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The Beaucage model is used to analyze small-angle scattering (SAS) data from

fractal and particulate systems. It models the Guinier and Porod regions with a

smooth transition between them and yields a radius of gyration and a Porod

exponent. This model is an approximate form of an earlier polymer fractal

model that has been generalized to cover a wider scope. The practice of allowing

both the Guinier and the Porod scale factors to vary independently during

nonlinear least-squares fits introduces undesired artefacts in the fitting of SAS

data to this model. Such artefacts as well as an error in the original formulation

of the model are discussed. This model is compared with other published

models.

1. Introduction

Small-angle scattering (SAS) is a popular characterization

technique at the nanometre length scale. SAS data analysis

consists of standard linear plots (such as the Guinier and

Porod plots) as well as nonlinear least-squares fits to models.

The Guinier plot yields a radius of gyration that characterizes

the size of the scattering particles, while the Porod plot yields

an exponent that suggests a substructural dimensionality from

which the overall particle shape can be guessed. Porod

exponents between 1 and 3 describe mass fractals, while

exponents between 3 and 4 indicate surface fractals. A number

of books have been published in the field (Guinier & Fournet,

1955; Glatter & Kratky, 1982; Feigin & Svergun, 1987; Roe,

2000; Lindner & Zemb, 2002). Many models are available to

describe various molecular architectures. These include

polymer coils and particles of many shapes. Models that

describe non-particulate systems that are characterized by

bicontinuous (or multiphase) structures are also available

(Teubner & Strey, 1987; Chen & Choi, 1997). Uniform density

particles are used to describe multiphase systems, globular

scattering objects, microdomains, colloids, precipitates and so

on.

The Guinier model consists in a linear plot of log[I(Q)]

versus Q2, where Q is the scattering variable and I(Q) is the

scattered intensity for compact objects. The slope is R2
g=3,

where Rg is the radius of gyration of the scattering objects. A

generalized Guinier plot (Glatter & Kratky, 1982) is used to

obtain the radii of gyration for nonspherical particles such as

cylinders or platelets. For cylinders, a plot of log[QI(Q)]

versus Q2 gives a slope of R2
g=2, where Rg is the cross-sectional

radius of gyration (Rg ¼ R=21=2, where R is the cylinder

radius) at intermediate Q. The low-Q Guinier plot remains of

the form log[I(Q)] versus Q2, with Rg representing the overall

size [Rg ¼ ðL2=12 þ R2=2Þ1=2, where L is the cylinder length].

For square platelets, there are also two Guinier regions. One is

at intermediate Q, for which the Guinier plot changes to

log[Q2I(Q)] versus Q2. The slope is R2
g=1, with Rg ¼ T=121=2

given in terms of the platelet thickness T. The other Guinier

region, at low Q, is the standard log[I(Q)] versus Q2 plot,

which yields Rg ¼ ðL2=6 þ T2=12Þ1=2, where L is the platelet

length. Particles with three orthogonal sizes are characterized

by three Guinier regions. The lowest-Q Guinier region is

always the standard one and yields the overall particle radius

of gyration.

The Porod plot consists of a linear plot of log[I(Q)] versus

log(Q). The slope is the Porod exponent (also referred to as

power law). This exponent points to either mass fractals

(Teixeira, 1988) or surface fractals (Bale & Schmidt, 1984).

Fractals are self-similar structures that appear analogous at

different length scales. A quick Porod plot of reduced SAS

data gives clues as to the nature of the scattering structures.

Some structures display multiple Porod regions at the various

size scales. For example, a 1/Q2 behavior at low Q may point to

platelets (for example, crystalline lamellae) or to a network of

rigid rods, while the same 1/Q2 behavior at high Q could point

to Gaussian polymer coils.

The SAS scattering intensity is proportional to a single

particle (or single polymer) form factor and to an interparticle

structure factor. Form factors have been modeled for particles

of different shapes. Elongated shapes require an orientational

averaging integration. Modeling of structure factors is more

involved. Interparticle structure factors are usually described

by the Ornstein–Zernike equation in its various closure forms,

while homogeneously mixed polymers are described by the

random-phase approximation. Empirical models help analyze

SAS data without involved modeling effort.

The Beaucage model was introduced some 15 years ago and

was presented as an empirical model to fit SAS data and

obtain a radius of gyration and a Porod exponent. This model

has been used widely in the SAS community. A literature

search using the advanced search feature of the Google search

engine and the keywords ‘Beaucage model’ resulted in over

250 hits. This model is critically analyzed in the present paper
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and compared with other molecular models as well as with a

recent empirical model called the Guinier–Porod model.

2. The polymer fractal model

A model describing polymer chain conformations with

excluded volume has been used as a template for describing

mass fractals. The form factor for this model (Benoit, 1957)

was originally presented in the following integral form:

PðQÞ ¼ 2
R1
0

dxð1 � xÞ exp �ðQ2a2=6Þn2�x2�
� �

: ð1Þ

Here � is the excluded volume parameter, which is related to

the Porod exponent d as � = 1/d, a is the polymer chain

statistical segment length, n is the degree of polymerization

and x is the integration variable. This integral was later put

into an analytical form (Hammouda, 1993) as follows:

PðQÞ ¼ 1

�U1=2�
�

1

2�
;U

� �
� 1

�U1=�
�

1

�
;U

� �
: ð2Þ

Here, �(x, U) is the incomplete gamma function, which is a

built-in function in computer libraries:

�ðx;UÞ ¼ RU
0

dt expð�tÞtx�1: ð3Þ

The variable U is given in terms of the scattering variable Q as

U ¼ Q2a2n2�=6 ¼ Q2R2
gð2�þ 1Þð2�þ 2Þ=6: ð4Þ

The radius of gyration squared has been defined as

R2
g ¼

a2n2�

ð2�þ 1Þð2�þ 2Þ : ð5Þ

Note that this model describing polymer chains with excluded

volume applies only in the mass fractal range (5=3 � d � 3)

and does not apply to surface fractals (3< d � 4). It does not

reproduce the rigid-rod limit (d = 1) because it assumes chain

flexibility from the outset, nor does it describe semi-flexible

chains (1< d< 5=3).

The low-Q expansion yields the Guinier form and the high-

Q expansion yields the Porod form, which is given by

PðQ ! 1Þ ¼ 1

�U1=2�
�

1

2�

� �
� 1

�U1=�
�

1

�

� �
: ð6Þ

Here �(x) = �(x, 1) is the gamma function. The asymptotic

limit is dominated by the first term:

PðQ ! 1Þ ’ d

Ud=2
�

d

2

� �

¼ d

QRg

� �d 6d2

ð2 þ dÞð2 þ 2dÞ
� 	d=2

�
d

2

� �
: ð7Þ

The special case when � = 0.5 (or d = 1/� = 2) corresponds to

Gaussian chains for which the form factor is given by the

familiar Debye function:

PðQÞ ¼ 2

Q4R4
g

expð�Q2R2
gÞ � 1 þQ2R2

g

� �
: ð8Þ

The form factor given by equation (2) is plotted in Fig. 1 for

specific Porod exponents d.

3. The Beaucage model

Beaucage introduced a model based on the polymer fractal

model. He used the numerical integration form (Benoit, 1957),

although the analytical integral form was available

(Hammouda, 1993). The Beaucage (1995, 1996) model is

characterized by three fitting parameters: a Guinier scaling

factor G, a radius of gyration Rg and a Porod exponent d. The

scattering intensity is given by

IðQÞ ¼ G exp
�Q2R2

g

3

� �
þ C

Qd
erf

QRg

61=2

� �� 	3d

: ð9Þ

Since the Guinier form applies at low Q and the Porod form

applies at high Q, the ½erfðQRg=61=2Þ�3d term provides a

smooth transition between the two regions.

The Porod scaling factor C is related to the Guinier scaling

factor G using the high-Q expansion of the polymer fractal

model as follows:

C ¼ Gd

Rd
g

6d2

ð2 þ dÞð2 þ 2dÞ
� 	d=2

�
d

2

� �
: ð10Þ

The original form [equation (8) given by Beaucage (1996)] was

in error; it was missing the factor f6d2=½ð2 þ dÞð2 þ 2dÞ�gd=2

and therefore is correct for Gaussian chains only (d = 2). Here

�(d/2) is the gamma function. This form comes from the high-

Q expansion of the polymer fractal model [equation (7)

above].
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Figure 1
The polymer fractal model for Rg = 100 Å and for various Porod
exponents: d = 5/3 for fully swollen chains, d = 2 for ideal Gaussian chains
and d = 3 for collapsed chains. The 1/Q4 Porod law limit is also shown,
although it does not apply to the polymer fractal model.
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Fig. 2 shows the various terms of the Beaucage model.

In order to correct for the mismatch between the Guinier

and Porod scale factors caused by the aforementioned error, a

fudge factor k was introduced (Beaucage, 1996). This fudge

factor works only partially since it is trying to correct for a

‘vertical’ mismatch through a ‘horizontal’ rescaling.

The corrected Beaucage model is a good approximation to

the exact polymer fractal model, as shown in Fig. 3. Fig. 3

compares these two models as well as the original form of the

Beaucage model with equation (10) missing the square

bracket factor. Note that the Beaucage model is presented as

an empirical model even though, originally, it was obtained

from the polymer fractal model. After the correction to match

equation (10), the Beaucage model and the polymer fractal

model agree well without any need for a fudge factor. The

small difference in the transition region between the two

models is due to the ½erfðQRg=61=2Þ�3d term used to provide a

smooth transition.

Letting the Porod scale factor C vary independently yields

an erroneous artefact that shows up as a kink (break in the

slope) in the Porod region. This artefact is obvious in papers

using the Beaucage model in the literature as well as in papers

by Beaucage. For instance, Figs. 11–14 in one of the original

papers (Beaucage, 1995) show the artefact clearly, as does

Fig. 4(b) from a more recent paper (Beaucage & Kulkarni,

2010). In order to demonstrate this artefact, parameters from

Fig. 12 of the original paper (Beaucage, 1995) are used here to

plot Fig. 4. These parameters are G = 100, Rg = 87.9 and d =

4.91. Three curves are plotted with various choices for the

Porod scale factor. Curve (a) uses C = 1.9 � 10�8 (value used

in the legend of Fig. 12), curve (b) uses C = 1.804 � 10�7 [value

corresponding to equation (10) above with the square bracket

term missing] and curve (c) uses C = 7.338 � 10�7 [value

corresponding to the full equation (10) above]. All of these

curves show the artefact except for the one using the full

equation (10) of this paper.

4. The Guinier–Porod model

An empirical Guinier–Porod model was recently introduced

(Hammouda, 2010). The scattering intensity is given by the

two contributions
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Figure 3
Comparison of the corrected Beaucage model [equations (9) and (10)]
and the polymer fractal model [equation (2)] for G = 1, Rg = 100 Å and
d = 3. These two fall on top of each other. The original Beaucage model
with the square bracket term in equation (10) missing is also included.

Figure 2
The various terms for the Beaucage model for G = 1, Rg = 100 Å and d = 3.

Figure 4
The artefact caused by letting both the Guinier and the Porod scale
factors vary independently is seen in curves (a) and (b). Curve (c), which
corresponds to equation (10) of this paper, is the only curve without the
artefact. Arrows point to the break in slope.
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IðQÞ ¼ G exp �Q2R2
g=3

� �
for Q � Q1;

IðQÞ ¼ D=Qd for Q � Q1:
ð11Þ

Imposing the condition that the values of the Guinier and

Porod terms and their slopes (derivatives) be continuous at a

value Q1 yields the following relationships:

Q1 ¼
1

Rg

3d

2

� �1=2

;

D ¼ G exp
�Q2

1R
2
g

3

� �
Qd

1 ¼ G exp � d

2

� �
3d

2

� �d=2
1

Rd
g

:

ð12Þ

It should be emphasized that, in order to connect up the two

(Guinier and Porod) functions, two conditions are required.

This ensures smoothness in the horizontal as well as in the

vertical directions at the transition region.

In order to compare the performance of the Beaucage and

the Guinier–Porod models, nonlinear least-squares fits were

performed for small-angle neutron scattering data from 0.5%

Pluronic P85 in deuterated water (d-water) at 303 K, repre-

senting copolymer coils in solution, and at 323 K, where

spherical micelles are formed (Hammouda, 2010). Table 1

compares the results.

Both the Guinier–Porod and the Beaucage models yield

reasonable results for the 0.5% P85/d-water at 303 K. This

corresponds to a polymer mass fractal. For the 323 K case

where well formed spherical micelles are present, the Guinier–

Porod model yields the expected Porod exponent for spherical

micelles, while the corrected Beaucage model yields values of

the Porod exponent that are too high. The polymer fractal

model and its approximate form, the Beaucage model, work

best for Porod exponents in the range 5=3 � d � 3. They do

not do well for Porod exponents higher than 3, such as for

spherical micelles.

5. Comparison of various models

The Beaucage model and the Guinier–Porod model are

compared with various known form factor models. The

polymer fractal model and its approximate form, the

Beaucage model, are characterized by

CRd
g

G
¼ d

6d2

ð2 þ dÞð2 þ 2dÞ
� 	d=2

�
d

2

� �
: ð13Þ

The Guinier–Porod model is characterized by

DRd
g

G
¼ exp � d

2

� �
3d

2

� �d=2

: ð14Þ

These are compared in Table 2 for discreet values of d. Known

values of these ratios obtained from the high-Q expansions of

the following form factors are also included:

(a) Thin rigid rod of uniform density and length L (case

with d = 1):

PðQÞ ¼ 2

QL
sinðQLÞ � sin QL=2ð Þ

QL=2ð Þ
� 	2

�!QL�1 3:1

QL
¼ 0:895

QRg

:

ð15Þ
The radius of gyration for a thin rod of length L

(Rg ¼ L=121=2) has been used.

(b) Gaussian coil (case with d = 2):

PðQÞ ¼ 2

Q4R4
g

expð�Q2R2
gÞ � 1 þQ2R2

g

� � �!QRg�1 2

ðQRgÞ2
:

ð16Þ

(c) Thin disc of radius R (also case with d = 2):

PðQÞ ¼ 2

ðQRÞ2
1 � J1ð2QRÞ

QR

� 	
�!QR�1 2

ðQRÞ2
¼ 1

ðQRgÞ2
: ð17Þ

J1(2QR) is the cylindrical Bessel function, and the radius of

gyration for a thin disc of radius R (Rg ¼ R=21=2) has been

used.

(d) Uniform density sphere of radius R (case with d = 4):

PðQÞ ¼ 3j1ðQRÞ
QR

� 	2

�!QR�1 9

2

1

ðQRÞ4
¼ 1:62

ðQRgÞ4
: ð18Þ

j1(QR) is the spherical Bessel function, and the radius of

gyration of a sphere of radius R [Rg ¼ ð3=5Þ1=2
R] has been

used.

(e) Randomly oriented cylinder of radius R and length L

(case with d = 4). The case where R = L is considered for

simplicity in order to estimate the high-Q asymptotic limit:

PðQÞ ¼ 1

2

Z1

�1

d�
sinðQ�L=2Þ
Q�L=2

� 	2
2J1½Qð1 � �2Þ1=2R�
Qð1 � �2Þ1=2

R


 �2

�!QL�1 5:7

ðQLÞ4 ¼
1:94

ðQRgÞ4
: ð19Þ
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Table 1
Comparing fits to the Beaucage and the Guinier–Porod models for 0.5%
P85/d-water at a temperature (T) of 303 and 323 K.

The 303 K case corresponds to a mass fractal (copolymers in solution), while
the 323 K case corresponds to well formed spherical micelles.

T (K) Model G Rg (Å) d Q range (Å�1)

303 Beaucage 0.287 (3) 53.51 (79) 1.65 (2) 0.0107–0.385
303 Guinier–Porod 0.279 (3) 45.41 (49) 1.30 (1) 0.0107–0.385
323 Beaucage 7.67 (1) 47.09 (5) 8.39 (99) 0.0038–0.075
323 Guinier–Porod 7.55 (1) 46.03 (9) 3.97 (9) 0.0038–0.075

Table 2
Comparison of the ratios CRd

g=G (Beaucage model) and DRd
g=G

(Guinier–Porod model) with known values obtained from exact form
factor calculations.

Model d = 1 d = 2 d = 3 d = 4

Beaucage model 1.253 2 4.170 10.24
Guinier–Porod model 0.743 1.104 2.130 4.872
Thin rigid rod 0.895 – – –
Gaussian coil – 2 – –
Thin disc – 1 – –
Uniform density sphere – – – 1.62
Randomly oriented cylinder with R = L – – – 1.94
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The radius of gyration of a cylinder of length L and radius R =

L [Rg ¼ ð7=12Þ1=2R] has been used.

The polymer fractal model and its approximate form (the

Beaucage model) perform perfectly well for the Gaussian coil

case (d = 2), while the Guinier–Porod model is closer to the

known exact values for the rigid rod, the disc, the uniform

sphere and the randomly oriented cylinder cases. Neither

model performs well for the last two cases (surface fractals).

6. Summary

The Beaucage model has been widely used to analyze SAS

data. It is the approximate form of an exact polymer fractal

model. For this reason, it works best for mass fractals char-

acterized by Porod exponents between 5/3 and 3. This model

was upgraded to an empirical model status whereby both the

Guinier and the Porod scale factors are allowed to vary

independently. The Guinier and Porod functions must be

linked both horizontally and vertically in the transition region.

The horizontal linking is performed using an error function

transition. By letting both the Guinier and the Porod scale

factors vary independently, the vertical linking was relaxed.

This creates undesired artefacts that show up as kinks in the

fitted curve.

The original idea of the Beaucage model could be useful in

modeling form factors that involve numerical integrations

(over random orientations, for example). This would speed up

the model function numerical calculations during nonlinear

least-squares fits. The Guinier and Porod scale factors,

however, must be related by the correct form obtained from

the exact calculation of the form factor. A few of these forms

are included in Table 2 for specific particle shapes.
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