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Experimental and theoretical studies of atomic clusters have proven to be a challenging research 

theme, but also one of great practical importance in developing new technologies [1 and 

references therein]. The physical and chemical properties of atomic clusters lie between the 

properties of molecular systems and solids and are often unique. This article describes a number 

of theoretical methodologies currently applied to study small atomic clusters. Several current 

methods for optimizing cluster geometries, such as genetic algorithm, simulated annealing and 

the big bang method are described and illustrated. We discuss the theoretical tools used in 

cluster studies to describe the chemical bonding and to predict chemical reactivity. In particular, 

we emphasize the use of the Electron Localization Function (ELF) and the Fukui function for 

these purposes. We also include a brief discussion of recent reports of unusual physical 

properties of metallic clusters and the application of Density Functional Theory methods to shed 

light on the physics of these phenomena. Of special interest is magnetism observed in clusters 

and films of gold, a typically diamagnetic metal. 
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1.  Introduction 

 

In recent times, there have been many investigations that lie at the border between physics and 

chemistry. It is not new to these sciences; it has happened in the past with many other 

disciplines, such as the kinetic theory of gases, low temperature studies, theory of solutions, the 

study of physical properties of compounds, molecular structure studies [2, and references 

therein]. There is invariably a great deal of work that must be done before disciplines at the 

frontier of two sciences become an integral part of one another. The experimental and theoretical 

study of atomic clusters is a modern discipline that lies between physics and chemistry. It is a 

discipline in the making; simply finding an unambiguous definition of atomic clusters is a difficult 

task. 

 

Most researchers ‘define’ a cluster similar to the definition given by Connerade et al. [3], “a group 

of atoms (structural sub-units) bound together by interatomic forces is called a cluster.  There is 

no qualitative distinction between small clusters and molecules, except perhaps that the binding 

forces must be such as to permit the molecule (system) to grow much larger by stacking more 

atoms or molecules (sub-units) of the same type if the system is to be called a cluster.” It is worth 

mentioning that from the chemist’s perspective, any arrangement of atoms without a covalent 

bond should not be considered a molecule. A typical covalent bond implies binding energies 

greater than 15 kcal/mol and bond distances smaller than 2.0 Å.  In fact, the nature of chemical 

bonding in clusters can vary strongly. For instance, magnesium dimer is a van der Waals system, 

as are Mg3 and Mg4. Magnesium clusters with more than ten atoms are more covalent in nature 

and the largest clusters at some point should experience a transition to metallic bonding 

characteristic of a solid. In reality, the binding forces in atomic clusters may be metallic, covalent, 

ionic, hydrogen-bonded or van der Waals in character. 
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The structural and compositional diversity of clusters is huge. All the units (components) of a 

cluster are not necessarily atoms or monatomic ions. For example, a cluster may be an 

arrangement of a metal core with one or several atoms surrounded by molecules, so-called 

ligands, or may be exclusively formed by molecules. It should be noted that ligands play a 

stabilizing role in chemically synthesized metal clusters and consequently ligands substantially 

modify the physical and chemical properties of the clusters. Throughout this article we shall refer 

to bare clusters (atomic clusters) with a single component, unless otherwise stated. The 

properties of the atomic clusters can vary from atomic to bulk properties, but are also often 

unique depending on their size and elemental composition. Many clusters with sizes in the range 

of nanoparticles, between 1 and 100 nm, and thin films have shown unexpected properties and 

have found use in areas such as catalysis and magnetic storage [1, 4, 5].  

 

The presence of dangling bonds (unsatisfied valences) on the surface makes clusters chemically 

very active. In general, clusters may split or combine with other particles more rapidly than normal 

molecules. This means that they are much more reactive, and therefore, more difficult to stabilize 

for study in the laboratory with conventional methods. Hence, most experimental measurements 

are carried out in the gas phase at low pressures and require sophisticated instrumentation. 

Experimental difficulties are one of the main reasons that theoretical work on clusters is so 

valuable. As an added benefit, research in this field has united chemists and physicists, both 

experimental and theoretical, to study a huge variety of phenomena in a very detailed and 

synergistic manner. One the first successful attempts to rationalize an experimental observation 

of cluster phenomena was the explanation of the existence of magic numbers in the abundance 

spectrum of alkali metal clusters [6], which was concurrently explained by the very simple 

theoretical jellium model [7, 8]. Magic numbers arise as a consequence of filling molecular 

orbitals to form a closed shell species like the atomic noble gases, giving them extra stabilization 

energy with a large HOMO-LUMO gap. However, it was also realized early on that to explain the 

variation of most of the properties of a given cluster with respect to the number of atoms, it is 

necessary to use theoretical models that take into account the quantum nature of the electronic 
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structure [9]. Fortunately, around the same time Density Functional Theory (DFT) emerged as a 

robust and efficient methodology to perform calculations of the electronic structure of atoms, 

molecules and clusters of moderate size [10-11]. 

 

We briefly discuss some key steps that most researchers perform in conducting theoretical 

studies of atomic clusters. This article does not provide a systematic study (or review) of this 

topic, but a short description of our own and related research. It is set out in five sections, 

beginning with this introduction. In the second section, we use DFT calculations to describe 

clusters as entities that lie between atoms and solids with unique properties depending on their 

size, chemical nature and symmetry. The third section describes several methods of finding 

different stable isomers of a given cluster. There are various stochastic methodologies and 

evolutionary algorithms currently used for this task; we shall discuss the genetic algorithm, 

simulated annealing and the so-called “big bang” methods. The chemical bonding and reactivity 

of clusters are discussed in section 4. We present the electron localization function (ELF) as a 

very robust tool to understand chemical bonding in clusters and the Fukui function as an effective 

means of predicting their chemical reactivity. Finally, in section 5 we discuss some interesting 

properties of clusters such as the magnetic moment observed in clusters and surfaces of gold, a 

typically diamagnetic metal, from a theoretical point of view. 
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2.  Clusters: Between Atoms and Bulk 

 

Recently, the study – both experimental and theoretical – of the transition from atomic and 

molecular clusters to bulk solids has become accessible for almost any type of material. Atomic 

clusters represent an intermediate state between molecules and bulk solids and are very useful 

as models of nanoparticles, surfaces or solids to study phenomena such as physical adsorption, 

chemisorption, plasmon excitations and magnetism. However, this modeling might be incomplete 

or even incorrect due to the fact that the electronic properties of clusters change dramatically with 

size and frequently experience many transitions such as metal-insulator, color absorption and 

collective excitations [3, and references therein]. The fact that the chemical and physical 

properties of clusters do not change monotonically with their sizes complicates the exploration of 

trends and applications in this area. Most cluster properties show great fluctuations and very 

irregular dependence on size. Even so, the mean nearest-neighbour coordination numbers vary 

with the cluster sizes, thus the cluster properties shift gradually from surface-dominated to 

volume-dominated. 

 

Estimating the number of atoms that are needed in a cluster to mimic a nanoparticle, an infinite 

surface or the bulk solid is an important part of modeling atomic clusters. However, other factors 

need to be considered for proper modeling. Frequently it is necessary to impose additional 

constraints on the models to avoid unphysical situations. For example, in theoretical calculations 

where the cluster is intended to represent the bulk or a bulk region, it should be subjected to 

crystal symmetry constraints [12]. The crystal symmetry determines the symmetry of the band 

structure due to the commutation between symmetry operations and the crystal Hamiltonian [13]. 

Fully optimized cluster geometries frequently deviate from the bulk symmetry yielding substantial 

differences in most of the calculated cluster properties. Also, many small clusters experience 

spontaneous symmetry-breaking events, such as Pierls’ distortions (Jahn-Teller effect), that must 

be considered [14]. In magnetic systems, certain restrictions on the spin symmetry may be 
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necessary [15]. Although the complete theoretical description of a quantum many-body problem, 

even of moderate size (less than one hundred atoms), is very difficult, DFT is able to deliver 

reliable results in many cluster problems. DFT is possibly the only ab initio correlated method that 

can be implemented and used with reasonable computational cost for describing the electronic 

structure of molecular systems and solids. 

 

In Figure 1 we show the binding energy per atom (BE) dependence on the cluster size (N) of a 

representative metal (lithium) and a transition metal (Cu). Binding energies are calculated using 

€ 

BE =
E cluster[ ] − N E atom[ ]

N
 (1) 

where BE, E and N stand for binding energy, total energy and number of atoms, respectively. The 

all-electron calculations were done at the BP86/6-31G(d) level of theory, which implies use of a 

DFT electronic structure method with Becke’s 1988 exchange functional [16] and Perdew’s 

gradient-corrected correlation functional method (BP86) [17] in conjunction with the Pople basis 

set 6-31G with an additional set of polarization d-functions added to all nonhydrogen atoms [18]. 

The clusters used in this calculation are portions of the fcc-structure centered on one atom with 

the highest possible symmetry beginning with the tetrahedron and successively adding atoms to 

form new tetrahedrons. For example, 12 atoms surrounding the reference atom complete the 

first-neighbor shell. The bond distances are fixed to the values of the bulk metals, 2.56 Å for 

copper and 3.11 Å for lithium. The calculated binding energies change smoothly with cluster size 

when the models are constrained to the crystal symmetry (or a subgroup) and reach saturation 

values that depend on the nature of the metal. As shown in Figure 1, the binding energy per atom 

in the case of lithium clusters levels-off more quickly than in the case of copper because alkali 

metals have energy bands very similar to those of free electrons [13]. The saturation values of the 

binding energies found by polynomial extrapolation differ by 8–10 kcal/mole from the bulk values 

of approximately 29 kcal/mol for lithium and 80 kcal/mol for copper [19], but most of these 

differences are attributable to basis set superposition error and a small part is due to an 

embedded effect that can be corrected with an external potential with the crystal symmetry [12, 
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20]. The fluctuations of the second finite differences of the BE vs. N dependence (

€ 

Δ2E ΔN 2 ) 

are very small, and only the smallest clusters (4 and 6 atoms) show significant deviations, 

according with their lower symmetry. 

 

We also have explored some properties (not shown in the figure), such as ionization potentials, 

electron affinities, and HOMO-LUMO gaps with similar results [12]. It is worth mentioning that the 

number of atoms needed to reach the saturation values depends on the property itself and not 

only on the nature of the metal. 

 

In summary, a general cluster model should contain at least the minimum number of atoms to 

represent the set of properties to be studied. According to our calculations, a lower bound to the 

critical cluster size necessary to represent bulk properties and transitions depends on the nature 

of the metal and crystal symmetry and should always be tested against reliable experimental 

values. At the same time, these calculations reveal that the fluctuations observed in the size-

dependent cluster properties are due to the fact that actual cluster does not preserve the full 

symmetry of the crystal. Most clusters, regardless the experimental technique used to create 

them, suffer dynamic rearrangements leading to more stable structures. Thus, an important part 

of all cluster studies is to find the optimum structures in the configuration space spanned by the 

nuclear coordinates. Below we discuss some of the most common methods used to optimize the 

geometry of clusters. 
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3.  Optimization methods applied to cluster studies. Finding the most stable isomers 

In general terms, the problem of finding stable isomer structures is equivalent to the problem of 

finding minima on a multi-dimensional hypersurface. Every local minimum represents the 

geometry of an isomer and the global minimum is the most stable one (i.e. the geometry with the 

lowest total energy). The total energy is a function of the nuclear coordinates. There are 3N–6 

variables (3N–5 in the case of a linear molecule), where N is the number of atoms. In general, 

geometry optimization is a non-trivial mathematical problem that does not lend itself to an analytic 

solution. Therefore, it is necessary to use numerical techniques. There are two main types of 

optimization techniques, those that follow the gradient (of the total energy) to reach a mimimum 

energy and stochastic techniques. (Recently some very interesting techniques based on quantum 

molecular dynamics have emerged, but these will not be addressed here [21].) The most 

traditional methods used in quantum chemistry are gradient-following techniques and are 

implemented in almost all computational codes. The most successful gradient-following 

techniques are approximations to Netwon’s method and are termed quasi-Newton methods. 

These need a very limited number of energy and gradient evaluations compared to other 

approaches and are therefore very efficient. However, they are dependent on the initial geometry 

and locate only one stationary point at a time. They cannot jump from one minimum to another. 

Hence, if one has a good initial guess of the geometry of the most stable isomer, a quasi-Netwon 

optimization is likely the most effective method. Nevertheless, one cannot be sure to have 

reached the global minimum. In the case of an optimization of “normal” molecules, where the 

chemical bonding rules reliably predict the geometry of the most stable isomer, quasi-Newton 

methods are very useful. However, for a cluster with a moderate number of atoms, for instance 

Si9, the chemical rules of bonding are not as helpful and the number of isomers with energies 

close to the global minimum energy is high. For Si9 there are at least 14 such isomers [22]. 

 

On the other hand, stochastic methods are based on a random search on the potential energy 

hypersurface (PEH). As a consequence, they are able to jump from one minimum to another, 
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allowing the location of various isomers in one run. They are also, in principle, independent of the 

initial guess. However, this should be verified by performing a series of similar optimizations 

starting at different locations on the PEH of the system under study. The drawback of stochastic 

methods is that they generally need many more evaluations of the energy function than quasi-

Newton methods, which makes it difficult to apply them at a high level of electronic structure 

theory. Usually, one starts with a low level, in many cases classical molecular dynamics, and then 

proceeds to perform high-level calculations of the minima identified at the lower level. There are a 

variety of stochastic methodologies, and each has several variants. We will briefly describe three 

of them:  genetic algorithm, simulated annealing and the big bang method. 

 

Genetic Algorithm 

Genetic Algorithm techniques are based on the ideas of Darwinian biological evolution, and have 

recently been widely used in the optimization of atomic clusters [23, 24]. One starts by defining a 

genome or string that represents a candidate solution to the problem. In the case of atomic 

clusters, the choice is simple: the genome is a set of coordinates for each atom of the cluster. 

One starts with an initial population of genomes selected randomly.  This population will be 

propagated to produce more “fit” species by applying “natural selection” rules; in the case of 

clusters this means combining clusters with low energies to (hopefully) produce new cluster 

geometries which lead to still lower cluster energies. In order to increase sampling of the search 

space, one defines operators simulating crossover and mutation and applies these to the 

developing population. The lowest energy clusters are produced based on the principle of 

“survival of the fittest.” At each step, population members with energy above a given threshold 

are deleted from the population, and species with low energies are allowed to reproduce. In this 

way, after a given number of generations, one should obtain structures of lower energy. In the 

case of clusters, this means low-lying isomers. 

 

The initial population of individuals, represented as a set of atomic coordinates, is generated 

randomly. In practice, different constraints can be imposed to avoid searching very unphysical 
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regions of the hypersurface. The coordinates should be constrained to lie inside a box of the 

expected dimensions of the cluster, and any pair of atoms can neither be closer than a given 

distance nor separated by more than a given distance. The specific criteria for desired fitness, 

selection rules and crossover and mutation probabilities are specific to every genetic algorithm 

implementation. In this part of the work, we followed the algorithm presented in Ref. [25]. The 

number of times one needs to evaluate the energy can become significantly large. Therefore, it is 

common practice to produce all generations in the genetic algorithm cycles using an empirical 

molecular orbital method, such as MSINDO [26]. It is also important to note that each individual is 

an optimized geometry within the semiempirical method. When the genetic algorithm optimization 

is complete, the resulting isomers are re-optimized using a high-level electronic structure theory, 

usually Kohn-Sham DFT including an exchange correlation functional via a conventional gradient-

following quasi-Newton optimization technique.  

 

As an example, in Ref. [22] the genetic algorithm was used to find fourteen isomers of the Si9 

cluster. The eight most important isomer structures are presented in Fig. 2. All of the structures 

were optimized using the B3PW91 functional with the Stuttgart pseudopotential [27]. Since the 

corresponding basis set does not contain diffuse and polarization functions, the basis was 

augmented with diffuse s- and p-functions and one set of d-polarization function from the Sadlej 

basis set [28]. To ensure that the optimized structures are stationary points on the molecular 

potential energy surface, vibrational frequencies were calculated and found to be positive 

indicating a minimum geometry. The structures are given in Fig. 2 in order of increasing energy. 

Some of the properties of these clusters are displayed in Table 1. One can see that there is less 

than a 0.23 eV difference in the binding energy per atom between the first and the last isomer. 

The binding energy per atom correlates reasonably well with the energy of the HOMO. However, 

there does not seem to be any correlation with the dipole polarizability or with the HOMO-LUMO 

gap [22]. 
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Using the same methodology as in Ref. [29], the following larger silicon clusters were studied: 

Si40, Si46 and Si60 (the last one was included in this study due to its possible similarity to C60). 

Figure 3 shows the four most stable isomers of Si60. Structure (b) corresponds to the structure 

reported in Ref. [30]. However, the calculations of Ref. [29] show that at this level of theory, the 

structure has five imaginary frequencies. All of the structures in Fig. 3 are very close in binding 

energy making it difficult to predict the most stable isomer. However, it is clear that for the Si60 

cluster there is no cage structure similar to the fullerene structure observed for carbon atom 

clusters.  In addition, it is observed that the silicon cluster structures are more prolate in shape 

than their carbon counterparts. 

 

As discussed in Ref. [29], one significant weakness of the methodology consists of the use of a 

semiempirical method, MSINDO, to evaluate the atomic clusters. For example, silicon clusters of 

the endohedral type, where some silicon atoms are hypervalent, are not properly described given 

that the semiempirical methodology is not parametrized to treat hypervalent silicon atoms. 

 

Simulated Annealing 

In this subsection we discuss simulated annealing techniques [31, 32] as implemented by Perez 

et al. [33].  In this methodology the system is allowed to evolve inside a box of a given length. The 

method is initialized with randomly selected cluster geometries and the energy of each atomic 

cluster is calculated using some quantum chemical method. In this case, the energy is evaluated 

at each step at the HF/Lanl2z level of theory. Every generated structure is then subject to one or 

more acceptance tests. If the energy is lowered, 

€ 

ΔE ≤ 0, the new structure is accepted; 

otherwise, if

€ 

ΔE > 0 , the structure is accepted if 

€ 

Φ ΔE( ) < P ΔE( ), where 

€ 

P ΔE( ) = exp −ΔE kBT( ) is the Boltzmann probability distribution function and 

€ 

Φ ΔE( ) = ΔE E j  where Ej is the energy of the structure being evaluated. (Most simulated 

annealing algorithms are based on the Metropolis sampling method that simply compares 

 to a random number between 0 and 1.) If neither test is satisfied, the new structure is not 
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accepted, the parent structure is subjected to another random modification, and the acceptance 

procedure is repeated. At every temperature there is a maximum number of generated structures 

that satisfy neither of the two acceptance criteria. This number is reduced as the simulated 

annealing temperature is decreased. The method for reducing the temperature is called the 

quenching schedule; the simplest method is one that decreases the temperature by a constant 

amount per simulated annealing iteration. A successful run generates a number of possible 

structures of different energies. Structures with energies no more than 0.02 hartrees above the 

lowest energy of the set are selected for a final optimization. As an example, Table 2 shows 

typical parameters for the calculation of Liq (q=5–7) clusters. 

 

Notice that the modification of the acceptance criteria in principle allows for a relatively exhaustive 

sampling of potential energy search that could lead to the generation of the most physically 

relevant structures. Fig. 4 shows the results of a typical simulated annealing optimization of the 

Li7+ cluster. Most of the observed structures are sampled early on in the simulated annealing 

procedure as a result of producing Markov chains generated at high temperatures, which allows 

the algorithm to “jump” over potential energy barriers with relative ease. As the annealing 

temperature is reduced, the number of accepted structures tends toward the minimum energy set 

of structures, reducing the scope of the sampling.  

 

In Ref. [33] the procedure described above was applied to Liq–,0,+ (q=5–7) clusters, and some new 

structures were reported. Most of the isomers agree very well with previous work [34–36]. The 

method was also applied to the more complex binary Li5Na cluster where six isomers were found 

[33]. 

 

The Big Bang method 

The “big bang” method [37, 38] is the simplest of the three methodologies discussed in this 

chapter, and the only one specifically designed for geometry optimization of clusters. It starts with 

a relatively large population of geometrical structures that is chosen randomly and enclosed in a 
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very small volume. Then, using standard geometry optimization procedures, one proceeds to 

relax the structures by following the force (negative gradient).  Since at the beginning all the 

atoms are very close each other, the repulsive forces among them are very large and 

consequently they tend to “explode,” landing in distant parts of the hypersurface. By starting with 

a large population, one can be certain to explore a large portion of the hypersurface. By 

optimizing individual structures, the procedure produces different local minima including, 

hopefully, the global minima. The method is very simple to implement, but curiously has not been 

adopted by the chemistry community. In the implementation developed in Ref. [39], 1000N 

random structures were generated, where N is the number of atoms in the cluster. These were 

confined to a volume proportional to the covalent radius of the atom and the structures were 

optimized using the semiempirical MSINDO method [26]. The optimized structures where then 

optimized at a higher level of theory.  

 

In this way, more than 70 different isomers of Lin (n=3–20) have been found [39]. In Table 3, the 

symmetry of the reported structures is compared with other work. More than 50 new structures 

are reported. The big bang methodology has been also applied to sodium and potassium clusters 

[39]. 

 

The three methodologies discussed in this section are all based in the use of stochastic 

techniques. In each of the methods there is no guarantee of reaching the global minimum, and 

one should perform the minimization various times with different starting structures to be sure that 

a consistent set of minimum-energy isomers is obtained. In general, the choice of which method 

to use is more a matter of convenience, especially with respect to the computational facilities, 

than a formal decision based on theoretical grounds. In the cases discussed here, a detailed 

comparison for the small members of the series indicates that the three methodologies discussed 

above are able to locate the lowest energy isomers and the differences lie more in the efficiency 

of the implementation rather than in some formal advantage of the method. 
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4.  Analysis of the chemical bonding and reactivity of atomic clusters 

Most atomic clusters possess very labile bonds that do not follow the ordinary chemical rules 

describing the bonding and geometry of ordinary molecules such as hydrocarbons. For instance, 

they can present a lower or higher coordination than the one dictated by the number of valence 

electrons: the simple octet rule is almost never followed. Therefore, the number of possible 

isomers increases dramatically (usually exponentially) with the number of atoms and chemical 

intuition does not help in predicting the most stable isomer. This presents two issues to the 

theoretical calculations. First, how can one find the most stable isomers (global minima) when 

most optimization techniques do not guarantee that a global minimum will be found? Second, 

how can one understand the bonding between the atoms in a cluster? Once the geometric 

parameters of the lowest energy isomers of a given cluster are known, the task is to try to 

understand the way the atoms are bonded to one another. This knowledge permits the prediction 

of new geometries and prediction of the class of reactivity the cluster can undergo. Unfortunately, 

this is not an easy task, and until recently there has been no simple model for understanding 

bonding in atomic clusters. Generally, the Lewis electron pair model does not work and one has 

atomic clusters that are either electron deficient or hypervalent. Often it is difficult to predict the 

multiplicity of the ground state. In addition, the widely popular Mulliken population analysis tends 

to predict the incorrect electron charge distribution in atom pairs, and even the more robust 

natural bond order (NBO) method can fail in cases of extremely delocalized bonds that are 

common in atomic clusters. One of the most useful theoretical tools for analyzing bonding in 

atomic clusters is the Electron Localization Function (ELF).  

 

The ELF was originally proposed by Becke and Edgecombe [40] and is defined as  

  

€ 

ELF( r ) =  1+
T[ρ( r )]
T0[ρ( r )]
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

 (2) 

where   

€ 

T[ρ( r )] =  Ts[ρ( r )] −  Tw[ρ( r )] is the kinetic energy density difference between the 

kinetic energy density of the non-interacting system   

€ 

Ts[ρ(
 r )] with density   

€ 

ρ( r ) , and the von 
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Weizsacker kinetic energy density,   

€ 

Tw[ρ(
 r )] .  In addition,   

€ 

T0[ρ(
 r )] indicates the kinetic energy 

density of the noninteracting electron gas. The important quantity in equation 2 is the term 

  

€ 

T[ρ( r )] that can be interpreted [41] as the excess kinetic energy density due to the Pauli 

exclusion principle.  Simple analysis of Equation [2] indicates that the function   

€ 

ELF( r )  varies 

between 0 and 1. The interpretation of the function is that the region of the space where the ELF 

has a value close to 1 corresponds to the regions where it is most probable to find a localized 

electron pair; regions with a low value of the ELF (≈0.5) correspond to regions where the 

electrons are delocalized. Hence, the interpretation of ELF isosurfaces allows us to understand 

bonding in clusters. For a more detailed description of the ELF, see Ref. [40]. 

 

As an example of the utility of the ELF, we show in panel (a) of Fig. 5 the position of the atoms of 

one of the isomers of the cluster of Li6. The lines in this figure serve to guide the eyes and they do 

not represent electrons in the sense of the Lewis structures. The cluster has only six valence 

electrons and the question is: how are the six atoms are bonded to one another with only six 

electrons? The ELF isosurface depicted in panel (b) gives a clear answer. There are three 

equivalent regions where the electrons are most probably localized forming two electron-three 

center bonds. 

 

The applications of the ELF have been very successful in all fields of chemistry and physics [41, 

42]. Recently, the ELF has been used to understand and quantify the concept of aromaticity in 

metallic clusters [43, 44]. Unfortunately, its use for clusters formed by heavy atoms is not free of 

complications and the issue remains open to interpretation. 

 

Once the geometry of a given cluster and the types of bonds it forms are understood, the next 

step is to predict how the cluster will react in the presence of a given atom or molecule. There 

have been various studies of the reactivity of clusters. For example, the bonding of a hydrogen 

atom to a lithium cluster has been analyzed using the ELF [45]. The reactivity of a particular 

silicon cluster, Si4, with a Ga atom has been studied using reactivity indices defined within density 
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functional theory [46, 47].  The topology of the frontier orbitals was used in Refs. [48, 49] to 

propose simple rules to predict the binding sites in Au and Ag clusters. The bonding and reactivity 

between H and the Al13 cluster has been studied using the Fukui function [50]. It is very important 

to understand how a cluster forms and how it will react in presence of other species. Once the 

most stable isomers of an atomic cluster are found, it is necessary to calculate as accurately as 

possible properties that may be compared to experimental measurements. Only in cases where 

the theoretical calculations agree with the results of the experimental measurements can one 

have confidence in the prediction of the most stable isomer. From the considerations above, it is 

clear that the theoretical study of atomic clusters is a rather cumbersome task involving a variety 

of theoretical methodologies. 

 

In Ref. [51], a recently proposed version of the local Fukui function has been applied to the study 

of the reactivity of silicon clusters in presence of a hydrogen atom. The Fukui function has been 

defined by Parr and Yang [52] as 

  

€ 

f  r ( ) =
δµ
δv  r ( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

 (3) 

where  is the chemical potential,  is the external potential and the derivative is taken at a 

constant number of electrons . Using the frozen orbital approximation, the derivative in 

Equation 3 can be evaluated as the square of the frontier molecular orbital – the square of the 

HOMO if the derivative is approximated from the left and the square of the LUMO if the derivative 

is approximated from the right. The distinction is due to the known discontinuity of the density as 

 passes through an integer value [46]. Hence, the Fukui function can be approximated as 

  

€ 

f ±  r ( ) = φ
 r ( )

2
 (4) 

where is the frontier molecular orbital, and the sign  means the HOMO or LUMO, 

respectively. A condensed form of this function using the integration of the proper Fukui function 

over its own basins has been proposed as a better alternative than using population analysis [53]. 

In Ref. [51] this condensed form has been used to study the reaction of hydrogen atom with 
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silicon clusters. The theoretical predictions of the sites of most probable attack have been 

confirmed by computational simulations where the genetic algorithm has been used to find the 

most stable clusters of SinH . Given that the chemical potential, defined as the negative of the 

absolute electronegativity, has a value of –7.25 eV for the hydrogen atom and is in the range of  –

4.5 to –5.0 eV for silicon clusters, it is expected that the silicon clusters will donate charge to the 

hydrogen atom and therefore the Fukui function should be calculated with the square of the 

HOMO. 

 

On the left column in Figure 6 the geometrical structures of the clusters of Si3, Si4, Si5 and Si7 

have been depicted while in the right column the respective Fukui function isosurfaces and their 

condensed values over the basins are also shown.  They are calculated as the integral of the 

Fukui function over the respective volume. Larger numbers indicate more reactive regions. 

Therefore, one expects that a hydrogen atom would bind the cluster in the zone where the 

condensed Fukui function has the largest value. In fact, in Ref. [51] it was found that the predicted 

cluster was always one of the most stable ones. Exceptions occur when the hydrogenated cluster 

drastically alters the Sin skeleton of the SinH cluster with respect to the initial silicon cluster. A 

similar methodology has also been used to explain and predict the reactivity of copper clusters 

with molecular oxygen [54]. 
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5.  Unique Physical Properties of Clusters and Their Relation to the Corresponding 

Surface and Bulk Properties 

 

As mentioned above, atomic clusters show many distinct properties from those of isolated atoms 

or bulk solids that can be very useful in practical applications. At the same time, there is the 

possibility to analyze known phenomena from a new perspective. For example, the discovery of 

giant plasmon resonances in metal clusters [55, 56] and in fullerenes [57, 58] allowed scientists to 

study the transition from the classical Mie picture of plasmon oscillations to the quantum limit or to 

detect cluster deformations by the value of the splitting of plasmon resonance frequencies [3, and 

references therein]. In this section we briefly discuss another very interesting phenomenon: the 

onset of magnetism in bare and ligand-coated clusters of gold, a typical diamagnetic metal. We 

emphasize the usefulness of clusters as ‘transition structures’ that facilitate a better 

understanding of magnetism in molecular and extended systems (surfaces or solids).  

 

One of the first observations of magnetism in gold was reported by Zhang and Sham [59] in their 

X-ray spectroscopic study of alkane-thiolated nanoclusters. Later, Crespo et al. [60] used X-ray 

absorption near-edge structure (XANES) measurements to show the appearance of 

ferromagnetism accompanied by room-temperature hysteresis in thiol-capped Au nanoparticles 

with a diameter of 1.4 nm. This rather surprising finding led to the proposal that the strong 

chemisorption of ligands into relatively small nanoparticles of bulk-diamagnetic materials could 

induce permanent magnetism as a result of electronic structure effects involving interactions 

between the sp-orbitals of the adsorbate and the 5d-orbitals of the Au atoms lying on the surface 

of the nanoparticle.  This mechanism was later questioned by the results reported by Hori and 

collaborators [61] based on superconducting quantum interference device magnetometer 

(SQUID) measurements of a series of Au nanoparticles protected by strongly interacting thiols 

such as dodecane thiol (DT) and weakly coupled ligands such as  polyacrylonitrile (PAN), 

polyallyl amine hydrochloride (PAAHC), and polyvinyl pyrolidone (PVP).  In this study the authors 
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found that the strong chemisorptive interaction between the sulfur atom in DT and the Au atoms 

on the surface of the nanoparticle induced a spin singlet state that significantly decreased the 

magnetization of the system (although it did not quench it completely) when compared to the 

corresponding magnetization measured in Au nanoparticles capped with weakly coupled ligands 

such as PAN, PAAHC and PVP.  In the same study, Hori and collaborators report that the 

measured magnetization is strongly size dependent, increasing with particle diameter at the 

smaller nanoparticle sizes, peaking at approximately 3 nm for Au-thiol nanoparticles, and 

subsequently decreasing with increasing nanoparticle size, keeping with the fact that as the Au 

nanoparticle size increases, its configuration approaches that of the bulk lattice [61].   

Additionally, a closely related phenomenon has been observed in gold surfaces: the occurrence 

of magnetism when organic molecules are self-assembled as monolayers on a surface [62]. The 

observed magnetism has been attributed to charge-transfer between the organic layer and the 

metal substrate [62]. 

 

These effects are somehow intriguing given that gold is a diamagnetic metal, but perhaps not 

totally unexpected. Close examination of Stoner’s model [63] suggests that the emergence of 

“unexpected” magnetic ordering in transition metal clusters in confined spaces at the nanoscale is 

possible. In this model, the paramagnetic susceptibility χ is determined by the density of d states 

at the Fermi level N(EF) and the exchange function J,  

  (5) 

where µ0 is the permeability of free space and µB is the Bohr magneton (9.27 x 10-24 J/T). The 

spatial confinement produces a narrower d-band, and eventually the center of the band is shifted 

closer to the Fermi level. For JN(EF) > 1, the term 1−JN(EF) in Eq. 5 becomes negative, 

consequently generating ferromagnetic instability, and thus magnetic order.  

 

Several previous experimental studies have shown that the onset of magnetism at the nanoscale 

occurs in a complicated way with clusters frequently having unusual magnetic properties not 
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clearly related to the strength and orientation of the metal bulk magnetization. Stern-Gerlach 

molecular-beam deflection experiments [64–69] with bare clusters of transition metals show either 

high-field deflection indicative of superparamagnetism or symmetric broadening indicative of 

locked moment behavior. These clusters exhibit susceptibilities significantly larger in magnitude 

than those expected based on the extrapolation of the susceptibility of the bulk solids. It is worth 

mentioning also that molecules comprising a large number of coupled paramagnetic centers 

capped by ligands (e.g. Mn12 and Fe8 families) are known to show unambiguous evidence of 

quantum size effects in magnets [70]. 

 

Magnetism in bare (uncapped) gold nanoclusters has been explored in our group [71] from a 

spin-dependent density-functional theory (DFT) perspective with scalar relativistic effects included 

via the use of pseudo-potentials. In this study, three different DFT exchange-correlation energy 

functionals were used:  the Perdew, Burke, and Ernzerhof [72] generalized gradient 

approximation (PBE), and the hybrid functionals B3LYP [73] and PBE1PBE [74]. In addition, two 

different basis sets were chosen: a single valence plus polarization with the Stuttgart [75] 

effective core potential (SVP/STUTT) basis (27 basis functions comprised of 55 primitive 

gaussians), and the LANL2DZ [76] basis set developed by the Los Alamos group (24 basis 

functions comprised of 44 primitive gaussians) with its respective effective core potential. The 

calculated electronic structures of gold nanoclusters of different sizes (Aun , with n = 2, 14, 28, 38, 

56, and 68) reveal that they exhibit (with the exception of Au2) a core-shell geometric 

arrangement of Au atoms and that  permanent size-dependent spin-polarization appears without 

geometry relaxation for bare clusters even though bulk gold is diamagnetic [71]. The spin-

polarized ground states for clusters are favorable due to the hybridization of the s and d orbitals, 

and bare octahedral clusters are expected to be magnetic for cluster sizes of approximately 38 

atoms and larger. Much larger clusters will be diamagnetic when the surface-to volume ratio is 

small and the core diamagnetism prevails.  
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Making use of these findings, we developed a spin-spin Ising interaction model [77] that explains 

the origin of the size dependency of magnetization in Au clusters.  This model combines the bulk 

diamagnetic response of the core with surface (shell) ferromagnetism behavior (as suggested by 

the results in ref. [71]).  In this model, the Maximum Entropy formalism is used in order to obtain 

an average temperature-dependent magnetization of bare Au nanoparticles within a mean-field 

theory.  Accordingly, the total Hamiltonian  can be partitioned into a core Hc and a surface Hs 

contribution: 

  (6) 
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In equations (7) and (8), Nc and Ns indicate the number of core and surface Au atoms, 

respectively, such that the total number of atoms N = Nc + Ns. The interaction terms are 

partitioned into Ns(Ns − 1) surface atom interactions, NsNc core atom interactions with the surface 

atoms and Nc(Nc −1) core atoms interactions with coupling functions Js, Jcs, Jsc and Jc, 

respectively (with  > 0 for ferromagnetic interactions). In addition, the last terms in Equations 

(7) and (8) describe the anisotropy term spin with the Hamiltonian assumed to be aligned along 

the radial direction , with kc and ks being the anisotropy constants for the core and surface spins 

respectively. After some algebraic manipulations making use of the maximum spin entropy 

approach (see ref. [77] for details) the following expression for the total magnetic moment per 

atom µt is obtained 

 

€ 

µt =
Ns

Nt

1−ν⋅ Js⋅ Ns Nt − Ns( )( )
1
3  (9) 
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where the surface magnetic moment  can be obtained self-consistently from the following 

expressions 

  (10) 

  (11) 

In expressions [9] – [11], Js indicates the average surface exchange, g is related to the 

gyromagnetic constant, hz is the effective field in the preferred z direction, and the constant  is 

given by 

  (12) 

with e and me indicating the charge and mass of an electron, c the speed of light and  is a 

phenomenological constant.  Figure 7 depicts a plot of the magnetic moment per atom as a 

funcion of the particle size for a typical gold nanoparticle.  The results show how this simple Ising 

model reproduces qualitatively the size dependence behavior observed experimentally by Hori 

and collaborators [61].   

 

We have also performed studies aimed at understanding the origins of magnetic behavior in gold 

upon chemisorption as well as the effect of different ligands on the magnetic moment.  Using a 

simple quantum chemical model based on Finite Perturbation Theory (FPT) combined with 

Density Functional Theory calculations on a Au cluster with a two-layer slab of 13 atoms (9 in the 

first layer and 4 in the second layer), Gonzalez et al. [78] were able to suggest ideas regarding 

the electronic structure origin of the observed magnetism in Au cluster-ligand systems with 

different chemical linkers, and provided a theoretical basis to rationalize the experimental 

observation indicating that  magnetism can be induced in gold as a result of the chemisorption of 

S-linked ligands, whereas weakly coupled linkers such as  N do not affect the diamagnetic 
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behavior of Au surfaces. In particular, it was shown that for some linkers such as sulfur, a spin 

symmetry breaking occurs that lowers the energy and leads to preferential spin density 

localization on the gold atoms neighboring the chemisorption site. These preliminary results seem 

to be in agreement with the conjecture proposed by Crespo et al. [60] that the interaction between 

S and Au orbitals is responsible for the onset of magnetism in thiol-capped gold nanoclusters. 

However, in order to confirm this proposal, similar calculations using the FPT model should be 

performed on larger clusters with core-shell structures typical of Au nanoparticles. 

 

Our group has also performed electronic structure calculations on larger clusters (Au23 and Au55) 

in order to reproduce and study the magnetic behavior of high electric dipole moment 

thiopolypeptide R-helix linkers, (consisting of 8 L-glycine units) chemisorbed on the (111) Au 

surfaces [79]. The wave function broken symmetry method (BS-UDFT) was used for this purpose 

[80]. The results of this study indicate a strong correlation between the magnetic behavior of the 

adsorbate-cluster system and the orientation of the electric dipole of the R-helix and charge-

transfer at the molecule-metal interface. Upon chemisorption, dipole moments may be quenched 

or enhanced with respect to the gas phase value. The results of this study indicate that the 

strongest reduction in dipole moment accompanied with net charge-transfer from the Au surface 

leads to a very stable magnetic state. Additionally, it was found that the magnetic properties of 

these systems are strongly dependent on the size and geometrical structure of the Au cluster 

under consideration.  

 

In addition to the cluster calculations, we have also studied the effect of benzenethiol 

chemisorption on the magnetic properties of gold films [81] via DFT calculations on extended 

systems. Gold films have been modeled by constructing slabs from the Au (111) lattice, 

containing from 1 to 4 layers, with 3x3 atoms in each layer.  Spin-polarized DFT calculations have 

been performed using the SIESTA package [82]. This code allows electronic structure 

calculations of extended systems using pseudopotentials with periodic boundary conditions, 

where numerical atomic orbitals are used as basis sets to solve the single-particle Kohn-Sham 
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equations. Our calculations were performed within the PBE generalized gradient approximation of 

density-functional theory, using norm-conserving Troullier-Martins pseudopotentials [83] as 

implemented in the SIESTA software. We use a double-zeta basis set with polarization orbitals on 

all the atoms [84]. The real-space mesh used for the calculation of the charge density and 

evaluation of real-space integrals is defined by a ‘mesh cut-off’ parameter, defining the maximum 

energy of plane waves that can be represented on the mesh without aliasing. This parameter was 

set to 350 Ry for all calculations. The supercell dimensions were kept fixed for all calculations 

(a=b=8.65 Å, c=30 Å). 

 

Figure 8 depicts a plot of the variation of the magnetic moment with the number of layers in the 

gold films. As observed in this plot, the total magnetic moment decays exponentially as the 

number of layers increases, approaching a value of zero for 4 layers. This magnetic behavior in 

has recently been observed experimentally in gold films [4]. In the case of the 4-layer supercell 

capped with benzenethiol, our calculations show an onset of a finite magnetic moment of 

approximately 0.025  per absorbed molecule. The fact that this value is smaller than the 

experimental one (on the order of 10 µB; see ref. [62] for details), is not surprising given the 

limitation of the size of unit cell used in our calculations and also due to the fact that our 

calculations do not explicitly include important spin-orbit coupling effects. Finally, population 

analysis of this system suggests that the majority of “spin up” electrons are predominantly 

localized on the surface and shared equally among the atoms. Small “diamagnetic” contributions 

on the bulk atoms are also found. 

 

Overall, our theoretical calculations show that chemisorbed thiolates on gold surfaces induce 

magnetism, basically due to a local Pauli repulsion between the sulfur and the gold atoms in the 

neighborhood of the chemisorption site. However, the results also show that bare Au clusters 

have the an intrinsic tendency to exhibit magnetic behavior suggesting that it is quite possible that 

the origin of chemisorption-induced magnetism on Au surfaces might indeed be different from a 

simple spin symmetry breaking on the surface atoms in Au clusters with core-shell structures.  It 
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should be noted that despite the interesting results of this study, other aspects of this problem 

remain unclear, including the origin of the very small hysteresis and the high anisotropy of this 

magnetism.  In order to answer these questions, more elaborate and theoretical models should 

be developed. 

 

Although not an exhaustive review, this Chapter briefly illustrates the potential benefits of 

applying theory and quantum chemistry calculations in understanding diverse intricate physical 

and chemical phenomena related to metallic clusters.  More than a predictive tool replacing 

experimental measurements, these techniques should be considered as an important 

complement to measurement sciences and metrology aimed at helping with the interpretation of 

experimental results and the proposal of new measurement campaigns. 
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Table 1.  Energy of the HOMO, binding energy per atom, dipole polarizability and energy gap 

for the low-lying isomers of Si9. 

 

Cluster 
 
 

Symm 
 
 

(a.u.) 
 

EB/atom 
(eV/atom) 
 

 (A/atom) 
 

Gap(eV) 
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II 
 
III 
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VI 
 
VII 
 
VIII 

 
Cs 

 
C2 

 
C2v 

 
C2 

 
Cs 

 
C2v 

 
C2v 

 
-0.223 
 
-0.212 
 
-0.219 
 
-0.210 
 
-0.207 
 
-0.205 
 
-0.195 

 
-3.055 
 
-2.994 
 
-2.988 
 
-2.945 
 
-2.931 
 
-2.828 
 
-2.788 

 
4.73 
 
4.91 
 
4.80 
 
4.79 
 
4.90 
 
5.27 
 
5.31 

 
2.77 
 
2.07 
 
2.77 
 
1.99 
 
2.37 
 
2.37 
 
1.99 

 



 32 

Table 2.   Typical Simulated Annealing parameters. 
 
Parameter                                         Li5                     Li6                         Li7 
 
generated structures                       49                        111                        33 
 
with 

€ 

ΔE < 0                                    14                          10                         8 
 
with                     35                        101                        25 
 
finally located minima                      2                            3                          2 
 



 33 

Table 3. Isomers of lithium clusters 
 

Lin This work (Big-Bang) Jones25 Gardet26 

3 C2v
P

, D∞h
L C2v

P
, D∞h

L C2v
P 

4 D2h
P D2h

P D2h
P 

5 C2v, C2v
P C2v, C2v

P C2v, C2v
P 

6 D4h, C5v, D3h, (D2d) D4h, C5v, D3h D4h, C2v, D3h 

7 D5h, C3v, (Cs) D5h, C3v D5h 

8 Td, (C3v), (Cs) D5h, Td, C2v Td, C2v, Cs 

9 C4v, C2v, Cs Cs, C4v  C2v, Cs 

10 (D2d), (Cs), (C4v), (Td) C1, C2V C1, C2V 

11 C2, (C2v), (C2), (Cs)  C2 

12 Cs, (Cs), (C2v)  Cs 

13 (Cs), (Cs), (C2), (C1), (C1), (C3v)  Cs, C1 

14 (C2), (Cs), (C3v), (Cs), (C1), (C1)   

15 (C4v), (C1), (C2), (Cs), (C1), (Cs), (Cs)   

16 (Cs), (C1), (C1), (C1), (C1)   

17 (C1), (Cs), (C1)   

18 (Cs), (C1), C5v, (C1), (C1), (C1), (Cs), (C1), 
(C4v) 

 C5v, D5h, D3h, C1  

19 (C2v), (Cs), (C1), (C1)  D5h 

20 Cs, (C1), C2v, (C1), (C1), (C1)  C2v, Cs 
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Figure Captions 
 

Figure 1. Binding Energy per atom (kcal/mol) versus number of cluster atoms for lithium (Li) and 

copper (Cu) atomic clusters. 

 

Figure 2.  Geometries of the silicon cluster (Si9) isomers generated using a genetic algorithm 

technique. 

 

Figure 3.  Geometries of the four most stable isomers of Si60 and their respective binding energy 

per atom in eV. 

 

Figure 4. The quenching route in the optimization of the Li7+ cluster. 

 

Figure 5. Geometry and the Electron Localization Function isosurface for the lithium cluster with 

6 atoms. 

 

Figure 6. Geometries of the clusters of Si3, Si4, Si5 and Si7 and the corresponding Fukui function 

isosurface (on the right). 

 

Figure 7.  Total magnetic moment per atom as a function of nanoparticle diameter (nm) for Aun.  

 

Figure 8. Net magnetic moment versus the number of layers in the supercell. 
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