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Spin–orbit-coupled Bose–Einstein condensates
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Spin–orbit (SO) coupling—the interaction between a quantum
particle’s spin and its momentum—is ubiquitous in physical sys-
tems. In condensed matter systems, SO coupling is crucial for the
spin-Hall effect1,2 and topological insulators3–5; it contributes to
the electronic properties of materials such as GaAs, and is import-
ant for spintronic devices6. Quantum many-body systems of ultra-
cold atoms can be precisely controlled experimentally, and would
therefore seem to provide an ideal platform on which to study SO
coupling. Although an atom’s intrinsic SO coupling affects its
electronic structure, it does not lead to coupling between the spin
and the centre-of-mass motion of the atom. Here, we engineer SO
coupling (with equal Rashba7 and Dresselhaus8 strengths) in a
neutral atomic Bose–Einstein condensate by dressing two atomic
spin states with a pair of lasers9. Such coupling has not been rea-
lized previously for ultracold atomic gases, or indeed any bosonic
system. Furthermore, in the presence of the laser coupling, the
interactions between the two dressed atomic spin states are modi-
fied, driving a quantum phase transition from a spatially spin-
mixed state (lasers off) to a phase-separated state (above a critical
laser intensity). We develop a many-body theory that provides
quantitative agreement with the observed location of the trans-
ition. The engineered SO coupling—equally applicable for bosons
and fermions—sets the stage for the realization of topological insu-
lators in fermionic neutral atom systems.

Quantum particles have an internal ‘spin’ angular momentum; this
can be intrinsic for fundamental particles like electrons, or a combina-
tion of intrinsic (from nucleons and electrons) and orbital for composite
particles like atoms. SO coupling links a particle’s spin to its motion, and
generally occurs for particles moving in static electric fields, such as the
nuclear field of an atom or the crystal field in a material. The coupling
results from the Zeeman interaction {m:B between a particle’s mag-
netic moment m, parallel to the spin s, and a magnetic field B present in
the frame moving with the particle. For example, Maxwell’s equations
dictate that a static electric field E 5 E0ẑ in the laboratory frame (at rest)
gives a magnetic field BSO 5 E0 B=mc2ð Þ {ky,kx,0

� �
in the frame of an

object moving with momentumBk~B kx,ky,kz
� �

, where c is the speed of
light in vacuum and m is the particle’s mass. The resulting momentum-
dependent Zeeman interaction 2m?BSO(k)!sxky{sykx is known as
the Rashba7 SO coupling. In combination with the Dresselhaus8 coupling
/ 2sxky 2 sykx, these describe two-dimensional SO coupling in solids
to first order.

In materials, the SO coupling strengths are generally intrinsic
properties, which are largely determined by the specific material and
the details of its growth, and are thus only slightly adjustable in the
laboratory. We demonstrate SO coupling in an 87Rb Bose–Einstein
condensate (BEC) where a pair of Raman lasers create a momentum-
sensitive coupling between two internal atomic states. This SO coupling
is equivalent to that of an electronic system with equal contributions of
Rashba and Dresselhaus9 couplings, and with a uniform magnetic field B
in the ŷ{ẑ plane, which is described by the single-particle Hamiltonian:

Ĥ~
B2k̂2

2m
�1 { BzBSO k̂

� �h i
:m~
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2m
�1 z

V

2
�szz

d

2
�syz2ak̂x�sy ð1Þ

a parametrizes the SO-coupling strength; V 5 2gmBBz and d 5 2gmBBy

result from the Zeeman fields along ẑ and ŷ, respectively; and �sx,y,z are
the 2 3 2 Pauli matrices. Without SO coupling, electrons have group
velocity vx 5 Bkx/m, independent of their spin. With SO coupling, their
velocity becomes spin-dependent, vx 5 B(kx 6 2am/B2)/m for spin j"æ
and j#æ electrons (quantized along ŷ). In two recent experiments, this
form of SO coupling was engineered in GaAs heterostructures where
confinement into two-dimensional planes linearized the native cubic SO
coupling of GaAs to produce a Dresselhaus term, and asymmetries in the
confining potential gave rise to Rashba coupling. In one experiment a
persistent spin helix was found6, and in another the SO coupling was
only revealed by adding a Zeeman field10.

SO coupling for neutral atoms enables a range of exciting experi-
ments, and importantly, it is essential in the realization of neutral atom
topological insulators. Topological insulators are novel fermionic band
insulators including integer quantum Hall states and now spin
quantum Hall states that insulate in the bulk, but conduct in topo-
logically protected quantized edge channels. The first-known topo-
logical insulators—integer quantum Hall states11—require large
magnetic fields that explicitly break time-reversal symmetry. In a
seminal paper3, Kane and Mele showed that in some cases SO coupling
leads to zero-magnetic-field topological insulators that preserve time-
reversal symmetry. In the absence of the bulk conductance that plagues
current materials, cold atoms can potentially realize such an insulator
in its most pristine form, perhaps revealing its quantized edge (in two
dimensions) or surface (in three dimensions) states. To go beyond the
form of SO coupling we created, almost any SO coupling, including
that needed for topological insulators, is possible with additional
lasers12–14.

To create SO coupling, we select two internal ‘spin’ states from
within the 87Rb 5S1/2, F 5 1 ground electronic manifold, and label
them pseudo-spin-up and pseudo-spin-down in analogy with an elec-
tron’s two spin states: j"æ 5 jF 5 1, mF 5 0æ and j#æ 5 jF 5 1,
mF 5 21æ. A pair of l 5 804.1 nm Raman lasers, intersecting at
h 5 90u and detuned by d from Raman resonance (Fig. 1a), couple
these states with strength V; here BkL~

ffiffiffi
2
p

pB
�

l and EL 5 B
2kL

2/2m are
the natural units of momentum and energy. In this configuration, the
atomic Hamiltonian is given by equation (1), with kx replaced by a
quasimomentum q and an overall EL energy offset. V and d give rise
to effective Zeeman fields along ẑ and ŷ, respectively. The SO-coupling
term 2ELq�sy

�
kL results from the laser geometry, and a 5 EL/kL is set by

l and h, independent of V (see Methods). In contrast with the electronic
case, the atomic Hamiltonian couples bare atomic states :, x~qzkLj i
and ;, x~q{kLj i with different velocities, B x=m~B q+kLð Þ=m.

The spectrum, a new energy–quasimomentum dispersion of the SO-
coupled Hamiltonian, is displayed in Fig. 1b at d 5 0 and for a range of
couplings V. The dispersion is divided into upper and lower branches
E6(q), and we focus on E2(q). For V , 4EL and small d (see Fig. 2a),
E2(q) consists of a double well in quasi-momentum15, where the group
velocity hE2(q)/hBq is zero. States near the two minima are dressed
spin states, labelled as j"9æ and j#9æ. As V increases, the two dressed
spin states merge into a single minimum and the simple picture of
two dressed spins is inapplicable. Instead, that strong coupling limit
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effectively describes spinless bosons with a tunable dispersion rela-
tion16 with which we engineered synthetic electric17 and magnetic
fields18 for neutral atoms.

In the absence of Raman coupling, atoms with spins j"æ and j#æ
spatially mixed perfectly in a BEC. By increasing V we observed an
abrupt quantum phase transition to a new state where the two dressed
spins spatially separated, resulting from a modified effective inter-
action between the dressed spins.

We studied SO coupling in oblate 87Rb BECs with about 1.8 3 105

atoms in a l 5 1,064-nm crossed dipole trap with frequencies (fx, fy,
fz) < (50, 50, 140) Hz. The bias magnetic field B0ŷ generated a vZ/
2p< 4.81 MHz Zeeman shift between j"æ and j#æ. The Raman beams
propagated along ŷ+x̂ and had a constant frequency difference DvL/
2p< 4.81 MHz. The small detuning from the Raman resonance
d 5 B(DvL 2 vZ) was set by B0, and the state jmF 5 11æ was
decoupled owing to the quadratic Zeeman effect (see Methods).

We prepared BECs with an equal population of j"æ and j#æ at V,
d 5 0, then we adiabatically increased V to a final value up to 7EL in
70 ms, and finally we allowed the system to equilibrate for a holding
time th 5 70 ms. We abruptly (toff , 1ms) turned off the Raman lasers
and the dipole trap—thus projecting the dressed states onto their
constituent bare spin and momentum states—and absorption-imaged
them after a 30.1-ms time of flight (TOF). For V . 4EL (Fig. 1d), the
BEC was located at the single minimum q0 of E2(q) with a single
momentum component in each spin state corresponding to the pair
{j", q0 1 kLæ, j#, q0 2 kLæ}. However, for V , 4EL we observed two
momentum components in each spin state, corresponding to the
two minima of E2(q) at q" and q#. The agreement between the data
(symbols), and the expected minima locations (curves), demonstrates

the existence of the SO coupling associated with the Raman dressing.
We kept d < 0 when turning on V by maintaining equal populations in
bare spins j"æ, j#æ (see Fig. 1d).

We experimentally studied the low-temperature phases of these
interacting SO-coupled bosons as a function of V and d. The zero-
temperature mean-field phase diagram (Fig. 2a, b) includes phases
composed of a single dressed spin state, a spatial mixture of both
dressed spin states, and coexisting but spatially phase-separated
dressed spins.

This phase diagram can largely be understood as the result of non-
interacting bosons condensing into the lowest-energy single particle
state, and can be divided into three regimes (Fig. 2a). In the region of
positive detuning marked j#9æ, there are double minima at q 5 q", q# in
E2(q) with E2(q#) , E2(q") and the bosons condense at q#. In the
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Figure 1 | Scheme for creating SO coupling. a, Level diagram. Two
l 5 804.1 nm lasers (thick lines) coupled states | F 5 1, mF 5 0æ 5 |"æ and
| F 5 1, mF 5 21æ 5 |#æ, differing in energy by a BvZ Zeeman shift. The lasers,
with frequency difference DvL/2p 5 (vZ 1 d/B)/2p, were detuned d from the
Raman resonance. | mF 5 0æ and | mF 5 11æ had a B(vZ 2 vq) energy
difference; because Bvq 5 3.8EL is large, | mF 5 11æ can be neglected.
b, Computed dispersion. Eigenenergies at d 5 0 for V 5 0 (grey) to 5EL. When
V , 4EL the two minima correspond to the dressed spin states |"9æ and |#9æ.
c, Measured minima. Quasimomentum q",# of |"9, #9æ versus V at d 5 0,
corresponding to the minima of E2(q). Each point is averaged over about ten
experiments; the uncertainties are their standard deviation. d, Spin–momentum
decomposition. Data for sudden laser turn-off: d < 0, V 5 2EL (top image pair),
and V 5 6EL (bottom image pair). For V 5 2EL, |"9æ consists of :, x<0
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Figure 2 | Phases of a SO-coupled BEC. a, b, Mean field phase diagrams for
infinite homogeneous SO-coupled 87Rb BECs (1.5-kHz chemical potential).
The background colours indicate atom fraction in |"æ and |#æ. Between the
dashed lines there are two dressed spin states, |"9æ and |#9æ. a, Single-particle
phase diagram in the V2d plane. b, Phase diagram (enlargement of the grey
rectangle in a), as modified by interactions. The dots represent a metastable
region where the fraction of atoms f"9,#9 remains largely unchanged for th 5 3 s.
c, Miscible-to-immiscible transition. Phase line for mixtures of dressed spins
and images after TOF (with populations N"< N#), mapped from |"9æ and |#9æ
showing the transition from phase-mixed to phase-separated within the
‘metastable window’ of detuning.
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region marked j"9æ the reverse holds. The energy difference between
the two minima is D(V, d) 5 E2(q") 2 E2(q#) < d for small d (see
Methods). In the third ‘single minimum’ regime, the atoms condense
at the single minimum q0. These dressed spins act as free particles with
group velocity BKx/m (with an effective mass m*< m, for small V),
where Kx 5 q 2 q",#,0 for the different minima.

We investigated the phase diagram using BECs with initially equal
spin populations prepared as described previously, but with d ? 0 and
th up to 3 s. We probed the atoms after abruptly removing the dipole
trap, and then ramping V R 0 in 1.5 ms. This approximately mapped
j"9æ and j#9æ back to their undressed counterparts j"æ and j#æ (see
Methods). We absorption-imaged the atoms after a 30-ms TOF, during
the last 20 ms of which a Stern–Gerlach magnetic field gradient along ŷ
separated the spin components.

Figure 3a shows the condensate fraction f#9 5 N#9/(N#9 1 N"9) in j#9æ
at V 5 0.6EL as a function of d, at th 5 0.1 s, 1 s and 3 s, where N"9 and
N#9 denote the number of condensed atoms in j"9æ and j#9æ, respec-
tively. The BEC is all j"9æ for d=0 and all j#9æ for d>0, but both
dressed spin populations substantially coexisted for detunings within
6wd (obtained by fitting f#9 to the error function where d 5 6 wd

corresponds to f#9 5 0.50 6 0.16). Figure 3b shows wd versus V for
hold times th. wd decreases with th; even by our longest th of 3 s it
has not reached equilibrium.

Conventional F 5 1 spinor BECs have been studied in 23Na and
87Rb without Raman coupling19–21. For our j"æ and j#æ states, the
interaction energy depends on the local density in each spin state,
and is described by:

ĤI~
1
2

ð
d3r c0z

c2

2

� �
r̂:zr̂;

� �2
z

c2

2
r̂2
;{r̂2

:

� �
z c2zc’:;
� �

r̂:r̂;

h i

where r̂: and r̂; are density operators for j"æ and j#æ, and normal
ordering is implied. In the 87Rb F 5 1 manifold, the spin-independent
interaction is c0 5 7.793 10212 Hz cm3, the spin-dependent inter-
action22 is c2 5 23.61 3 10214 Hz cm3, and c’:;~0. Because
c0j j? c2j j, the interaction is almost spin-independent, but c2 , 0, so

the two-component mixture of j"æ and j#æ has a spatially mixed ground
state (is miscible). When ĤI is re-expressed in terms of the dressed spin
states, c’:;<c0V

2� 8E2
L

� �
is non-zero and corresponds to an effective

interaction between j"9æ and j#9æ. This modifies the ground state of our
SO-coupled BEC (mixtures of j"9æ and j#9æ) from phase-mixed to
phase-separated above a critical Raman coupling strength Vc. This
transition lies outside the common single-mode approximation20.

The effective interaction between j"9æ and j#9æ is an exchange energy
resulting from the non-orthogonal spin part of j"9æ and j#9æ (see
Methods): a spatial mixture produces total density modulations15 with
wavevector 2kL, in analogy with the spin-textures of the electronic
case6. These increase the state-independent interaction energy in ĤI

wherever the two dressed spins spatially overlap, contributing to the
c’:; term. (Such a term does not appear for radio-frequency-dressed

states, which are always spin-orthogonal.) Because c’:; and c2 have
opposite sign here, the dressed BEC can go from miscible to immiscible
at the miscibility threshold19 for a two-component BEC
c0zc2zc’:;

�
2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 c0zc2ð Þ

p
, when V 5 Vc (this result is in agree-

ment with an independent theory presented in ref. 23).
Figure 2b depicts the mean field phase diagram including interac-

tions, computed by minimizing the interaction energy HI plus the
single particle detuning D(V, d) < d. This phase diagram adds two
new phases, mixed (hashed) and phase-separated (bold line), to those
present in the non-interacting case. The c2 r̂2

;{r̂2
:

� �.
2 term in ĤI

implies that the energy difference between a j"æ BEC and a j#æ BEC

is proportional to N2c2. The detuning required to compensate for this
difference slightly displaces the symmetry point of the phase diagram
downwards. As evidenced by the width of the metastable window 2wd

in Fig. 2b, for jdj, wd the spin-population does not have time to relax
to equilibrium. The miscibility condition does not depend on atom
number, so the phase line in Fig. 2c shows the system’s phases for
jdj, wd: phase-mixed for V , Vc and phase-separated for V . Vc

where Vc<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{8c2=c0

p
EL<0:19EL.

We measured the miscibility of the dressed spin components from
their spatial profiles after TOF, for V 5 0 to 2EL and d < 0 such that
NT"9 < NT#9, where NT"9,#9 is the total atom number including both the
condensed and thermal components in j"9æ, j#9æ. For each TOF image,
we numerically re-centred the Stern–Gerlach-separated spin distribu-
tions (Fig. 2c, and see Methods), giving condensate densities n"9(x, y)
and n#9(x, y). Given that the self-similar expansion of BECs released
from harmonic traps essentially magnifies the in situ spatial spin dis-
tribution, these reflect the in situ densities24.

A dimensionless metric s~1{ n:’n;’

 	

= n2
:’

D E
n2
;’

D E� �1
2

quantifies

the degree of phase separation (where Æ...æ is the spatial average over a
single image). s 5 0 for any perfect mixture n"9(x, y) / n#9(x, y), and
s 5 1 for complete phase separation. Figure 4 displays s versus Raman
coupling V with a hold time th 5 3 s, showing that s < 0 for small V (as
expected given our miscible bare spins) and s abruptly increases above
a critical Vc. The inset to Fig. 4 plots s as a function of time, showing
that s reaches steady state in 0.14(3) s, which is much less than th. To
obtain Vc, we fitted the data in Fig. 4 to a slowly increasing function
below Vc and the power-law 1 2 (V/Vc)

2a above Vc. The resulting
Vc 5 0.20(2)EL is in agreement with the mean field prediction
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Vc 5 0.19EL. This demonstrates a quantum phase transition for a two-
component SO-coupled BEC, from miscible when V , Vc to immis-
cible when V . Vc.

Even below Vc, s slowly increased with increasing V. To understand
this effect, we numerically solved the two-dimensional spinor Gross–
Pitaevskii equation in the presence of a trapping potential. This
demonstrated that the differential interaction term c2 r̂2

;{r̂2
:

� �.
2 in

ĤI favours slightly different density profiles for each spin component,
while the c2zc’:;

� �
r̂:r̂; term favours matched profiles. Thus, as

c2zc’:; approached zero from below this balancing effect decreased,
causing s to increase.

An infinite system should fully phase separate (s 5 1) for all V . Vc.
In our finite system, the boundary between the phase-separated spins,

set by the spin-healing length (js~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�2m c2zc’:;

�� ��nq
, where n is the

local density), can be comparable to the system size. We interpret the
increase of s above Vc as resulting from the decrease of js with increas-
ing V.

We realized SO coupling in an 87Rb BEC, and observed a quantum
phase transition from spatially mixed to spatially separated. By oper-
ating at lower magnetic field (with a smaller quadratic Zeeman shift),
our method extends to the full F 5 1 or F 5 2 manifold of 87Rb or 23Na,
enabling a new kind of tuning for spinor BECs, without the losses
associated with Feshbach tuning25. Such modifications may allow
access to the expected non-abelian vortices in some F 5 2 conden-
sates26. Because our SO coupling is in the small V limit, this technique
is practical for fermionic 40K, with its smaller fine-structure splitting
and thus larger spontaneous emission rate27. When the Fermi energy
lies in the gap between the lower and upper bands (for example,
Fig. 1b) there will be a single Fermi surface; this situation can induce
p-wave coupling between fermions28 and more recent work anticipates
the appearance of Majorana fermions29.

METHODS SUMMARY
System preparation. Our experiments began with nearly pure 87Rb BECs of
approximately 1.8 3 105 atoms in the jF 5 1, mF 5 21æ state30 confined in a
crossed optical dipole trap. The trap consisted of a pair of 1,064-nm laser beams
propagating along x̂{ŷ (1/e2 radii of wx̂zŷ<120 mm and wẑ<50 mm) and {x̂{ŷ
(1/e2 radii of wx̂{ŷ<wẑ<65 mm).

We prepared equal mixtures of jF 5 1, mF 5 21æ and j1, 0æ using an initially off-
resonant radio-frequency magnetic field Brf tð Þx̂. We adiabatically ramped d to
d < 0 in 15 ms, decreased the radio-frequency coupling strength Vrf to about
150 Hz, which is much less than Bvq, in 6 ms, and suddenly turned off Vrf,
projecting the BEC into an equal superposition of jmF 5 21æ and jmF 5 0æ. We
subsequently ramped d to its desired value in 6 ms and then linearly increased the
intensity of the Raman lasers from zero to the final coupling V in 70 ms.
Magnetic fields. Three pairs of Helmholtz coils, orthogonally aligned along x̂zŷ,
x̂{ŷ and ẑ, provided bias fields (Bx1y, Bx2y, and Bz). By monitoring the jF 5 1,
mF 5 21æ and j1, 0æ populations in a nominally resonant radio-frequency dressed
state, prepared as above, we observed a short-time (less than about 10 min) root-
mean-square field stability gmBBRMS=h=80 Hz. The field drifted slowly on longer
timescales (but changed abruptly when unwary colleagues entered through our
laboratory’s ferromagnetic doors). We compensated for the drift by tracking the
radio-frequency and Raman resonance conditions.

The small energy scales involved in the experiment meant that it was crucial to
minimize magnetic field gradients. We detected stray gradients by monitoring the
spatial distribution of jmF 5 21æ–jmF 5 0æ spin mixtures after TOF. Small magnetic
field gradients caused this otherwise miscible mixture to phase-separate along the
direction of the gradient. We cancelled the gradients in the x̂{ŷ plane with two pairs
of anti-Helmholtz coils, aligned along x̂zŷ and x̂{ŷ, to gmBB’=h =0.7 Hzmm21.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Measurement of a mixed-spin-channel Feshbach resonance in 87Rb. Phys. Rev. A
69, 032705 (2004).

26. Kobayashi, M., Kawaguchi, Y., Nitta, M. & Ueda, M. Collision dynamics and rung
formation of non-abelian vortices. Phys. Rev. Lett. 103, 115301 (2009).

27. Goldman, N. et al. Realistic time-reversal invariant topological insulators with
neutral atoms. Phys. Rev. Lett. 105, 255302 (2010).

28. Zhang, C., Tewari, S., Lutchyn, R. M. & Das Sarma, S. px 1 ipy superfluid from s-wave
interactions of fermionic cold atoms. Phys. Rev. Lett. 101, 160401 (2008).

29. Sau, J. D., Tewari, S., Lutchyn, R. M., Stanescu, T. D. & Das Sarma, S. Non-
Abelian quantum order in spin-orbit-coupled semiconductors: search for
topological Majorana particles in solid-state systems. Phys. Rev. B 82, 214509
(2010).

30. Lin, Y.-J., Perry, A. R., Compton, R. L., Spielman, I. B. & Porto, J. V. Rapid production
of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential.
Phys. Rev. A 79, 063631 (2009).

Acknowledgements We thank E. Demler, T.-L. Ho and H. Zhai for conceptual input; and
we appreciate conversations with J. V. Porto and W. D. Phillips. This work was partially
supported by ONR, ARO with funds from the DARPA OLE programme, and the NSF
through the Physics Frontier Center at the Joint Quantum Institute. K.J.-G.
acknowledges CONACYT.

Author Contributions All authors contributed to writing of the manuscript. Y.-J. L. led
the data-taking effort in which K.J.-G. participated. I.B.S. conceived the experiment;
performed numerical and analytic calculations; and supervised this work.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Readers are welcome to comment on the online version of this article at
www.nature.com/nature. Correspondence and requests for materials should be
addressed to I.B.S. (ian.spielman@nist.gov).

RESEARCH LETTER

8 6 | N A T U R E | V O L 4 7 1 | 3 M A R C H 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

www.nature.com/nature
http://arxiv.org/abs/1008.5378
http://arxiv.org/abs/1008.4864
http://arxiv.org/abs/1007.0650
www.nature.com/reprints
www.nature.com/nature
mailto:ian.spielman@nist.gov


METHODS
System preparation. Our experiments began with nearly pure 87Rb BECs of
approximately 1.8 3 105 atoms in the jF 5 1, mF 5 21æ state30 confined in a
crossed optical dipole trap. The trap consisted of a pair of 1,064-nm laser beams
propagating along x̂{ŷ (1/e2 radii of wx̂zŷ<120 mm and wẑ<50 mm) and {x̂{ŷ
(1/e2 radii of wx̂{ŷ<wẑ<65 mm).

We prepared equal mixtures of jF 5 1, mF 5 21æ and j1, 0æ using an initially off-
resonant radio-frequency magnetic field Brf tð Þx̂. We adiabatically ramped d to
d < 0 in 15 ms, decreased the radio-frequency coupling strength Vrf to about
150 Hz, which is much less than Bvq, in 6 ms, and suddenly turned off Vrf,
projecting the BEC into an equal superposition of jmF 5 21æ and jmF 5 0æ. We
subsequently ramped d to its desired value in 6 ms and then linearly increased the
intensity of the Raman lasers from zero to the final coupling V in 70 ms.
Magnetic fields. Three pairs of Helmholtz coils, orthogonally aligned along x̂zŷ,
x̂{ŷ and ẑ, provided bias fields (Bx1y, Bx2y, and Bz). By monitoring the jF 5 1,
mF 5 21æ and j1, 0æ populations in a nominally resonant radio-frequency dressed
state, prepared as above, we observed a short-time (less than about 10 min) root-
mean-square field stability gmBBRMS=h=80 Hz. The field drifted slowly on longer
timescales (but changed abruptly when unwary colleagues entered through our
laboratory’s ferromagnetic doors). We compensated for the drift by tracking the
radio-frequency and Raman resonance conditions.

The small energy scales involved in the experiment meant that it was crucial to
minimize magnetic field gradients. We detected stray gradients by monitoring the
spatial distribution of jmF 5 21æ–jmF 5 0æ spin mixtures after TOF. Small mag-
netic field gradients caused this otherwise miscible mixture to phase-separate
along the direction of the gradient. We cancelled the gradients in the x̂{ŷ plane
with two pairs of anti-Helmholtz coils, aligned along x̂zŷ and x̂{ŷ, to
gmBB’=h =0.7 Hzmm21.
SO-coupled Hamiltonian. Our system30 consisted of a F 5 1 BEC with a bias
magnetic field along ŷ at the intersection of two Raman laser beams propagating
along x̂zŷ and {x̂zŷ with angular frequencies vL and vL 1DvL, respectively.
The rank-1 tensor light shift of these beams produced an effective Zeeman mag-
netic field along the z direction with Hamiltonian ĤR~VR�s3,zcos 2kLx̂zDvLtð Þ,
where �s3,x,y,z are the 3 3 3 Pauli matrices and we define �13 as the 3 3 3 identity
matrix. If we take ŷ as the natural quantization axis (by expressing the Pauli
matrices in a rotated basis �s3,y?�s3,z , �s3,x?�s3,y and �s3,z?�s3,x) and make the
rotating wave approximation, the Hamiltonian for spin states {jmF 5 11æ, j0æ,
j21æ} in the frame rotating at DvL is:

Ĥ3~
B2k̂2

2m
�13 z

3d=2zBvq 0 0

0 d=2 0

0 0 {d=2

0
BB@

1
CCAz

VR

2
�s3,xcos 2kLx̂ð Þ{ VR

2
�s3,ysin 2kLx̂ð Þ

ð2Þ

As we justify below, jmF 5 11æ can be neglected for large enough Bvq, which gives
the effective two-level Hamiltonian:

Ĥ2~
B2k̂2

2m
�1 z

d

2
�szz

V

2
�sxcos 2kLx̂ð Þ{ V

2
�sysin 2kLx̂ð Þ

for the pseudo-spins j"æ 5 jmF 5 0æ and j#æ 5 j21æ where V~VR
� ffiffiffi

2
p

. After a
local pseudo-spin rotation by h x̂ð Þ~2kLx̂ about the pseudo-spin ẑ axis followed
by a global pseudo-spin rotation �sz?�sy , �sy?�sx and �sx?�sz , the 2 3 2
Hamiltonian takes the SO-coupled form:

Ĥ2~
B2k̂2

2m
�1 z

V

2
�szz

d

2
�syz2

B2kLk̂x

2m
�syzEL �1

The SO term linear in k̂x results from the non-commutation of the spatially
dependent rotation about the pseudo-spin z axis and the kinetic energy.
Effective two-level system. For atoms in jmF 5 21æ and jmF 5 0æ with velocities
B x=m<0 and Raman-coupled near resonance, d < 0, the jmF 5 11æ state is
detuned from resonance owing to the Bvq 5 3.8EL quadratic Zeeman shift. For
d=4EL=1 and V , 4EL, we have D(V, d) < d[1 2 (V/4EL)2]1/2.
Effect of the neglected state. In our experiment, we focused on the two-level
system formed by the jmF 5 21æ and jmF 5 0æ states. We verified the validity of
this assumption by adiabatically eliminating the jmF 5 11æ state from the full
three-level problem. To second-order in V, this procedure modifies the detuning
d and SO-coupling strength a in equation (1) by:

d 2ð Þ~
V

2

� �2 1
4ELzBvq

<
1

32
V2

EL

a 2ð Þ~
V

2

� �2
a

4ELzBvq
� �2 <

a

256
V

EL

� �2

In these expressions, we have retained only the largest term in a 1/vq expansion. In
our experiment, where Bvq 5 3.8EL, d is substantially changed at our largest coup-
ling V 5 7EL. To maintain the desired detuning d in the simple two-level model (that
is, D < d 1 d(2) 5 0 in Fig. 1c), we changed gmBB0 by as much as 3EL to compensate
for d(2). We did not correct for the change to a, which was always small.

Although both terms are small at the V 5 0.2EL transition from miscible to
immiscible, slow drifts in B0 prompted us to locate D 5 0 empirically from the
equal-population condition, NT"9 5 NT#9. As a result, d in equation (1) implicitly
includes the perturbative correction d(2).
Origin of the effective interaction term. The additional c’:; term in the inter-
action Hamiltonian for dressed spins directly results from transforming into the
basis of dressed spins, which are:

:’,Kxj i< :, x~Kxzq:zkL

�� 	
{e ;, x~Kxzq:{kL

�� 	
and

;’,Kxj i< ;, x~Kxzq;{kL

�� 	
{e :, x~Kxzq;zkL

�� 	
ð3Þ

where BKx/m is the group velocity, Kx 5 q 2 q" for j"9æ and Kx 5 q 2 q# for j#9æ,
and e ~V=8EL=1. Thus, in second quantized notation, the dressed field opera-
tors transform according to:

ŷ: rð Þ~ŷ:’ rð Þze e2ikLxŷ;’ rð Þ

and

ŷ; rð Þ~ŷ;’ rð Þze e{2ikLxŷ:’ rð Þ

where q:<{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4e2
p

kL<{kL and q;<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4e2
p

kL<kL. Inserting the trans-
formed operators into:

ĤI~
1
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d3r c0z
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� �
r̂;zr̂:
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z

c2

2
r̂2
;{r̂2

:

� �
zc2r̂;r̂:

h i

gives the interaction Hamiltonian (with normal ordering implied) for dressed
spins which can be understood order-by-order (both c2/c0 and e are treated as
small parameters). In this analysis, the terms proportional to c2 are unchanged to
the order of c2/c0, and we only need to evaluate the transformation of the spin-
independent term (proportional to c0). At O eð Þ and O e3ð Þ all the terms in the
expansion include the high-spatial-frequency prefactors e+2ikLx or e+4ikLx . For
density distributions that vary slowly on the l/2 length scale these average to zero.
The O e2ð Þ term, however, has terms without these modulations, and is:

Ĥ e2ð Þ
I ~

1
2

ð
d3r 8c0e2ŷ{

;’ŷ
{
:’ŷ;’ŷ:’

� �

giving rise to c’:;~c0V2
�

8E2
L

� �
.

Mean field phase diagram. We compute the mean-field phase diagram for a
ground-state BEC composed of a mixture of dressed spins in an infinite homo-
geneous system. This applies to our atoms in a harmonic trap in the limit of R?js,

where R is the system size, js~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�2m c2zc’:;

�� ��nq
is the spin healing length and

n is the density. We first minimize the interaction energy ĤI at fixed N"9,#9, with an
effective interaction c’:; as a function of V. The two dressed spins are either phase-
mixed, both fully occupying the system’s volume V, or phase-separated with a
fixed total volume constraint V 5 V"9 1 V#9. For the phase-separated case, min-
imizing the free energy gives the volumes V"9 and V#9, determined by N"9,#9 and V.
The interaction energy of a phase-mixed state is smaller than that of a phase-
separated state for the miscibility condition c0zc2zc’:;

�
2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 c0zc2ð Þ

p
, cor-

responding to V , Vc. This condition is independent of N"9,#9: for any N"9,#9 the
system is miscible at V , Vc. Then, at a given V, we minimize the sum of the
interaction energy and the single-particle energy from the Raman detuning,
(N"9 2 N#9)d/2, allowing N"9,#9 to vary. For the miscible case (V , Vc), the BEC
is a mixture with fraction N;’

�
N:’zN;’
� �

[ 0,1ð Þ only in the range of detuning
d[ d0{Wd,d0zWdð Þ, where d0 5 c2n/2, Wd 5 jd0j(1 2 V/Vc)

1/2 and
n 5 (N"9 1 N#9)/V. For the immiscible case (V . Vc), Wd 5 (c2/8c0)c2n is neg-
ligibly small compared to c2n.

Figure 2b shows the mean field phase diagram as a function of (V, d), where d/EL

is displayed with a quasi-logarithmic scaling, using the sign function sgn(d/
EL)[log10(jd/ELj1 jdmin/ELj) 2 log10jdmin/ELj], in order to display d within the
range of interest. This scaling function smoothly evolves from logarithmic, that
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is, approximately sgn(d/EL)log10jd/ELj for dj j?dmin, to linear, that is, approxi-
mately d for dj j=dmin, where dmin/EL 5 0.001EL 5 1.5 Hz.

In our measurement of the dressed spin fraction f#9 (see Fig. 3a), d 5 0 is
determined from the NT"9 5 NT#9 condition. We identify this condition as
d 5 d0 and apply it for all hold times th. Because jd0j< 3 Hz is below our appro-
ximately 80-Hz root-mean-square field noise, we are unable to distinguish d0

from 0.
Recombining TOF images of dressed spins. To probe the dressed spin states
(equation (3)), each of which is a spin and momentum superposition, we adiabatically
mapped them into bare spins, :, x~q:zkL

�� 	
and ;, x~q;{kL

�� 	
, respectively.

Then, in each image outside an ,90-mm radius disk containing the condensate for
each spin distribution, we fitted nT"9,T#9(x, y) to a gaussian modelling the thermal
background and subtracted that fit from nT"9,T#9(x, y) to obtain the condensate two-
dimensional density n"9,#9(x, y). Thus, for each dressed spin we readily obtained the
temperature, total number NT"9,T#9, and condensate densities n"9,#9(x, y).

To analyse the miscibility from the TOF images where a Stern–Gerlach gradient
separated individual spin states, we re-centred the distributions to obtain n"9(x, y)
and n#9(x, y). This took into account the displacement due to the Stern–Gerlach
gradient and the non-zero velocities B x=m of each spin state (after the adiabatic
mapping). The two origins were determined in the following way: we loaded the
dressed states at a desired coupling V but with detuning d chosen to put all atoms
in either j#9æ or j"9æ. Because q:,;~+ 1{V2

�
32E2

L

� �
kL (see Fig. 1c), these velo-

cities B x=m~B q:zkL
� ��

m, B q;{kL
� ��

m depend slightly on V, and our tech-
nique to determine the origin of the distributions accounts for this effect.
Calibration of Raman coupling. Both Raman lasers were derived from the same
Ti:sapphire laser at l < 804.1 nm, and were offset from each other by a pair of
acousto-optic modulators driven by two phase-locked frequency synthesizers near
80 MHz. We calibrated the Raman coupling strength V by fitting the three-level
Rabi oscillations between the mF 5 21, 0 and 1 1 states driven by the Raman
coupling to the expected behaviour.
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