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Contact resonance AFM characterization techniques rely on the dynamics of the cantilever as it

vibrates while in contact with the sample. In this article, the dependence of the quality factor of the

vibration modes on the sample properties is shown to be a complex combination of beam and sample

properties as well as the applied static tip force. Here the tip-sample interaction is represented as a

linear spring and viscous dashpot as a model for sample (or contact) stiffness and damping. It is

shown that the quality factor alone cannot be used to infer the damping directly. Experimental results

for polystyrene and polypropylene are found to be in good agreement with predictions from the

model developed. These results form the basis for mapping viscoelastic properties with nanoscale

resolution. VC 2011 American Institute of Physics. [doi:10.1063/1.3592966]

I. INTRODUCTION

Although the atomic force microscope (AFM)1 was

originally developed for topography imaging, it has more

recently been exploited for characterization of mechanical

properties. Impressive quantitative and numerous qualitative

results have been reported with various modifications of

the basic AFM system.2–9 One such modification, contact

resonance force microscopy (CR-FM)10–12 has become an

increasingly important technique for characterizing mechani-

cal properties of materials at submicrometer scales. CR-FM

methods use the resonant modes of the AFM cantilever in

order to evaluate near-surface mechanical properties.2,3,5

The initial CR-FM work used the resonant frequencies alone,

without consideration of the complete spectral response (i.e.,
peak width), in order to quantify local elastic properties.

Recently,13 the complete resonance was fit in order to quan-

tify the viscoelastic response of the material. That work

introduced the possibility of quantitative mapping of storage

and loss moduli with AFM spatial resolution. The connection

between the material storage and loss moduli and the reso-

nant frequency and the peak width is often used in dynamic

nanoindentation work to quantify viscoelastic properties.14,15

However, the dynamical system of the instrument is much

simpler for nanoindentation because it is often designed to

possess only one degree of freedom. Quantitative mapping

of viscoelastic properties by AFM is still a challenge because

the properties of the sample are convolved with the dynamics

of the AFM cantilever beam.3,13,16,17 Therefore quantitative

mapping of the viscoelastic properties of the sample is

only possible if the vibrational dynamics of the cantilever-

tip-sample combination are well understood.

In this article, we highlight the importance of the canti-

lever beam dynamics with respect to extraction of the visco-

elastic properties of a sample. The quality factor Q for the

contact modes of the beam is not proportional to the sample

damping and must be determined with respect to its relation

with the complex wave numbers of the cantilever. This theo-

retical approach leads to a method for mapping simultane-

ously the storage and loss moduli of a sample with CR-FM if

the contact resonance and Q values can be simultaneously

measured as the tip scans across the sample surface. Such

measurements are now possible with a variety of meth-

ods16,18,19 similar to those for imaging elastic properties

alone.20

II. THEORY

An AFM cantilever beam (with modulus E, density q
cross-sectional area A, bending moment of inertia I, length

L) in contact with a viscoelastic surface is modeled as shown

in Fig. 1 where q(x, t) is the displacement of the point x at

time t. For simplicity, the tip-sample interaction is modeled

as a Kelvin–Voigt element, which is assumed to represent

the response of the material alone (rather than the contact).

More complex tip-sample interaction models may be needed

for specific applications, but this simplified case allows our

main points to be clearly made with respect to a large class

of materials. In the case of a harmonic displacement, the

complex force at the position of the tip is given by

Pcomplex¼ (kþ ixc)q(L1, t), where L1 is the position of the

tip from the clamped end, k is the real part and xc is the

imaginary part of the contact stiffness. The flexural motion

of the cantilever is often modeled with the Euler–Bernoulli

beam equation for which the solution in relation to specific

CR-FM applications can be found elsewhere.3,13,17 Here we

focus on the response of the beam to a harmonic force exci-

tation (magnitude FD; frequency x) applied at the tip. The

displacement of the beam can be expressed as a modal

expansion of the form
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q x; tð Þ¼FDeixt

mb

X1
n¼1

Yn L1ð ÞYn xð Þ
Nc4

n�x2þ ixv
� � ðn¼ 1;2;3…1Þ: (1)

Here, n are the mode numbers, mb¼ qAL is mass of the

beam, N¼EI/mbL3 and v ¼ v=qA are dimensionless beam

constants (where v represents the assumed viscous damping

in the beam), and cn¼ knL are the normalized wavenumbers.

The mode shapes (spatial eigenfunctions) are defined in gen-

eral form as. YnðxÞ ¼ ½sinðknLÞ � sinh knLð Þf �= cos knLð Þ½
þ cosh knLð Þ�g sin knxð Þ� sinh knxð Þ½ �þ cos knxð Þ� cosh knxð Þ½ �
with the shape determined by the wavenumber kn. The final

aspect of the beam model arises when the boundary condi-

tions (at x¼ 0, L) and continuity conditions (at x¼ L1) are

enforced. These operations result in the characteristic equa-

tion that governs the wavenumbers. For the system shown in

Fig. 1, this equation reduces to

2

3
knL1ð Þ3 1þ cos knL cosh knL½ �

¼ aþ ib knL1ð Þ2
� �

1þ cos knL
0
cosh knL

0
� �h

� sinh knL1 cos knL1 � sin knL1 cosh knL1ð Þ

þ 1� cos knL1 cosh knL1ð Þ sin knL
0
cosh knL

0
�

� cos knL
0
sinh knL

0 Þ
i
; (2)

where a¼ k/kc is the dimensionless stiffness and

b ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1= 9EIqAð Þ
p

is the dimensionless damping, both of

which are attributed here to the sample (although it is recog-

nized that stiffness and damping may arise in the contact

itself due to effects such as adhesion).21,22 Equations (1) and

(2) form the basis for the discussion that follows. In particu-

lar, it should be noted that the sample damping b does not

appear directly in the beam response, Eq. (1).

To understand the relation between sample damping and

the value of Q for a given mode, we first assume that the

response of the cantilever is near one of the resonances, x �
xn, such that the nth-mode behavior dominates. The other

modes of the cantilever that are off resonance will not be sig-

nificantly excited and thus can be neglected. The response at

the position of the laser (x¼ x0) is then

q x0; tð Þ ¼ Aneixt 1

Nc4
n � x2 þ ixv

� �
; (3)

where the modal amplitude An¼FDYn(L1)Yn(x0)/mb depends

on the mode shape at the positions of the tip and laser. Equa-

tion (3) clearly has the typical damped Lorentzian form as

expected. Next, the relation between the modal frequency

and damping is found through the wavenumber. The dimen-

sionless complex wavenumbers are defined such that

cn ¼ an þ ibn, where an and bn are real constants. This form

is substituted into Eq. (3) and rearranged, taking in consider-

ation that bn � an, for the case of small damping. Equation

(3) then becomes

q x0; tð Þ � Aneixt

Na4
n � x2

	 

þ i xvþ 4Na3

nbn

	 
 : (4)

The resonant frequency of the nth mode is determined from

the real part of the complex wavenumber an of that particular

mode and the beam damping is increased from v (for the free

beam) by an amount 4Na3
nbn=xn (note the dependence on

an). At this stage, it is convenient to define the dimensionless

frequency response function, G(ix) as

G ixð Þ ¼ 1

1� x2=x2
n

	 

þ i xvþ 4x2

nbn=an

	 

=x2

n

; (5)

where x2
n ¼ Na4

n is the natural frequency. The quality factor

Q is defined as the maximum of the magnitude of Eq. (5),

G ixð Þj jmax. For small damping, this peak occurs when x �
xn such that Q for the nth mode is written as

Qn ¼ G ixð Þj jmax¼ G ixð Þj jx¼xn
¼ xnan

anvþ 4xnbnð Þ : (6)

Thus we see that for a given mode, Q�1 can be decomposed

into two parts:

Qnð Þ�1¼ Qfree
n

	 
�1þ Qsample
n

	 
�1
;

where Qfree
n

	 
�1¼ v=xn is associated with the damping of the

cantilever alone and Qsample
n

	 
�1¼ 4 bn/an quantifies the

damping from the sample. Although such a decomposition

may be expected, the form for Qsample
n

	 
�1
is not intuitive

because it is related directly to the wavenumber rather than

directly to the sample damping. This result is a consequence

of the boundary value problem solved—the damping of a

specific mode arises from a local interaction that depends on

the amplitude of the eigenfunction (mode shape) at the tip

position. Thus, the modal damping is a complex convolution

between the beam response and the damping at the tip. Most

importantly, it should be emphasized that for a given mode,

the quality factor Q alone cannot be used to infer the sample
damping directly. Thus the sample damping b must be found

by means of a two-step process. First, the measured values

of xn and Qn for a given mode are used to determine the

components of the complex wave number an and bn. Then

the characteristic equation, Eq. (2), is used to determine the

stiffness a and damping b. Results are now presented to

highlight trends in quality factor as a function of sample

properties. Although both xn and Qn are functions of both a
and b (3D surfaces), the results shown here are restricted to

2D parametric results for Qsample
n only.

FIG. 1. Mechanical model of an AFM cantilever tip in contact with a visco-

elastic surface. The interaction at the AFM tip is approximated by a linear

spring-dashpot system that represents the viscoelastic response of the sample.
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The curves shown in Fig. 2 reveal the dependence of

Qsample
n on dimensionless stiffness a as predicted by our

model for several values of dimensionless damping b for the

first, second, and third modes (note the log-log scale). Sev-

eral trends in the theoretical curves should be noted. First, it

is clear that the relationship between modal Qsample
n and sam-

ple damping b is complicated by a dependence on the

applied load. Although low values of a (i.e., small load rela-

tive to sample stiffness) give a region in which the value of

Qsample
n is nearly constant, Qsample

n is, in general, not propor-

tional to b. In fact, most experiments are operated in the

region for which these curves are not horizontal (with a in

the range of 50-100). Close examination of results for small

a (e.g., mode 3) reveals that the quality factor decreases

slightly as a increases, a result that is counterintuitive. Also

the modal Qsample
n for all values of b converge for large a

(large load relative to sample stiffness). Such a trend agrees

with experimental observations3 in which resonances narrow

with increasing load on a given sample. These results are

shown in a slightly different format in Fig. 3, in which

Qsample
n is plotted versus b for constant values of a (note the

log-log scale). In this case, it is very apparent that Qsample
n is

not proportional to b for any region of constant a. Figures 2

and 3 also highlight the dependence of the results on mode

number. Such dependence is important in order to optimize

measurements. Choosing an appropriate mode can greatly

enhance image contrast and measurement sensitivity.3,23

III. EXPERIMENTS

Experimental results are now presented to confirm the

validity of the model. CR-FM measurement methods have

been described in detail elsewhere.12 Spectra (cantilever am-

plitude versus frequency) are acquired for the cantilever in

free space and with the tip in stationary contact with two

polymers: polystyrene (PS) and polypropylene (PP). Rectan-

gular, single-crystal silicon cantilevers are used with nominal

length L¼ 225 lm, mean width w¼ 30 lm, thickness b¼ 3

lm, and spring constant kc¼ 2.8 N/m. The frequency of the

first flexural mode in free space is approximately 66 kHz for

the cantilevers used (experimental data for the free resonan-

ces are shown in Table I). Contact-resonance spectra are

obtained for both samples at several different values of

applied load between approximately 100 nN and 1 lN.

Measurements are made with the second and third flexural

eigenmodes of the cantilever. Contact resonance spectra are

acquired by first bringing the cantilever tip into contact with

the sample at the specified deflection, then performing the

frequency sweep and recording the photodiode voltage, and

finally retracting the tip. Acquisition of each spectrum is per-

formed in less than 2 s. In this way, the effect of creep is

minimized. Example spectra for mode 2 on PS are shown in

Fig. 4 for four different load levels (approximately,

140�224 nN). These results show that Qsample
n changes for

FIG. 2. Dependence of sample quality factor as a function of dimensionless

sample stiffness a for various values of dimensionless sample damping b.

Results are shown for the first three modes.

FIG. 3. Dependence of sample quality factor as a function of dimensionless

contact damping b for various values of dimensionless sample stiffness a.

Results are shown for the first three modes.

TABLE I. Example results for free vibrations of the cantilevers used for the

experiments.

Sample mode 2 mode 3

f free
2 (kHz) Qfree

2 N (s�2) v (s�1) f free
3 (kHz) Qfree

3 N (s�2) v (s�1)

PS 424 470 14.6(10)9 5,680 1,190 700 14.8(10)9 10,700

PP 415 378 14.0(10)9 6,890 1,170 626 14.1(10)9 11,700
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different applied loads although the sample damping is not

expected to change over such a small range of frequency.

To analyze the resonances measured, the following pro-

cedure is followed. First, the beam properties are determined

from the free resonances. The magnitude of Eq. (5) is fit for

values of xn and v with a nonlinear least-squares approach

and the known wavenumbers for free vibrations.13 Contact

resonance amplitudes for mode n and mode nþ 1 are used to

determine the tip position.3 For each mode, the wavenumber

values are obtained, and the characteristic equation is solved

for a fixed value wavenumber as the tip position is varied.

The plot of a as a function of the tip position L1/L is gener-

ated for the two modes and their crossing point is taken as

the tip position. Finally, Eq. (5), with known beam proper-

ties, is used to fit the contact amplitude spectra to determine

the wavenumbers (with real part a and imaginary part b).

These values are then used in Eq. (2) to find the values of a
and b. Results from samples of polypropylene (PP) and poly-

styrene (PS) samples are shown in Fig. 5 for the second and

third modes (the first mode changes little for the range of a
and b for these samples). Example results are also given in

Table II for several data points. Although these results show

only Q, note that both xn and Qn are used to determine a and

b for a given mode. The ability of the model to extract sam-

ple damping is clear from Fig. 5. The Q value changes for

the different values of a, but all results can be fit with a sin-

gle value of b. Finally, it can be observed that x2b2 � x3b3

for both PP and PS, a result that suggests a frequency de-

pendence in the material damping.

IV. SUMMARY

In this article, the relationship between the Q value and

the sample damping has been discussed with respect to con-

tact resonance force microscopy (CR-FM) measurements. It

has been shown that Q and damping are related through the

dynamics of the AFM beam. The entire beam response must

be considered when interpreting resonances obtained from

CR-FM. Thus, Q alone cannot be used to deduce sample

damping directly. The model presented should prove useful

for the development of appropriate tools for quantitative

FIG. 4. (Color online) Example contact resonances for mode 2 on a sample

of polystyrene. The measurements are made for different values of sample

offset which corresponds to a different applied static load (ranging from

140-224 nN). Although sample damping is constant, the Q factor decreases

with increasing tip load.

FIG. 5. (Color online) Predicted dependence of quality factor Q for the (a)

second and (b) third modes as a function of sample contact stiffness for vari-

ous values of sample damping b. It is important to note that Q changes with

applied load (which changes contact stiffness) even along curves of constant

sample damping. The symbols denote experimental results for polypropyl-

ene (PP) and polystyrene (PS).

TABLE II. Example results for some of the data points shown in Figure 5

for polystyrene and polypropylene.

Sample mode 2 mode 3

f sample
2 (kHz) Qsample

2 a b f sample
3 (kHz) Qsample

3 a b

698 32.1 56.9 0.0875 1290 103 56.1 0.0425

PS 753 50.8 76.7 0.0727 1340 101 80.4 0.0400

828 82.4 114 0.0740 1390 100 104 0.0390

808 35.2 110 0.164 1360 38.8 107 0.111

PP 854 35.6 146 0.259 1430 30.4 141 0.145

857 36.8 164 0.312 1470 33.8 160 0.134

The values of frequency and Q are measured from the experiments; this

allows predictions for a and b to be made from the model described (both

are dimensionless quantities for stiffness and damping relative to the free

response).
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mapping of the viscoelastic properties of polymeric and

biological samples.
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