oLy (QRy)
The Guinier—Porod model is characterized by
J. Appl. Cryst. (2010). 43, 1474-1478 Boualem Hammouda -+ Analysis of the Beaucage model 1477
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The radius of gyration of a cylinder of length L and radius R =
L[R, = (7/12)1/2R] has been used.

The polymer fractal model and its approximate form (the
Beaucage model) perform perfectly well for the Gaussian coil
case (d = 2), while the Guinier—Porod model is closer to the
known exact values for the rigid rod, the disc, the uniform
sphere and the randomly oriented cylinder cases. Neither
model performs well for the last two cases (surface fractals).

6. Summary

The Beaucage model has been widely used to analyze SAS
data. It is the approximate form of an exact polymer fractal
model. For this reason, it works best for mass fractals char-
acterized by Porod exponents between 5/3 and 3. This model
was upgraded to an empirical model status whereby both the
Guinier and the Porod scale factors are allowed to vary
independently. The Guinier and Porod functions must be
linked both horizontally and vertically in the transition region.
The horizontal linking is performed using an error function
transition. By letting both the Guinier and the Porod scale
factors vary independently, the vertical linking was relaxed.
This creates undesired artefacts that show up as kinks in the
fitted curve.

The original idea of the Beaucage model could be useful in
modeling form factors that involve numerical integrations
(over random orientations, for example). This would speed up
the model function numerical calculations during nonlinear
least-squares fits. The Guinier and Porod scale factors,
however, must be related by the correct form obtained from

the exact calculation of the form factor. A few of these forms
are included in Table 2 for specific particle shapes.

The identification of commercial products or search engines
does not imply endorsement by the National Institute of
Standards and Technology, nor does it imply that these are the
best for the purpose. This work is based on activities
supported in part by the National Science Foundation under
agreement No. DMR-0454672. Discussions with David
Mildner are valued.
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