Understanding Combustion Promotion by Halogenated Fire Suppressants

Project Status Review Webex Meeting for The Boeing Corporation Sept. 21, 2010

Greg Linteris, *NIST Fire Research* Jeff Manion / Wing Tsang / Don Burgess, *NIST Chemical Kinetics* Harsha Chelliah, *Univ. of Virginia* Vish Katta, *Innovative Scientific Solutions, Inc.* Fumi Takahashi, *Case Western Reserve Univ.*

CASE WESTERN RESERVE

National Institute of Standards and Technology Building and Fire Research Laboratory

Goals

Understand the overpressure phenomena in the FAA Aerosol Can Test

- 1. Why is the overpressure occurring with the added suppressants?
- 2. What can be done about it?

FAA Aerosol Can Simulator

Approach

Progress

Background

Thermodynamic Equilibrium Calculations Kinetic Mechanism Development Measurement of 2-BTP Decomposition Perfectly-Stirred Reactor (PSR) Calculations Diffusion Flame Calculations (Cup Burner) Homogeneous Auto-Ignition (PFR) Calculations Diffusion Flame Calculations (Counterflow) Premixed Flame Calculations (PREMIX)

Background:

Previous findings

Flame Extinction

Background:

Chemical Time:

$$\tau_c \equiv \rho / W = \rho c_F^{-n} c_O^{-m} A^{-1} \exp(E / RT).$$

Flow Time:

 $\tau_r = \ell / v$

- T_{aft} is high for all η.

- Change in behavior at [X]/[H]=1 (about 7.5 % HFC-125, red curve above).
- With large amounts of agent, a wide range of η gives nearly equivalent T_{aff}.
- As agent is added, more and more chamber volume is necessary to achieve stoichiometric combustion.
- Where flame goes out (X=13.5 %), all the chamber volume is involved in combustion (i.e., η=1).

2-BTP: Adiabatic Flame Temperature (T_{aff})

Thermodynamic Equilibrium Calculations

- T_{aft} is high for all η .

- most of the plot is below [X]/[H]=1 (about 6 % 2-BTP), so can't see change at [X]/[H]=1 .
- With large amounts of agent, a wide range of η gives equivalent T_{aft}.
- As agent is added, more and more chamber volume is necessary to achieve stoichiometric combustion.
- Where flame goes out (X_i=6 %), all the chamber volume is involved in combustion (i.e., η=1).

Halon 1301: Adiabatic Flame Temperature (T_{aft}) Thermodynamic Equilibrium Calculations

- most of the plot is below [X]/[H]=1 (about 11 % CF₃Br), so can't see change at [X]/[H]=1 .
- The amount of chamber volume for peak T_{aft} does not change with X_i.
- $CF_3Br + 2H_2O = 3HF + HBr + CO_2$, -Why? =>
- -i.e., there's always enough H and O in the system to oxidize the CF₃Br without more air!
- The T_{aff} is very sensitive to η .

Thermodynamic Equilibrium Calculations

What do they tell us about the maximum pressure rise?

HFC-125: Predicted Pressure Rise

Thermodynamic Equilibrium Calculations

- The higher η , the greater ΔP (more reactants, more heat release, more expansion of hot products—since the oxidizer also includes a "fuel" species).

- The actual fraction of chamber volume (oxidizer) which can react has a large influence on ΔP .
- Equilibrium thermodynamics predicts the final pressure quite well.
- Why does the agent not reduce the extent of reaction?

Thermodynamic Equilibrium Calculations

- Equilibrium thermodynamics predicts the final pressure quite well.
- Why does the agent not reduce the extent of reaction?

Halon 1301: Predicted Pressure Rise

Thermodynamic Equilibrium Calculations

- Higher η has very little effect on ΔP .

- At η of peak T_{aft}, or CO₂, the ΔP is constant! => can't use pressure rise to determine η .

- Actual ΔP is always less than predicted. This due to a chemical kinetic effect, but is it from Br or from reduced temperature (i.e., from mixing-induced dilution)?

=> MUST LOOK AT THE KINETICS TO FIND OUT!

Halon 1301: Predicted Pressure Rise

Thermodynamic Equilibrium Calculations

- As X_i of agent goes up, ΔP will increase for R-125 and 2-BTP, but not for 1301.

=> MUST LOOK AT THE KINETICS TO FIND OUT WHY!

Kinetic Mechanism Development

CH4-air premixed flame, 0, 4, and 6 % R-125

Currently developing these charts for HFC-125 with propane and ACT.

Kinetic Mechanism Development

Sub-Mechanisms

Aersol Can Test Mechanism:

	Species	Reactions	
C ₄ hydrocarbon mechanism from Wang	111	784	
Ethanol mechanism of Dryer	5	36	
HFC mechanism from NIST ^{1,2}	51	600	
CF ₃ Br mechanism of Babushok (NIST) ²	10	122	
	177	1494	

¹ Updated rates from more recent literature, additional rates of fuel radical reaction with R-125.

² Validation: CH₄-air and CH₃OH systems (with CHF₃, C₂H₂F₄, C₂HF₅, CF₃Br, C₃HF₇):

premixed flame speed,

- species profiles in low-pressure premixed flames,
- extinction strain rate for counterflow diffusion flames,

- cup-burner extinction.

Kinetic Mechanism Development :

Measurements of 2-BTP Decomposition

- Can't do calculations yet for 2-BTP because there's no mechanism for its initial decomposition.

- Once we have its decomposition to HFC and HBrC fragments, it will feed into the overall NIST HFC mechanism.

- So, we must first estimate/measure/calculate its decomposition.

Kinetic Mechanism Development : Measurements of 2-BTP Decomposition

Single Pulse Shock Tube

Characteristics:

- System heated to 100 °C
- *τ* = (500 ± 50) μs (monitored with pressure transducers)
- Typical shock conditions: 2-6 bar, 900 – 1250 K

Advantages of Shock Tube for Gas Kinetic Studies:

- Essentially a pulse heater, $\tau = (500 \pm 50) \,\mu s$
- No surface induced chemistry (diffusion slow compared with τ)
- Use of dilute conditions, radical chain inhibitors, sensitive GC/MS analysis
 → isolation of initial processes, observation of multiple channels

Studies of 2-BTP Decomposition

Unimolecular (initial studies):

- HBr elimination from 2-BTP ca. 100x slower than unfluorinated analog
- Initial kinetic studies show some interference from radical induced decomposition (work in progress)
- Slow rate suggests importance of radical processes in practical systems

Bimolecular decomposition induced by reactive radicals (e.g. H atoms):

$H + 2-BTP \rightarrow Products$

- Initial studies show products indicating displacement and abstraction of Br as major channels.
- But product spectrum more complex than expected with some as yet unidentified species.
- Work in progress to determine mechanism and kinetics.

Perfectly-Stirred Reactor (PSR) Calculations

- -Used to estimate the overall chemical reaction rate.
- Performed for R-125, 1301, and 1301 with N2.

Assumptions:

- specified premixed inlet conditions.
- adiabatic (no heat losses), no species reaction at the walls.
- perfectly stirred (outlet conditions are the same as the reactor conditions).
- steady-state operation.

Perfectly-Stirred Reactor (PSR) Calculations

Calculation method

- 1. We want a measure of τ_{chem}
- 2. At the blow-out condition, $\tau_{chem} = \tau_{flow}$
- To find the blow-out condition, calculate T_{psr} at decreasing values of the residence time, τ_{flow}, until the time is too short for reaction to occur (T_{psr} drops to inlet temperature (blow-out).

Perfectly-Stirred Reactor (PSR)

Overall Chemical Rate with R-125

 $\label{eq:charge} \begin{array}{l} - \mbox{Adding R-125 lowers } \omega_{\mbox{chem}} \mbox{ for rich mixtures (low η), but raises (then lowers) it for lean mixtures (high η). \\ -\eta \mbox{ has a big effect on overall chemical rate at low X_{μ} less effect at high X_i (follows temperature results). \\ - \mbox{ i.e., for higher X_{μ} these curves flatten ($\omega_{\mbox{chem}}$ is insensitive to η for $\eta > 0.4$). } \end{array}$

- Assuming a constant ω_{chem} for extinction (reasonable first cut) implies η increases as X₀₂ decreases. => reasonable, but is it really true?

Equilibrium and PSR Calculations Indicate:

=> In the FAA ACT with R-125 or 2-BTP, to achieve the observed pressure rise, a large fraction of the chamber volume (with the agent) must be involved in the combustion.

=> Thus, the agents are not inert, but rather, act like poorly-burning fuels.

=> Unlike in other flames, very little kinetic inhibition is occurring with R-125 and 2-BTP; whereas, CF_3Br does inhibit the flame, as expected.

=> The amount of chamber volume involved in the combustion, η , appears to be a key parameter controlling the behavior (i.e., the kinetic inhibition by CF₃Br is very sensitive to η , but R-125 is not).

Simulations with 2-BTP should be able to tell us why 2-BTP, which has a Br, does not inhibit the flame (but is expected to).

Diffusion Flame Calculations (Cup Burner)

0 % CO₂

Diffusion Flame Calculations (Cup Burner):

UNICORN Simulations

UNICORN

(UNsteady Ignition and COmbustion with ReactioNs)

Time-dependent, axisymmetric reacting flows are simulated by solving full Navier-Stokes equations.

Momentum Equations --- QUICKEST Scheme (3rd order accurate in time, 4th order accurate in space)

Pressure Field --- Direct solution of Poisson Equations

Species and Enthalpy --- Hybrid scheme of Upwind and Central Differencing

Turbulence---- k-& model

Radiation---- Optically thin-media assumption

Soot---- Detailed kinetics for gas phase and a two-equation model for solid phase

Detailed Chemistry Models.

Diffusion Flame Calculations (Cup Burner)

Diffusion Flame Calculations (Cup Burner):

Goals

Cup burner calculations can tell us :

- 1. What is the inerting concentration for ACT fuel, and why?
- 2. What is happening to the flame chemistry as X_i increases, for 1301 or R-125?
- 3. How does agent react in a partially-premixed environment?

Diffusion Flame Calculations (Cup Burner)

Results

Diffusion Flame Calculations (Cup Burner)

Results

Propane-air ACT_{fuel}-air

¹% by volume.

Anon. (2004)

Anon. (2004) Kondo et al. (2009)

Calculated MECs This study (1g_n)

This study (0g)

Linteris (1995, 2007),

Mean

Mean

Measured Inerting Concentrations Moore et al. (1995)

Linteris et al. (2007)

²A gas mixture of propane, 15.9 %; ethanol, 45.4 %; and water, 38.7 % by volume ³Abrupt blowoff.

8.7

8.8

4.3

3.67

6.2

6.2

2.86 8.6

2.59³

10.2

10.25

15.7

14.8

15.25

15.1

3.65

2.22 9.05

1.85³ 16.2

3.1

3.12 8.88

Propane with R-125

Propane with R-125

Premixed Flame Calculations (Counterflow)

Propane with R-125

Propane/Air Opposing Jet Diffusion Flame

	X _{R-125} ext (Calculated)		X _{CF3Br∣ext} (Calculated)	
100	0.075	~0.077	0.021	~0.022
250	0.039	~0.04	0.014	~0.015
500	0.0092	~0.01	0.0018	~0.0018

Air-side strain rates Agent was added to the air jet

- Experimental and simulated (UNICORN) extinction conditions in the counterflow diffusion flame (propane) agree well.

- This gives us confidence in the mechanism, and the numerical simulations, so they can be used to understand the overpressure causes.

Homogeneous Auto-Ignition Calculations

Used to estimate the time to ignition for a homogeneous mixture of reactants (describes the ignition propensity; i.e., ignition chemistry can be different from flame chemistry).

Assumptions:

specified premixed inlet composition, T_{init}, and fixed P.
adiabatic (no heat losses), no species reaction at the walls.
homogeneous mixture (no transport).
time-varying behavior.

ACT Fuel Only

Summary of Progress

- 1. Literature reviewed.
- 2. Thermodynamic data obtained.
- 3. Kinetic mechanism for R-125 assembled, tested, updated.
- 4. Thermodynamic data for 2-BTP
- 5. IR emission data for HF, and COF₂.
- 6. Wrote pre- and post-processors for all the numerical codes.
- 7. Initital shock-tube results for 2-BTP decomposition obtained.
- 8. Calculations (finished or in progress) for R-125:
 - -Equilibrium
 - -PSR
 - -Ignition
 - -Counterflow burner
 - -Cup burner
 - -Premixed
- 9. FAA ACT data obtained and compared with above.
- 10. New test chamber
 - -specified, drawn, in machine shop -sensors ordered and/or obtained -Image analysis program written

Future Plans

- 1. Perform further analysis of simulations in progress to understand reasons for lack of kinetic inhibition with R-125.
 - Perform 2-D, axi-symmetric, unsteady simulations for a turbulent fuel jet to understand the effects of mixing on the extinction.
 - Repeat existing calculations at higher pressure.
- 2. Perform large-scale tests in cooperation with the FAA Technical Center to test our understanding.

3. 2-BTP:

- measure and estimate decomposition rate
- develop kinetic mechanism
- perform calculations
- analyze results to understand lack of kinetic effect with 2-BTP
- 4. Develop a new laboratory-scale experiment to:
 - validate our understanding (e.g., $\eta,$ pressure effects), and the mechanisms.
 - explore range of conditions for which inhibition/enhancement occurs
 - rapidly screen new agents.
- 5. A Ph.D. student, and a Prof. at U. Maryland have applied for a NIST/ARRA Fellowship to work on this problem.

New Constant-Volume Combustion Device

Photo Courtesy of Prof. Li, Purdue

Key Questions Still to Answer

- 1. Is the amount of involved oxidizer the key feature?
- 2. Does the agent reaction rate affect the strain conditions in the FAA ACT?
- 3. Why are the kinetics with R-125 not slower (i.e., slow enough for extinguishment)?
- 4. Does Br help slow the kinetics with 2-BTP?
- 5. Is the overpressure due to a pressure enhancement of the agent flammability?
- 6. Is the inerting concentration required for suppression?
- 7. Is there any way around the undesired results?

New UNICORN Simulations

Questions?

Publications

Katta, V.R. et al. "Effects of halon replacements on burning characteristics of test fuels." to be presented at the 49th Aerospace meeting in Orlando, 4-7 January 2011.

Linteris, G.T., Takahashi, F., Katta, V.R., and Chelliah, H.K., "Thermodynamic analysis of suppressant-enhanced overpressure in the FAA Aerosol Can Simulator," to be submitted to *Fire Safety Science -- Proceedings of the Tenth International Symposium*, International Association of Fire Safety Science, 2010.