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Abstract. This chapter describes the theory of carrier transport in two dimensional
graphene sheets. At high carrier density, the conductivity of graphene depends on
carrier density, the dielectric constant of the substrate and the properties of the
impurity potential, which can all can be treated using the Boltzmann transport
formalism. At low carrier density, disorder causes the local random fluctuations in
carrier density to exceed the average density. As a consequence, the carrier transport
at the Dirac point is highly inhomogeneous. The ensemble averaged properties of
these puddles of electrons and holes are described by a self-consistent theory, and
the conductivity of this inhomogeneous medium is given by an effective medium the-
ory. Comparing this transport theory with the results of representative experiments
rigorously tests it validity and accuracy.

12.1 Introduction

Graphene has emerged as an exciting new material with remarkable technolog-
ical promise and fascinating theoretical possibilities. On the materials front,
graphene is the strongest measured material [1], has demonstrated superior-
ity over conventional materials for high frequency applications [2] and has the
highest phonon-limited mobility at room-temperature of any known semicon-
ductor [3]. It was recently demonstrated that graphene is a cheap and versatile
transparent conductor suitable for touch-screen and solar cell applications [4].
On the theoretical front, among many exciting proposals, graphene’s Weyl-
Dirac description gives rise to: a quantum critical Dirac point where perfectly
clean graphene at zero temperature has no intrinsic length scale (see e.g.
Ref. [5]); a topological symmetry that enables graphene to evade Anderson
localization in the absence of a magnetic field [6–8]; and the possibility for
the emergence of novel quantum states [9]. But at the heart of graphene stud-
ies and its subsequent electronic applications is to understand and explain
the first measurements [10–13] of carrier transport in these single-atom-thick
planer sheets of carbon atoms.
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The electronic structure of graphene was discussed in Ch. 8. The sub-
ject of this chapter is to understand the transport mechanisms in these 2D
graphene sheets. The result is a complex interplay of weak disorder, weak
electron-electron interactions and some quantum mechanics that conspire to-
gether to give the constant mobility at high carrier density and the minimum
conductivity plateau at low density [14].

The purpose of this chapter is not to be a review of the graphene transport
literature; indeed, three such reviews became available recently [15–17], and
all of the material covered here can be found in either Ref. [15] or Ref. [18],
which provide the full context, history and shortcomings of this work as well
as a comprehensive comparison with alternative theoretical approaches. Nor
is this intended to be a substitute for the original literature; rather, it is a
presentation of the main concepts leading up to the calculation of graphene’s
conductivity in a coherent and pedagogical manner, providing extended de-
tails (beyond those available in the terse format of the original articles) so that
a motivated graduate student could reproduce the calculations, while simulta-
neously highlighting with broad strokes the essential insights that motivated
those calculations.

Our starting point is to appreciate that theoretical studies [19, 20] ante-
ceding graphene’s discovery predicted that graphene should have a universal
minimum conductivity at zero carrier density and a density independent, but
disorder dependent conductivity at high density. The first transport exper-
iments in graphene [10–13] completely defied both these expectations: the
minimum conductivity, while finite, showed significant sample-to-sample fluc-
tuations, and at high carrier density, the conductivity increased linearly with
carrier density.

While some questions still remain, we now more-or-less understand these
trends quantitatively. The theory relies on three important concepts that
make up the core of this chapter. First, graphene’s linear dispersion gives
rise to quite unusual screening properties. In Sec. 12.2.1, screening is treated
within the Random Phase Approximation (RPA), where one finds [21–24] that
graphene behaves like a metal at distances longer than the Fermi wavelength
and like an insulator at shorter distances. It is this unusual screening, for ex-
ample, that results in the inability of graphene to screen out long-range impu-
rity potentials such as charged Coulomb impurities. In this context, the rest of
Sec. 12.2 discusses the semiclassical Boltzmann transport theory for different
impurity models including screened charged impurities [14,21,25,26], Yukawa
potentials [27,28], screened short-range scatterers [29] and midgap states [30],
concluding that charged impurities are likely to be the dominant scattering
mechanism in current transport experiments using exfoliated graphene on in-
sulating substrates.

The self-consistent approximation [14] to describe the ground-state prop-
erties of graphene close to the Dirac point is presented in Sec. 12.3.1. At low
carrier density, the disorder induced fluctuations in the local carrier density
become larger than the average density. The system breaks up into inhomoge-
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neous regions with varying carrier density, commonly referred to as electron
and hole puddles (see Ch. 15 for a discussion of the p-n junctions that form
at the interface of these puddles).

For short-range disorder, this gives rise to an effective carrier density that
scales as the square-root of the areal density of impurities, while for charged
impurities, the problem needs to be solved self-consistently. By mapping the
screened potential onto a Gaussian model, we can solve for all statistical prop-
erties of the electron and hole puddles including their root-mean-square carrier
density and the typical size of a puddle [31]. We show that the predictions of
the self-consistent approximation [14] are in good agreement with numerical
density functional theory results [32, 33] as well as local spectroscopic probes
of graphene [34–37].

In Sec. 12.3.2 we discuss electron transport in this inhomogeneous po-
tential using an effective medium theory [38–40]. This is a systematic tech-
nique to obtain the conductivity of an inhomogeneous material by mapping
it onto a uniform system with the same conductivity. This allows us to de-
scribe the full crossover from the Dirac point, where fluctuations dominate
the transport to high carrier density, where these fluctuations are irrelevant.
In Sec. 12.3.3 we discuss the transport properties at finite temperature, by
including the activated transport in both the electron and hole regimes; and
in a finite magnetic field. In Sec. 12.3.4 we study the quantum transport in
graphene [7] assuming the Gaussian correlated impurity model. By compar-
ing a fully quantum-mechanical numerical calculation of the conductivity to
the semi-classical Boltzmann transport theory, we find that while the two
theories are incompatible at weak disorder, they are compatible for strong
disorder [41]. This result elucidates why quantum corrections are small and
the semi-classical transport theory should dominate in the experimentally rel-
evant regime. By combining these four concepts (i.e. graphene screening, Klein
tunneling, the self-consistent approximation and the effective medium theory),
we summarize our results in Sec. 12.3.5 and demonstrate that four distinct
features of the graphene transport measurements, namely, (i) the shift of the
Dirac point (or charge neutrality point) to a non-zero applied back-gate volt-
age; (ii) the carrier mobility at high density; (iii) the value of the minimum
conductivity and (iv) the width of the minimum conductivity plateau are all
captured by the theory, which depends on only two experimentally tunable
parameters (nimp, which is the areal density of charged impurities, and rs,
which is the effective fine structure constant in graphene determined by its
dielectric environment).

Finally, in Sec.12.4 we discuss a sample of three representative experiments
that confirm the predictions of the theory. The first looks at magnetotransport
data taken from the Manchester group [42] where we demonstrate that having
fixed nimp from the transport data at zero magnetic field, one gets agreement
at weak field for both ρxx(B) and ρxy(B) without introducing any additional
parameters [43]. We then compare the predictions for σmin(nimp) with sev-
eral of the early experiments in the literature including data from Columbia
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group [13] where they found samples with over an order-of-magnitude vari-
ation in the sample mobility, and from Maryland group [44] where they di-
rectly tuned nimp by adding potassium impurities to graphene in ultra-high
vacuum. Finally, we discuss a third experiment, where rs was tuned by de-
positing several monolayers of ice on top of the graphene sheet [28] providing
a parameter-free test of the theoretical predictions. Our main conclusion is
that these experiments (and others) have shown remarkable agreement with
the theoretical predictions discussed in this chapter.

12.2 Graphene Boltzmann transport

The derivation of the semi-classical Drude-Boltzmann transport formalism
can be found in several solid state textbooks [45,46] and is basically a way of
calculating the scattering time τ by accounting for the charge flow into and
out of momentum eigenstates of the disorder-free system caused by the scat-
tering potential. The formalism is considered semi-classical because the carrier
dynamics are assumed to be a classical diffusion process between scattering
centers, but the scattering is assumed to be quantum mechanical (where for
weak disorder, for example, is calculated within the Born approximation1).
For our purposes, this is equivalent to the the leading order diagrammatic
expansion for the current-current correlation function within the Kubo for-
malism in the limit of either vanishing disorder, or when kFℓ ≫ 1, where kF
is the Fermi momentum and ℓ = vFτ is the mean free path.

The result is often expressed as the Einstein relation σ = e2ν(EF)D, where
ν(EF) = 2s2v|EF|/(2π~2v2F) is the density of states at the Fermi energy (only
electrons close to the Fermi energy are involved in transport), and D = v2Fτ/2
is the diffusion constant in two dimensions. The “classical” contribution to
the conductivity is therefore

σ =
2s2ve

2

2h
kFℓ, (12.1)

where 2s accounts for spin degeneracy, and considering the two graphene
valleys as decoupled gives 2v.

The total conductivity, taking into account the next leading order in kFℓ
includes “quantum corrections” ∆σ = ±[2s2ve

2/(πh)] ln(L/ℓ) that we discuss
in Sec. 12.3.4 below. The Boltzmann transport theory gives the mean free
path ℓ = vFτ as

~
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= 2πnimp
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2
δ(EF − εk′). (12.2)

1 The Born approximation treats the scattering potential to leading order. It is not
obvious that attempts to go beyond the approach presented here have provided
a more accurate solution (see discussion in Ref. [15] and Ref. [41]). A critique of
the Born approximation can be found in Ref. [17] and Ref. [47].
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The derivation of this equation is a straight forward extension of the usual
case and will not be done here. Instead we briefly define all the terms and mo-
tivate their origin. nimp is the two dimensional areal density of impurities. As
alluded to above, one can obtain this “classical” limit by considering the case
of vanishing impurity concentration, and the leading order term is therefore
linear in nimp. Built into Eq. 12.2 is the assumption that the impurities are un-
correlated and the concentration is dilute enough so that processes involving
multiple scattering off the same impurity are smaller than the single scat-
tering process. The δ-function guarantees energy conservation and requires
that only the electrons at the Fermi energy participate in the transport, while
q = |k − k′| is the momentum transfer between incoming plane-waves with
wave vector k and outgoing wavefunctions with wavevector k′. Note, k and
k′ lie on different points of the circular Fermi surface of radius kF thereby
defining the scattering angle θ = θkk′ .

What is different for graphene is the “chirality factor” F (θ) which arises
from the fact that the eigenvectors of the Dirac Hamiltonian are plane waves
multiplied by spinors that for momentum states given by kx and ky depend
only on the angle θk = arctan(ky/kx). Computing the overlap between in-
coming and outgoing states involves an overlap of the spinor parts of the
wavefunction, which gives F (θ) = [1+cos(θ)]/2 for Dirac fermions [21,25,26].
A little bit of algebra gives

~

τ
=

4

π

kF
vF

∫ 1

0

dη η2
√

1− η2
∣

∣

∣

∣
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∣

∣

∣

∣

2

, (12.3)

where V (q = 2kFη) is the bare scattering potential and ǫ(q = 2kFη) is
the static dielectric function that accounts for the screening by electrons. It
should be clear from Eq. 12.3 that the nature of both the impurity potential
and the screening function can have a major impact on graphene conductiv-
ity. For example, for unscreened Coulomb scatterers where V (q) ∼ q−1, we
see that τ ∼ kF implying that for fixed impurity concentration, the mean
free path gets smaller (and vanishes) as one approaches the Dirac point (i.e.
kF → 0), whereas for unscreened delta-correlated scatterers defined here as
having V (q) ∼ q0, we get τ ∼ 1/kF and the mean free path gets larger (and
diverges) as one approaches the Dirac point. This strong dependence on im-
purity type that follows directly from applying the rules of the semi-classical
Drude-Boltzmann formalism to graphene can seem counter-intuitive to those
more familiar with transport in conventional 2D systems (the same result is
obtained using diagrammatic perturbation theory or Green’s functions meth-
ods).

The contribution from screening can also seem unusual. As we shall see
below, it turns out, by pure coincidence, that for graphene the Thomas-Fermi
(TF) result is reproduced in the Random Phase Approximation (RPA) even
for q 6= 0. (For q = 0 the agreement between RPA and Thomas-Fermi is
guaranteed by the compressibility sum rule). Within the TF approximation,
we have that ǫ(q, kF) depends on the ratio η = q/(2kF) as
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ǫ(η) = 1 + V (q = 2kFη)ν(EF) = 1 + 2rs/η, (12.4)

where rs = e2/(κ~vF) is the gas parameter defined as the ratio of potential
energy to kinetic energy, which measures the relative strength of the electron-
electron interactions. Equivalently, rs can be thought of as the effective “fine-
structure constant” or coupling constant for interacting Dirac fermions. We
note in passing that for a parabolic dispersion rs ∼ k−1

F so that low carrier
density heralds the strongly interacting regime, while for graphene’s linear
dispersion rs ≈ 2/κ ≤ 2, is density independent.2

One interesting and perhaps unexpected effect is the opposite role of di-
electric screening for Coulomb and short-range impurities. One notices that
increasing the dielectric screening of the environment (i.e. increasing κ or de-
creasing rs) decreases the conductivity for delta-correlated impurities where
V (q) ∼ q0. This is because decreasing rs reduces the electron-electron in-
teractions and therefore the ability of the electron gas to screen the impurity
potential, making the disorder potential appear stronger than before. In sharp
contrast, for Coulomb scatterers where V (q) ∼ e2/(κq) ∼ rs/q, decreasing rs
weakens the impurity potential thereby increasing the conductivity.

While the discussion so far has been somewhat qualitative, the goal for
the remainder of this section is to be more quantitative. The semiclassical
transport result (Eq. 12.3) depends on the interplay between the impurity
potential V (q) and the screening properties of graphene electrons. We will first
discuss the calculation of ǫ(q) within the RPA, followed by the calculation of
the conductivity with different choices for the disorder potential V (q).

12.2.1 Screening: Random Phase Approximation (RPA)

In the modern context3, the RPA approximation is usually understood in
terms of a diagrammatic expansion for the electron gas self-energy (see
Refs. [45, 46]). Within the RPA, the dielectric function is related to the po-
larizability as ǫ(q) = 1 + V (q)Π(q) (see right panel of Fig. 12.1), where Π(q)
(left panel of Fig. 12.1) is the polarizability function (or “pair-bubble”). The
goal of this section is to calculate the pair-bubble for graphene. We now know

2 Here κ is the average of the dielectric constants of the medium above and below
the graphene sheet, and the numerical coefficient (≈ 2) is a material parameter
set by the overlap of the carbon π-orbitals in the honeycomb lattice and the
separation between the carbon atoms set by the σ-bonds.

3 Historically, the RPA was introduced by Bohm and Pines when discussing the
plasma oscillations of the electron gas in the high density limit. In that context,
the approximation corresponds to looking at the Fourier transform of the potential
energy and showing that after subtracting the term that was linear in carrier
density, the sub-leading term had sums over the phase of electrons that depended
on their position. Averaging over position gave a highly oscillatory summand that
would be negligible or equivalent to the vanishing of that sum for random electron
phases.
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Fig. 12.1. Left panel shows diagrammatic representation of the polarization bubble
corresponding to Eq. 12.5. The right panel shows different dielectric functions used
in the literature, including the “Complete Screening” (CS), “Thomas-Fermi” (TF)
and “Random Phase Approximation” (RPA). The inset shows a blow-up at q = 2kF
to show how the “Step Approximation” (SA) given by Eq. 12.10 differs from the
exact result Eq. 12.9.

that both the inter-band and intra-band contributions are important. Histor-
ically, the inter-band contribution was derived much earlier [48] while the full
solution for the graphene polarizability appeared only after the discovery of
graphene [21–24]. Here we follow the derivation by Hwang and Das Sarma
(Ref. [22]).

The polarizability function (see Fig. 12.1) is given by

Π(q) =
2s2v
L2

∑

k,s,s′

f s
k − f s′

k′

εs,k − εs′,k′

1 + ss′ cos θk,k′

2
, (12.5)

where fk is the Fermi distribution, and what is different for graphene is the
sum over both electron bands (s = 1) and hole bands (s = −1) and the
overlap between the spinor components of the wavefunction (see Ref. [21] for
more details). Expanding the sum over band-indices s, s′, once can group the
terms involving f+ and f− separately calling the formerΠ+ and the laterΠ−,
where Π(q) = Π+(q)+Π−(q). This grouping is especially useful since at zero
temperature f+

k = θ(kF − k) and f−
k = 1. One notices that the term Π−(q) is

just the contribution from a completely filled valence band and a completely
empty conduction band (which is also called “intrinsic graphene”), while the
term Π+(q) is the polarizability of, for example, a partially filled electron
band ignoring the valence band. (Particle-hole symmetry means that it is the
same for an empty conduction band with a valence band partially filled with
holes. For simplicity, we assume that EF > 0, where the corresponding results
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for EF < 0 are identical). The intrinsic polarizability is given by4

Π−(q) =
2s2v
~vF

∫

d2k

(2π)2
1− cos θ

|k|+ |k + q| =
2v2sq

16~vF
. (12.7)

Since the intrinsic polarizability is proportional to q, one can immediately
see that the dielectric function becomes independent of q, i.e. ǫ(q) = 1 +
rsπ/2. This result remains correct whenever q ≫ 2kF, where one can then
approximate the graphene polarizability as that of intrinsic graphene. At these
large momenta (or small distances) the existence of a completely filled valence
band means that graphene screens like a dielectric insulator.

In contrast, the contribution Π+(q) is metallic in nature (this is be-
cause particle-hole excitations around the Fermi circle are constrained by
the compressibility sum rule, and these are bounded by the bottom of the
conduction band). To calculate Π+(q), one first notices that the terms that
involve f+

k′ are related to those with f+
k by a change of variable where

Π+(q) = Π+
1 (q) +Π+

1 (−q), and

Π+
1 (q) =

2s2v
~vF

∫

d2k

(2π)2
θ(k − kF)

|k|+ |k + q| cos θkk′

(|k|+ |k + q|) (|k| − |k + q|) ,

=
2s2v
4~vFπ

[

1 +
kF
2π

∫ kF

0

dk

∫ 2π

0

dφ
4k2 − q2

q2 − 2kq cosφ

]

. (12.8)

For |q| < 2kF the integral gives −π|q|/8 and this contribution to Π+ exactly
cancels the intrinsic contribution from Π−, so that the Thomas-Fermi result
Π(q) = ν(EF) = 2kF/(π~vF) works beyond the q → 0 limit.5 Introducing the
variable x = q/2kF and putting everything together, the graphene polariz-
ability is

Π(q = 2kFx)

ν(EF)
=

{

1, for x ≤ 1

1 + πx
4 − x

2 arcsin
(

1
x

)

− 1
2x

√
x2 − 1, for x ≥ 1.

(12.9)

This coincidence of Π(q)/ν(EF) = 1 for q ≤ 2kF also holds for the 2D elec-
tron gas [49] but it is not universally true, e.g. it doesn’t hold for graphene
bilayers (see discussion in Ref. [15]). Moreover, as we shall see in Sec. 12.3
below, the Thomas-Fermi and RPA screening approximations give quantita-
tively different results for the disorder-induced potential fluctuations and the

4 The integral can be done by making the substitution x = |k|−|k+q| and noticing
that

kdk =
1

2

x2 − q2

x + q cos θkq

dx

1 − cos θkk′

. (12.6)

5 The fact that Π(q) = ν(EF) for q ≤ 2kF implies that for high-density transport

properties, the Thomas-Fermi approximation and the RPA give the same results
(notice that Eq. 12.3 only integrates the dielectric function from 0 to 2kF), where
ǫ(q ≤ 2kF) = 1 + V (q)Π(q) = 1 + qs/q.
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resulting graphene minimum conductivity at low carrier density. In this case,
we will need the full dielectric function ǫ(q) = 1 + V (q)Π(q) which can read-
ily be obtained from Eq. 12.9. However, since in such cases we are typically
integrating ǫ(q) over all q, the full RPA result is indistinguishable from the
following Step Approximation (SA) for the dielectric function [14]

ǫ(q) =

{

1 + qs
q , for q ≤ 2kF

1 + rsπ
2 , for q > 2kF.

(12.10)

The graphene dielectric function is shown in Fig. 12.1 where we compare
the Step Approximation (SA) given by Eq. 12.10 with the Thomas-Fermi
(TF), RPA, and Complete Screening (CS) approximations. In this context,
the CS approximation corresponds to the assumption ǫ(q) = qs/q, which can
be thought of as the TF approximation with the additional assumption that
qs ≫ q. However, for monolayer graphene since rs ≤ 2 and qs = 4kFrs, the
condition q ∼ 2kF ≪ 4kFrs is never realized.

12.2.2 Coulomb scatterers

Having established that Eq. 12.3 and Eq. 12.4 remain valid within the RPA,
one can then calculate the transport properties of various scattering poten-
tials. We begin with long-range Coulomb potentials. Taking the 2D Fourier
transform of a charged impurity displaced by a distance d from the 2D plane
in a medium with dielectric constant κ, we get

V (q) =
2πe2

κ

e−qd

q
. (12.11)

Solving Eq. 12.3 gives σ(n, nimp, rs, d). The effect of increasing d is to slightly
increase the conductivity from the d = 0 value [26]. For d ≈ 1 nm, it is
sufficient to use the result for d = 0, in which case, an analytic solution for
σ(n, nimp, rs, d = 0) can be obtained

σ = A[rs]
e2

h

n

nimp
= 20

e2

h

n

nimp
for rs = 0.8. (12.12)

The function A[rs] is shown in Fig. 12.2. To be consistent with the notation
in the original literature, we express A[rs] = F1[x = 2rs]

−1, and

F1(x)

x2
=

π

4
+ 3x− 3x2π

2
+ x(3x2 − 2)

arccos[1/x]√
x2 − 1

. (12.13)

As anticipated in the discussion below Eq. 12.4, A[rs] is a monotonically
decreasing function (see Fig. 12.2) implying that increasing the dielectric
constant of the substrate would increase the graphene mobility provided the
new substrate had a similar number of charge traps. Similarly, for suspended
graphene, one “loses” about a factor of 2 from the decrease of A[rs], but
since by current annealing the sample, one can reduce the impurity density
by more than an order of magnitude, one can still drastically improve the
carrier mobility [50, 51].
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Fig. 12.2. High-density graphene conductivity for different impurity models. Left
panel: Dimensionless coefficients that determine the dependence of the high-density
conductivity on graphene’s effective fine-structure constant rs (see text for details).
For charged impurities, σ = A[rs](e2/h)(n/nimp), while for delta-correlated impu-
rities σ = B[rs](e2/h)σ0. Yukawa-like disorder behaves qualitatively like charged
impurities, σ = C[rs](e2/h)(n/nimp), although as seen in the figure, there are quan-
titative differences. Right panel: Conductivity for the Gaussian correlated impurity
model as a function of πnξ2 for K0 = 1 and K0 = 2. Dashed lines are the high
density asymptote σ = (2

√
πe2/K0h)(2πnξ2)3/2.

12.2.3 Gaussian white noise disorder

White noise disorder is the most common approximation made when dis-
cussing the conductivity of the regular 2D electron gas. One simply assumes
that V (q) is a constant (i.e. independent of q). Mathematically, this corre-
sponds to uncorrelated impurities each expressed as a delta-function in real
space i.e. Vtot(r) = u0

∑N
i=1 δ(r − ri), where the impurities are located at

positions ri with zero range. Physically, this could correspond to atomically
sharp defects such as dislocations or missing atoms (although when calculating
their effect on the conductivity, here we neglect any intervalley transitions).
Solving Eq. 12.3, we find σ = B[rs]σ0, where σ0 is a constant proportional to
(nimpu

2
0)

−1 and B[rs] = (F2[x = 2rs])
−1, where

F2(x) =
π

2
− 16x

3
+ 40x3 + 6πx2 − 20πx4 + 8x2(5x3 − 4x)

arccos[1/x]√
x2 − 1

.

(12.14)

The function B[rs] is shown in Fig. 12.2. We note that as discussed earlier,
B[rs] is a monotonically increasing function of rs since dielectric screening
makes the impurity potential look weaker at larger rs resulting in a larger
conductivity. Also, the functions A[rs] and B[rs] are real and positive for all
values of rs > 0 (i.e. the ratio of arccos(1/x) and

√
x2 − 1 is real, even for

values of x < 1).
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12.2.4 Yukawa potential

In principle, one could calculate the screening properties for any scattering
potential. By comparison with experiment where the dielectric environment
is changed (see Sec. 12.4 below), one could then establish definitively the na-
ture of the disorder impurity potential. In 3D, the Yukawa potential (in real
space) is the Fourier transform of the screened Coulomb potential (in momen-
tum space). However, in 2D we have been unable to obtain a closed-form ana-
lytic expression for the screened Coulomb potential in real-space. Instead, one
could solve for the Boltzmann conductivity for the phenomenological Yukawa
potential where

V (q)

ǫ(q)
=

2πe2

κ

1
√

q2 + q2s
, (12.15)

to find σ = C[rs](e
2/h)(n/nimp), where C[rs] = (F3[x = 2rs])

−1 and

F3(x)

x2
=

π

4
+

πx2

2
− πx

2

√

1 + x2. (12.16)

Qualitatively, the Yukawa potential behaves similarly to the screened
Coulomb potential, but there are quantitative differences. For example, at
rs = 0.8, for the same number of impurities, a graphene sample with Yukawa-
like disorder would have about half the mobility compared to the screened
Coulomb potential. The experiments along the lines discussed in Sec. 12.4
where nimp or rs is tuned in a controlled fashion can discriminate between the
two models.

12.2.5 Gaussian correlated impurities

A very popular choice for impurity potential in graphene is the Gaussian
correlated potential where

〈V (r)V (r′)〉 = K0
(~vF)

2

2πξ2
e−|r−r′|/(2ξ2). (12.17)

This potential has two parameters: K0 is a dimensionless measure of the po-
tential strength and ξ specifies its correlation length. The reason for its wide
use is both theoretical and practical – First, by looking at the dependence on
ξ one can study the crossover from short-range to long-range impurity behav-
ior [52]. Second, the limit n → 0 for ξ = 0 is somewhat uncontrolled in several
respects. Without going into the details, we just point out, as we shall see
below, that many physical quantities (such as the conductivity) depend on
the quantity nξ2 and so keeping a finite ξ allows one to take the limit n → 0.
And finally, unlike the long-range Coulomb potential that can introduce spu-
rious divergences in finite sized numerics, a finite ξ makes these computations
more convergent. There are also some experimental indications that atomic
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hydrogen dopants in graphene give changes to the conductivity that are con-
sistent with the predictions of this Gaussian correlated impurity model [53].
We assume here that the values of K0 and ξ are for a screened impurity po-
tential (see Sec. 12.3.1 below where we give expressions for K0[rs] and ξ[rs]
for a particular mapping of the Coulomb potential). Integrating Eq. 12.3 for
this model, we find [41]

σ(K0, x = nξ2) =
4e2

h

xex

K0I1(x)
, (12.18)

where I1 is the modified Bessel function. Two points are worth making here:
(i) For large carrier density x ≫ 1, the conductivity is super-linear σ ∼ n3/2;
and (ii) In the limit n → 0, the conductivity remains finite (see Fig. 12.2),
although in Sec. 12.3.4 we argue that this is not the origin of the graphene
minimum conductivity even for this choice of impurity potential.

12.2.6 Midgap states

An increasingly popular choice (See e.g. Refs. [17, 30, 54, 55]) for modelling
graphene impurities is the so-called midgap states or resonant scatterer model.
Unlike the other forms of disorder we have examined, where we assume that
the disorder is a small perturbation to the pristine case, these works consider
the impurities to be strong enough to generate extra structure in the density
of states. In the unitary limit (i.e. assuming that the impurities create a
maximal phase-shift of π/2 between incoming and outgoing wavefunctions),
one can show [30, 56]

σ(n) =
2e2

πh

n

nimp
ln2

[√
πnR

]

, (12.19)

where R is the scattering radius of the impurity and nimp is the concentration
of resonant scatterers. As a function of carrier density, the graphene conduc-
tivity in the midgap model looks linear at low carrier density, and is sublinear
at high density, quite similar to the case when one considers the presence of
both Coulomb scatterers and short-range scatterers. Although both of these
scenarios have two adjustable parameters, it is nonetheless possible to dis-
tinguish them experimentally. Indeed, in experiments on graphene irradiated
with ions [57] it appears that the midgap states model better captures the
experimentally observed σ(n, nimp) than the combination of weak Coulomb
and short-range scatterers. Whereas for most other samples, the combination
of weak scatterers seems to dominate (see Sec. 12.4).

For the purposes of this chapter, we would like to make three cautionary
remarks about this impurity model: (i) In the range between weakly interact-
ing impurities (i.e. Born approximation) and the case of unitary scatterers is
the whole spectrum of strong but not unitary impurities. While the theory of
unitary scatterers might be tractable, there is no reason why nature would
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choose this particular limit. (ii) Resonant scatterers typically give a maximal
phase-shift at a particular energy (and hence the name), but provide only weak
scattering away from this resonant energy. While treating mid-gap states in
graphene, it is often assumed that the impurity state is resonant over the en-
tire energy window probed in transport. In principle, it should be possible to
extract the width of the resonance by looking for changes in the conductivity
as a function of rs, although this problem has not yet been treated theoret-
ically. (iii) There has been only very limited work (e.g. Refs. [47, 54, 58] and
references therein) connecting these midgap states to the graphene minimum
conductivity problem. Although this is the subject of Sec. 12.3 below, it is
worth mentioning here that relying exclusively on midgap states, for exam-
ple, by obtaining a residual carrier density by integrating the density of states
including the structure induced by the resonant impurities, cannot explain
the graphene minimum conductivity. To get the experimentally observed val-
ues of σmin requires an unphysically large number of defects (such as missing
atoms). Not only would these large number of defects degrade the mobility
far beyond what is observed in the same transport experiments at high carrier
density, but these would most certainly be observable in scanning tunneling
microscope (STM) studies, which have actually found the opposite case i.e. a
very low concentration of such defects (see e.g. Ch. 3 and Refs. [9,37,59,60]).

We would argue that even when samples are deliberately made to have
a large number defects (e.g. by ion irradiation), the residual carrier density
is still determined by the charged impurity concentration (see e.g. discus-
sion in Ref. [57]). In such a case, where one has the combination of resonant
scatterers and Coulomb scatterers using the mid-gap model (Eq. 12.19) is
almost indistinguishable from the Coulomb impurity model. This is because
the mid-gap model has an additional adjustable parameter R that could be
tuned to get the pre-factor of the conductivity to be comparable to A[rs] ≈ 20
(see Fig. 12.2). In this case, the only way to distinguish mid-gap states from
charged impurities is by controllably changing some parameter such rs [28],
the concentration of charged impurities [44], or the concentration of resonant
scatterers [57].

12.3 Transport at low carrier density

One of the biggest puzzles that emerged from the first transport experiments
on graphene was the existence of a finite conductivity at zero carrier density.
It turns out that well before the discovery of graphene, it was predicted by
Ref. [19] and others that there should be a universal quantum limited ballistic
conductivity in clean graphene σmin = (4/π)e2/h. However, the first transport
experiments measured values closer to σmin = 4e2/h. Since at that time, the
observed value was widely believed to be universal, this unexpected value
for the minimum conductivity in graphene was dubbed the “problem of the
missing π”.



14 Shaffique Adam

It is the goal of this section to discuss the quantitative theoretical explana-
tion for this problem. The short answer to this mystery is that the minimum
conductivity observed in experiments is not universal, but depends on the con-
centration of charged impurities. For relatively dirty graphene samples, the
enhanced conductivity caused by the fluctuations in carrier density induced
by the disorder is roughly compensated by the increased scattering caused by
those impurities. In this regime, σmin ≈ 4e2/h and depends only weakly on the
disorder concentration (although we emphasize that the value is not universal,
and even dirtier samples should have a lower conductivity). For samples that
are 30 times cleaner, the reduced scattering term wins, giving a larger value
for the minimum conductivity σmin = 8e2/h.

Indeed, later experiments [13] observed that the minimum conductivity
was not universal, but varied from σmin = 2e2/h to 8e2/h consistent with
theoretical predictions [14].

For even cleaner samples, the minimum conductivity would continue to
increase until either the mean-free-path becomes comparable to the sample
size or the size of the puddles (i.e. carrier density fluctuations) would shrink
to fewer than a couple of electrons. Then the semiclassical diffusive transport
would cross over to the fully quantum ballistic regime (which we discuss in
Sec. 12.3.4).

As alluded to in the introduction to this chapter, the explanation of the
graphene minimum conductivity problem is an intricate symphony that brings
together the physics of disorder, electron-electron interactions and quantum
mechanics. Here, disorder plays a dual role: it is primarily responsible for
scattering the electrons that gives rise to the finite conductivity in the first
place (recall that the bulk conductivity of any 2D conductor without disorder
is infinite) and it induces the carrier density fluctuations; so that depending on
the amount of disorder, the local carrier density can be quite large, allowing, at
least locally, for a non-vanishing conductivity. The relatively weak electron-
electron interactions in graphene give the mechanics of how the electrons
“see” the disorder potential which is invariably screened by the quasiparticle
cloud, and this applies equally to both roles of disorder, as a scattering center
and in inducing the density inhomogeneities. With quantum mechanics comes
Klein tunneling, the ability of electrons to transmute to holes across potential
barriers – which in our case implies that we do not need to worry about
the scattering at the boundary between the electron and hole puddles. The
contribution to the total conductivity is dominated by the conductivity within

the puddles and not across them6.

6 To fully discuss the role of Klein tunneling in graphene transport would require a
larger discussion than is possible here. For the semiclassical calculation presented
here, we ignore the additional contribution to the resistance arising from p-n
junctions. The validity of this assumption is rigorously tested in Sec. 12.3.4 below.
For a more complete discussion on the role of p-n junctions in graphene transport,
as well as an explanation for the remarkable property of perfect transmission of
carriers at normal incidence, see Ch. 12 and Ref. [15].
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We should mention that historically, this solution emerged only after care-
fully comparing the experimental data to the high density Boltzmann theory
discussed in Sec. 12.2 above. That theory is only valid at high density, or more
specifically, when kFℓ ≫ 1, or σ(n) ≫ e2/h. Oftentimes, either by serendipity
or insight, theories work well beyond their formal limits of applicability – we
have already seen that for graphene and the usual 2D electron gases, the RPA
calculation showed explicitly that the Thomas-Fermi screening theory, which
is valid formally only at q → 0, actually works well for q ≤ 2kF. Similarly, the
RPA-Boltzmann theory for the usual 2DEG system continues to work beyond
its formal regime of applicability in high mobility n-GaAs systems [61] until
new physics such as percolation or localization takes over at even lower carrier
densities.

However, when a careful comparison with experiment was done in Ref. [26]
to see when deviations from this semiclassical theory begin to show up, it re-
vealed two important features that inspired the theoretical ideas presented
below. First, the high density theory did work better than expected. From
Eq. 12.12, one would expect the high density theory to work only for n ≫ nimp,
but in fact, the theory worked for n & nimp/2. Second, the minimum conduc-
tivity value did not occur at a singular point (i.e. at the Dirac point with
precisely zero carrier density), but rather there was a minimum conductiv-
ity plateau of width ∆n ≈ nimp. In fact, there was no singularity at all –
the plateau smoothly joined up to the high-density Boltzmann result and the
value of the conductivity minimum was not universal, but seemed somewhat
correlated with the sample quality. It was pointed out already in Ref. [26]
that for n ≈ nimp/2, the fluctuations in carrier density nrms were compara-
ble to the average carrier density implying that understanding the physics of
the minimum conductivity was understanding the physics of puddles i.e. how
they are formed and how they conduct carriers, and had nothing to do with
the properties of the peculiar Dirac point that was experimentally inacces-
sible due to the presence of disorder. This was significant since at the time,
most attempts to explain the graphene minimum conductivity focused on the
singular properties of the conical point in the graphene Dirac spectrum.7

7 To illustrate somewhat simplistically how one could get into trouble at the Dirac
point, consider the Einstein relation that was discussed earlier σ = e2ν(EF )D. At
the Dirac point, ν(EF ) vanishes but for short-range impurities, D → ∞, which
gives rise to a disorder-dependent minimum conductivity at the Dirac point (see
Fig. 12.2). Similar cancellation of divergences gives rise to the following puz-
zle [19]. If one calculated the conductivity by first taking the clean limit while
keeping either temperature or frequency finite, one would obtain the universal
value σmin = (π/2)e2/h. However, taking frequency and temperature to zero
first, then taking the clean limit gives σmin = (4/π)e2/h. At the time of writing,
the crossover between these two universal limits remains an unsolved problem.
However, for the purposes of understanding current graphene dc transport exper-
iments, we maintain that none of this “universal” physics is relevant.
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12.3.1 Self-consistent approximation

Perhaps the most important result discussed in this chapter is the self-
consistent ansatz of Ref. [14]. In a nutshell, the self-consistent ansatz is a
semi-analytic method for calculating the fluctuations in carrier density nrms

from the properties of the disorder potential. By now this ansatz has been rig-
orously tested against numerical density functional calculations [32] (for the
case of interacting electrons) and with a numerical computation of the Lan-
dauer formula [41] (for the fully quantum mechanical case). The self-consistent
ansatz states that the root-mean-square fluctuations in carrier density (nrms)
is related to the screened disorder potential at that carrier density.

One can think of the ansatz as follows: If the induced carrier density nrms

is small, the disorder potential will be poorly screened thereby inducing a
large carrier density. But a large carrier density will better screen the disor-
der potential resulting in a lower carrier density. This process will reach an
equilibrium when the changes in the induced carrier density exactly balance
the changes in screening.

Formalism

To be more quantitative, let us further assume that the largest contribution
to nrms is the Thomas-Fermi contribution i.e. nrms ≈

√
3〈E2

F〉/(π~2v2F), where
the angular brackets denote averaging over an ensemble of disorder configu-
rations and the

√
3 factor just comes from the fact that for graphene nrms is

the second moment of density and the fourth moment of Fermi energy. In this
case, the self-consistent ansatz reads

π~2v2Fn
∗ = 〈E2

F〉 = 〈V 2
D[n∗]〉. (12.20)

This corresponds to finding a residual carrier density n∗ = nrms/
√
3 that

satisfies Eq. 12.20, where VD[n∗] is the disorder potential screened by a ho-
mogeneous electron gas at carrier density n∗.

It should be apparent from Eq. 12.20 that it will be important to calcu-
late the ensemble averaged properties of the screened disorder potential. For
example, one can show that by assuming uncorrelated random impurities of
concentration nimp, where each impurity has a disorder potential φ(r, n) (with

Fourier transform φ̃(q, n)) then [62]

〈VD(r)VD(0)〉c = nimp

∫

d2q

(2π)2
[φ̃(q, n)]2e−iq·r, (12.21)

where the subscript ‘c’ indicates that terms proportional to 〈VD(0)〉 have been
excluded. To simplify the discussion, we just set 〈VD(0)〉 = 0. We will discuss
the case of finite doping in Sec. 12.3.2 below, but for now, we can imagine that
setting 〈VD(0)〉 = 0 corresponds to tuning the back gate voltage to coincide
with the Dirac point, thereby ensuring charge neutrality.
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In this case, a more general result states that for any arbitrary disorder
potential φ(r), one has

〈V k
D〉c = nimp

∫

d2r[φ(r, n)]k . (12.22)

Since knowing all moments of a distribution function is equivalent to know-
ing the distribution function itself, in principle, after using Eq. 12.20 to set
φ(r, n) = φ(r, n∗), Eq. 12.22 then defines the full probability distribution
function of the screened disorder potential.

Taking this together with the two point correlation function (Eq. 12.21),
one then has a complete statistical description of all properties of the Dirac
point in the presence of disorder. Any physical observable, such as σmin should
be a function of the moments in Eq. 12.22. In practice, however, since for the
screened Coulomb impurity problem no closed form analytic expression is
available for φ(r, n), the moments of Eq. 12.22 can only be computed numer-
ically, and one needs to truncate the computation after a finite number of
moments.

In this vein, it is sometimes useful to consider the mapping to the Gaussian
correlated disorder (see Eq. 12.17) which can be accomplished as follows

K0~
2v2F

2πξ2
= nimp

∫

d2q

(2π)2
[φ̃(q, n)]2 = π~2v2Fn

∗,

ξ =

√

2

π

∫

dq
2π [φ̃(q, n)]

2

∫

d2q
(2π)2 [φ̃(q, n)]

2
. (12.23)

While this “Gaussian mapping” can be done for any arbitrary potential
φ(r, n), it will only be a good approximation if higher moments of the im-
purity potential in Eq. 12.22 can be neglected.8 We also find

nrms = n∗

√

3 +
1

πnimpξ2
. (12.24)

We now specialize to the case of Coulomb impurities, where from Eq. 12.11
we have

φ̃(q) =
2πe2

κ

e−qd

qǫ(q)
. (12.25)

8 We have been slightly sloppy with language, using the term Gaussian approxima-
tion to refer to both when the disorder potential has Gaussian two-point spatial
correlation function (see Eq. 12.17) and when the disorder probability distribu-
tion function is determined only from the second moment (see Eq. 12.22). From
the context it should be clear which case we mean, although we should caution
that the two approximations can be quite different. For example, Eq. 12.24 de-
scribes a Gaussian two-point correlation function, but is equivalent to a Gaussian
distribution function only in the limit when nimpπξ

2 ≫ 1.
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The dielectric function ǫ(q) was defined in Eq. 12.10. Notice that to calculate
nrms the integrals run over all momenta q and so, unlike the transport cal-
culations in Sec. 12.2, the full RPA result will differ from the Thomas-Fermi
result.

The integrals above for n∗, K0 and ξ can all be done analytically, and
although simple asymptotic expansions can be made in various limits, we
have found, unfortunately, that the regime relevant to current experiments
requires the use of the full functional form. To simplify the notation somewhat,
we introduce the auxiliary functions C0(z) and D0(z) where for E1(x) =
∫∞
x t−1e−tdt, we have

C0(rs, z) = −1 +
4E1(z)

(2 + πrs)2
+

2e−zrs
1 + 2rs

+ (1 + 2zrs)e
2zrs(E1[2zrs]− E1[z(1 + 2rs)]), (12.26)

D0(rs, z) = 1− 8rszE1[z]

(2 + πrs)2
+

8e−zrs
(2 + πrs)2

− 2e−zrs
1 + 2rs

− 2zrse
2zrs(E1[2zrs]− E1[z(1 + 2rs)]).

Using these definitions, one finds [31]

n∗ = 2 nimp r2s C0,

K0 = 1
4r2

s

(

D0

C0

)2

,

ξ = 1√
nimp

D0

4πr2
s

(C0)
−3/2,



























RPA (12.27)

where z = 4d
√
πn∗. Notice that given the concentration of charged impurities

nimp, the dielectric constant of the substrate (which sets rs) and the distance
d of the impurities from the graphene sheet, one can calculate the strength
of the screened disorder potential, the size of the electron and hole puddles
as well as the number of electrons within each puddle. In particular, we note
that to leading order, the overall scale-factor of the puddle size is set by the

average distance between the impurities n
−1/2
imp , and is proportional to r−2

s .
This allows one to make crude estimates, predicting, for example, that the
size of the puddles in suspended graphene are roughly the same as those on
a SiO2 substrate. This is because although suspended graphene has more

than an order of magnitude fewer impurities, one only gains as n
−1/2
imp , while

suspending graphene more than doubles rs, which decreases the puddle size
as r−2

s .
Notice that for the Complete Screening (CS) limit discussed earlier, the

auxiliary functions have very simple asymptotes: C0(z ≫ 1) → (2rsz)
−2 and

D0(z ≫ 1) → (2rsz)
−1. In this limit (which is valid only for very dirty samples

when d
√
n∗ ≫ 1), we find
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n∗ = 1
d

√

nimp

32π ,

ξ = d
√

8
π ,

K0 = d
√

8πnimp.















Complete
Screening

(12.28)

In Fig. 12.3 we show the function C0(z) for the RPA, Thomas-Fermi (TF)
and Complete Screening (CS) approximations. For z ≫ 1 the RPA and TF
results approach the CS results, while in the opposite limit of z ≪ 1, we have

C0(rs, z → 0) =
−1

2rs + 1
− ln

[

2rs
2rs + 1

]

− 4 ln(γ̃z)

(2 + πrs)2
, (12.29)

where γ̃ ≈ 1.781 is Euler’s constant. While using this asymptotic expres-
sion might be useful for qualitative estimates, we emphasize that in order to
make any quantitative predictions, one is forced to use the full expression in
Eq. 12.26.

Results

Having developed the self-consistent formalism above, we are now ready to
reap some concrete results. Figure 12.4 captures the central results of the
self-consistent approximation. The top panel shows the ensemble averaged
two-point correlation function 〈V (r)V (0)〉. This quantity can be measured
experimentally by measuring the density fluctuations at the Dirac point, al-
though at present all the published experimental data lack sufficient reso-
lution to make a detailed comparison. Nevertheless, they are at least consis-
tent [34–37,59] with the theoretical predictions. However, we can compare our
results to those obtained using other theoretical approaches. The solid (blue)
lines are the evaluation of Eq. 12.21 for two values of nimp. The red diamonds
are the results of the density function theory (DFT) taken from Ref. [32] us-
ing the same parameters. One notices that the self-consistent approximation
(SCA) agrees quantitatively with the DFT results. The green line shows the
Gaussian mapping which works remarkably well for the cleaner data. The
full width at half maximum of 〈V (r)V (0)〉 (which is related to ξ through the
Gaussian mapping) is a measure of the correlation length that sets the size of
the puddles.

One of the main goals of developing the SCA was to calculate nrms as a
function of disorder parameters. This is shown in the right panel of Fig. 12.4
and Fig. 12.5, and these results also agree well with the DFT results [32].
Finally, in Fig. 12.6 we show the potential strength K0 and puddle correlation
length ξ (related to the puddle size) as a function of nimp obtained by mapping
the microscopic Coulomb disorder onto the Gaussian potential.
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Fig. 12.3. Comparison of the dimensionless voltage fluctuation function C0(rs, z)
(see Eq. 12.26) using different screening approximations. The Random-Phase-
Approximation (RPA) shown in blue is the main approximation used in the present
work. The Thomas-Fermi (TF) and Complete Screening (CS) approximations give
different results except when rsz ≫ 1. Dashed lines are small density analytic asymp-
totes for the Thomas-Fermi and RPA (see Eq. 12.29) and the squares show the nu-
merical evaluation of Eq. 12.22 using the Coulomb potential (Eq. 12.11) with the
exact dielectric function Eq. 12.9.

x

Fig. 12.4. Results of the self-consistent approximation (SCA). Left panel: Two-
point correlation function of the screened Coulomb disorder potential. Blue line is the
SCA result (Eq. 12.20), while green line is the Gaussian approximation (Eq. 12.23).
The red data points taken from Ref. [32] show the same quantity computed from
a density functional approach (see also discussion in Ref. [18]). Right panel: The
root-mean-square carrier density at the Dirac point computed using the same ap-
proximations – blue line is the SCA (Eq. 12.24) and red squares are the DFT results
(Ref. [32]).
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Fig. 12.5. Dependence of the carrier density fluctuations on effective fine structure
constant rs (left panel) and distance of the Coulomb impurities from the graphene
sheet d (right panel). Solid lines are the self-consistent result (Eq. 12.20) and data
points were computed in Ref. [32] using a density functional approach.

Fig. 12.6. Results for the Gaussian mapping of the Coulomb potential (see
Eq. 12.23). Left panel shows the dimensionless disorder strength K0 as a function
of charged impurity density. Right panel shows the Gaussian correlation length ξ
which is related to the average puddle size. Also shown as red squares is the den-
sity functional result of Ref. [32], where we note that for a Gaussian distribution
function, a factor of 2

√
2 ln 2 needs to be multiplied by the correlation length ξ to

obtain the full width at half maximum (FWHM) that is more commonly used to
characterize the graphene puddles (see Ref. [18]).
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Fig. 12.7. At the Dirac point, disorder breaks the system into puddles of electrons
and holes. The figure, taken from Ref. [63] is a simulation of a 250 nm by 250 nm
square of graphene with typical density of charged impurities. The color scale reflects
the local density in units of 1012 cm−2. The goal of this section is to calculate the
conductivity of this highly inhomogeneous material.

12.3.2 Effective medium theory

In the previous section we demonstrated that the self-consistent approxima-
tion can be used to quantify all the statistical properties of the Dirac point in
the presence of disorder. For these dirty samples, the question now arises: given
that we can characterize the Dirac point, what is the conductivity through
this highly inhomogeneous medium? (See Fig. 12.7). Or in other words, now
that we know the size of the puddles and how many carriers are inside the
puddles, can we calculate the graphene minimum conductivity? The earliest
(and crudest) estimate was simply to say that

σ ≈
{

σB(n
∗) for n ≤ n∗,

σB(n) for n > n∗,
(12.30)

where σB(x) = 20(e2/h)(x/nimp) [14]. We shall see in this section that this
rather fortuitously turns out to be an excellent approximation.

The implication of Eq. 12.30 is the following: The disorder potential causes
some residual carrier density n∗, which then gives rise to the minimum con-
ductivity. As discussed in Sec. 12.3.1 above, n∗ is determined by balancing
the role of impurities doping graphene and the enhanced screening of doped
graphene – but at a very basic level, it should be obvious that increasing the
number of impurities increases n∗ (see Fig. 12.4); which in turn should in-

crease the conductivity. However, increasing nimp also means more scattering
which should decrease the conductivity. Therefore, the minimum conductiv-
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Fig. 12.8. Graphene conductivity as a function of carrier density for charged
impurities (left panel) and Gaussian correlated impurities (right panel). Dashed
lines in left panel are the high-density Boltzmann transport result. For Coulomb
impurities (solid lines in left panel) the effective medium theory (EMT) results
agree with the earlier estimate (Eq. 12.30) to within 1 %. For Gaussian impurities
(right panel) the EMT gives slightly larger values for the minimum conductivity
than Eq. 12.30. Also shown (in black) is the high-density Boltzmann result. The
EMT result approaches the Boltzmann result for nξ2 ≫ 1.

Fig. 12.9. Dependence of graphene minimum conductivity on disorder parameters.
All panels have the same scale for σmin on the y-axis. Left panel: For charged impu-
rities, σmin decreases monotonically as a function of impurity density. Center panel:
Samples with large Coulomb disorder (blue curve) show almost no dependence of
σmin on the effective fine structure constant rs; cleaner samples (green curve) show
the minimum conductivity increasing weakly with rs. Right panel: For the Gaussian
correlated impurity model, the effective medium theory result (Eq. 12.32) is slightly
larger (red curve) than the analytic result σmin[x = K0/2] = 2ex/xI1(x) shown in
blue and derived from Eq. 12.30.
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ity emerges as a delicate balance between the dual property of the disorder
potential to both induce carriers and scatter carriers.

For the disorder concentrations present in the first experimental samples,
these two effects roughly cancel resulting in a minimum conductivity that
depends only weakly on disorder – and hence the early belief that the value
was universal. For cleaner samples, the Coulomb impurity scattering term
wins out, implying that cleaner samples should show stronger variation with
disorder and have a larger value for σmin. (See Sec. 12.4 for further discussion
of experiments).

Before we turn to the full treatment that validates the use of Eq. 12.30, let
us look at what is obviously left out in this simple estimate. Since σB is the
semi-classical Boltzmann conductivity, all quantum interference corrections
are neglected. Sec. 12.3.4 below addresses quantum effects and studies the full
crossover from quantum transport to diffusive transport. The approximation
also assumes that the total conductivity is given by the conductivity within
the puddles and not between puddles. As discussed earlier, this is justified
because of the Klein tunneling across the p-n junctions. We refer the reader
to Ref. [15] for more on the role of the boundary between the electron and
hole puddles.

There are two further assumptions in Eq. 12.30. While one might buy
that σmin = σB(n

∗), and σ(n ≫ nimp) = σB(n), the hard “plateau” with a
singularity at n = n∗ is highly artificial. Second, even the assumption that
σmin = σB(n

∗) ignores the possibility that the minimum conductivity could
depend on higher moments of the carrier density – for example, we could have
proposed σmin = σB(nrms) instead. Answering these two questions led to the
development of an effective medium theory for graphene transport [38].

The starting point is to assume that locally σ(r) = σB [n(r)]. Then, taking
the continuum approximation and using well-known effective medium theory
(EMT) results [64] one finds [38]

∫

dnP [n]
σ(n)− σEMT

σ(n) + σEMT
= 0, (12.31)

where P [n] is the carrier density probability distribution function. This inte-
gral equation for the conductivity of the inhomogeneous medium is valid so
long as there are more than a few electrons inside each puddle. For current ex-
periments on graphene, this is always the case. Theoretical calculations [32,38]
showed that disordered graphene had two kinds of puddles – macroscopically
large puddles with low carrier density that contained ≈ 500 electrons, and
very small puddles with a large carrier density that contained ≈ 5 electrons.
The statistics of these two regions were such that averaging over the entire
sample gave results for the puddle correlation length ξ and nrms that agreed
with the self-consistent approximation discussed in the previous section. Mak-
ing the further assumption that P [n] is a Gaussian distribution with width
nrms and mean ng = αVg , one finds [40]
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∫ ∞

0

exp

[ −n2

2n2
rms

]

cosh

[

ngn

n2
rms

]

σ(n)− σEMT

σ(n)− σEMT
= 0. (12.32)

To find the conductivity at the Dirac point, one sets the density induced by
the back-gate voltage ng = 0 giving for charged impurities

2ze−z2 (

πErfi[z]− Ei[z2]
)

=
√
π, (12.33)

where Erfi is the imaginary error function, Ei is the exponential integral func-
tion and z = σEMT/(

√
2σB [nrms]) ≈ 0.405. This gives σEMT ≈ 0.9925 σB(n

∗),
implying that the early estimates for the minimum conductivity due to
Coulomb scatterers (Eq. 12.30) were accurate to within 1 % of the effec-
tive medium theory result. However, with Eq. 12.32 one can now solve the
full crossover of graphene conductivity as a function of carrier density from
the Dirac point where the conductivity minimum is dominated by the con-
tribution from the fluctuations in carrier density inside the electron and hole
puddles to the high-density regime where the carrier density is uniform and
the conductivity is given by the semiclassical Boltzmann results of Sec. 12.2.

Figure 12.8 shows the effective medium theory results σEMT(n) for both
Coulomb scatterers and Gaussian correlated impurities, where nrms =

√
3n∗

was obtained from the self-consistent approximation. Fig. 12.9 shows the min-
imum conductivity σmin for both Coulomb scatterers and for the Gaussian
correlated impurity model. In Sec. 12.4 below we will compare the Coulomb
impurity results (left panel of Fig. 12.9) to several experiments in the litera-
ture. Moreover, there has been some recent evidence that the predictions of
the Gaussian impurity model (right panel of Fig. 12.9) are relevant for exper-
iments doping graphene with atomic hydrogen [53], although there has been
no microscopic theory explaining why hydrogen impurities should have such
correlations.

12.3.3 Magneto-transport and temperature dependence of the
minimum conductivity

One remarkable feature of this RPA-Boltzmann approach to solving the mini-
mum conductivity problem is that the theory can then be generalized (without
any further fitting parameters) to other experimental situations. The model
makes definitive predictions for a variety of situations that have as yet not
been explored theoretically using this technique (for example, the Nerst signal,
the thermopower and weak-localization close to the Dirac point all in some
way depend on the self-consistent carrier density n∗, which once determined
through the dc transport, would then determine these additional properties).
While we do not explore all these different experiments in this book chapter,
it is relatively straightforward to generalize the formalism presented here to
other situations. As an illustration of how such a generalization would work,
we consider two cases here.
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The first is the semi-classical magnetoresistance in a weak magnetic field,
and the second is the temperature dependence of the minimum conductivity.9

The magneto-transport of graphene at sufficiently large temperatures that the
phase-coherent transport is negligible and sufficiently small magnetic fields B
such that Landau levels have not developed is given by the semi-classical
Drude model. In graphene, the current density in the x̂ and ŷ directions is [43]

Jx = [σ(e)
xx + σ(h)

xx ]Ex + [σ(e)
xy + σ(h)

xy ]Ey; Jy = [σ(e)
yx + σ(h)

yx ]Ex + [σ(e)
yy + σ(h)

yy ]Ey.

The superscript c = (e, h) denotes electron and hole carriers. The longitudinal
and Hall conductivities are given by

σ(c)
xx = σ(c)

yy =
σ
(c)
0

1 +
(

σ
(c)
0 R

(c)
H B

)2 ; σ(c)
xy = −σ(c)

yx =

[

−σ
(c)
0

]2

R
(c)
H B

1 +
(

σ
(c)
0 R

(c)
H B

)2 ,

(12.34)

where R
(c)
H = 1/n(c)e

(c) and the zero-field electrical conductivity for each

carrier is σ
(c)
0 . So far, this is general for any two carrier model.10 Applying the

self-consistent theory simply gives σ
(e)
0 +σ

(h)
0 = σEMT, where σEMT is obtained

from Eq. 12.32. This is an illustration of how the self-consistent theory can
easily be generalized to other situations.

The second example we discuss here is the temperature dependence of
the minimum conductivity. For simplicity, we assume the presence of only
Coulomb scatterers and that the thermal smearing of the Fermi surface is
the only source of temperature dependence. In this case, the local conduc-
tivity can be written as σ(n, T ) = n(T = 0)eµc

ne+nh

ne−nh

, where ne(T ) =

9 Here we assume that the temperature dependence arises only from thermal smear-
ing of the Fermi distribution function. While this assumption that the temper-
ature dependence occurs only from this activation-like behavior is an excellent
approximation for bilayer graphene (see Ref. [40]), for monolayer graphene, addi-
tional physics such as the degradation of the conductivity due to phonons in dirty
samples, and the crossover to the ballistic regime for suspended samples restrict
the temperature range for which this thermal broadening picture dominates the
conductivity.

10 As an aside, we should mention that the two carrier model above (and assuming
Coulomb impurities, Eq. 12.12) relates field-effect mobility to the carrier mobility
as

µH ≡ ρxy
ρxxB

=
σxy

σxxB
≈ A[rs]

nimp

(

ne − nh

ne + nh

)

, (12.35)

where only in the very limited carrier density range n∗ ∼ nimp ≪ n ≪ B[rs]σ0/n
is the Hall mobility the same as the field-effect mobility µc = σ/ne (where the
specific boundaries of this window depend on the number of short-range and
long-range impurities and the dielectric environment).
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Fig. 12.10. Temperature dependence of graphene conductivity. Left panel shows
effective medium theory conductivity for different values of kBT

∗ = ~vF
√
πnrms,

where nrms is obtained from the self-consistent theory. Inset shows the chemical
potential calculated numerically (squares) and the extrapolation function (Eq. 12.36)
used to evaluate the conductivity. Perturbation theory for t = T/T ∗ ≪ 1 gives
σ(t)/σ(0) = 1 + 4π2t4 ln t/(9|π − 2|).

∫∞
0

dE ν(E)f(E, µ, kBT ) and nh(T ) =
∫ 0

−∞ dE ν(E)[1− f(E, µ, kBT )] where
f(E, µ, kBT ) is the Fermi-Dirac function with kB the Boltzmann constant. The
only subtle point is determining the chemical potential µ obtained by solving
for ng = ne − nh, where ng is proportional to the applied gate voltage (and
determined by the capacitive coupling of graphene to the gate). Data points
in the inset of Fig. 12.10 show chemical potential µ(T ) obtained by the nu-
merical solution of the implicit equation, 1 = 2(T/TF)

2{Li2[− exp(µ/kBT )]−
Li2[− exp(−µ/kBT )]}, as well as the interpolation function

Fµ(x) = µ(T/TF)/EF = g(x)(1 − π2x2/6) + ḡ(x)/(4 ln 2x), (12.36)

where EF is the Fermi energy, and g(x) + ḡ(x) = 1 are a choice of com-
plementary functions, e.g. we use g(x) = (1 + Erf [10(x− 1/2)])/2 and
ḡ(x) = Erfc [10(x− 1/2)] /2 [65]. From the inset, one finds that the inter-
polation function adequately describes the evolution of the chemical potential
with temperature (see Ref. [40] for more details).

Applying the EMT formalism then gives the results shown in the left panel
of Fig. 12.10. Since nrms is obtained from the self-consistent approximation,
this result gives a parameter free prediction for the effects of thermal broad-
ening on the minimum conductivity.
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Fig. 12.11. Contrasting the quantum and semiclassical predictions for graphene
Dirac point conductivity. Solid blue line is the semiclassical effective medium theory
result which shows a smooth plateau close to the Dirac point. The dashed black
curve is the Boltzmann result. The red data points represent the fully quantum
transport result which shows a sharp dip at the Dirac point approaching the universal
minimum value of 4e2/πh.
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Fig. 12.12. Comparison of graphene conductivity calculated using the fully quan-
tum theory and the semiclassical self-consistent approximation. The data points
are the Landauer result (see Ref. [41]) while the solid red line is the SCA result
(Eq. 12.30). The dashed blue line is the Boltzmann result which for this model has
a minimum conductivity that scales as K−1

0 (see Eq. 12.18). For vanishing disorder,
the quantum results give the universal value σmin = 4e2/πh. With increasing disor-
der, the quantum results first increase sharply at K0 ≈ 1 followed by a more gradual
increase for K0 & 10 (left panel). To test if this gradual increase is compatible with
the self-consistent approximation, in the right panel we plot the classical component
of the Landauer conductivity σ′ = limL→∞[σ(L)−π−1 ln(L/ξ)], where we have ver-
ified that for σ & 4e2/h the L dependence is consistent with weak antilocalization.
The fully quantum result agrees with the self-consistent approach when the number
of electrons per puddle Ne ≈ πn∗ξ2 = K0/2π & 1.6.
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12.3.4 Quantum to classical crossover

After the discovery of graphene, two parallel approaches developed to un-
derstand the conductivity of graphene. The first was the fully quantum-
mechanical approach based on the Landauer formalism [66,67] where graphene
was found to have a universal quantum-limited conductivity of σmin =
4e2/(πh), a value that was considerably lower than what was observed ex-
perimentally11. While this formalism fully captures the quantum mechanics
of graphene electrons, it ignores electron-interaction effects such as screening
(discussed in Sec. 12.2.1 above). The natural question arises: can the discrep-
ancy between the universal quantum-limited value and the value observed in
experiments be caused by disorder? Early numerical work [25] suggested that
this might be the case. At the time of writing this chapter, there has not been
any convincing (or generally accepted) analytical model that addresses the
role of disorder on the quantum-limited graphene conductivity at the charge
neutrality point (see Ref. [15] for details). However, there have been (at least)
five numerical studies [7, 16, 41, 68, 69] that have established that so long as
the disorder is smooth on the scale of the lattice spacing, quantum interfer-
ence effects increase the conductivity through weak anti-localization. We note
that the presence of only smooth disorder (an assumption corroborated by
graphene experimental STM studies [9,37,59,60,70] and TEM studies [71]) is
necessary to ensure that the two graphene valleys are decoupled. Intervalley
transitions break the pseudospin conservation resulting in the usual case of
weak localization that decreases the conductivity signaling the transition to
an insulating state [72].

The second approach was the semi-classical Boltzmann one described here.
As discussed above the minimum conductivity depends on the delicate balance
between the carrier density induced by the screened disorder potential and the
carriers scattering off the same screened impurities. For Coulomb impurities,
the scattering term always wins out, albeit only weakly at large disorder. As
a result, for increased disorder, the minimum conductivity always decreases.
This is in stark contrast to the predictions of the fully quantum approach.

Reference [41] attempted to reconcile these two approaches. The first step
was to ensure that one was making a fair comparison. Since most of the quan-
tum transport work in the literature was done with the Gaussian correlated
impurity potential, the self-consistent approach first had to be generalized to
this potential. In this chapter, the results for the Gaussian impurity model
were already discussed alongside the Coulomb results in the preceding sec-
tions.

11 The Landauer approach gives the universal value only for W ≫ L, where the
transport is primarily through evanescent modes. In the opposite limit, the con-
ductivity depends strongly on the boundary conditions and is not universal. When
comparing the quantum and semiclassical models, we will assume that W ≫ L.
For further discussion, see Ref. [15].
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As can be observed in Fig. 12.9, the minimum conductivity for the Gaus-
sian correlated potential makes a “U”-shape with a minimum at around
K0 ≈ 10. The main findings of Ref. [41] were the following: (i) The nu-
merical quantum results are consistent with weak-antilocalization theory (i.e.
dσ/d lnL = 4e2/πh) at all carrier densities for σ ≥ 4e2/h. (ii) Away from the
Dirac point, the full quantum solution and the semi-classical Boltzmann the-
ory agree to leading order σ ∼ n3/2. Taken together with (i), this implies that
outside the puddle regime, as one might expect, the graphene conductivity is
determined by the semi-classical transport theory with small antilocalization
corrections. (iii) At the Dirac point, the theories are incompatible at weak
disorder (K0 . 10) when quantum fluctuations spread the carriers over many
puddles and the concept of a local carrier density becomes problematic. This
is consistent with the discussion in Sec. 12.3.2 above, where we argued that
the local density approach obviously fails when there are fewer than a cou-
ple of electrons per puddle. The number of electrons per puddle corresponds
roughly to πn∗ξ2 = K0/2π, so this transition to the quantum regime occurs
when there are fewer than 2 electrons per puddle. The experimental signa-
ture of the quantum regime is a sharp cusp-like dip at the Dirac point as
opposed to the smooth plateau of the effective medium semiclassical theory
(see Fig. 12.11). (iv) Most important, for the conductivity at the Dirac point,
for K0 & 10 the quantum and the self-consistent theory agree (see Fig. 12.12,
where in the right panel we subtract the antilocalization correction).

In the context of the results presented in this chapter, the consequence of
Ref. [41] is that so long as the disorder is sufficiently large so that it induces
more than a couple of electrons per puddle, the semi-classical transport theory
effectively captures the transport properties of graphene and that additional
physics that we have not considered such as the role of p-n junctions, are small
corrections to our mean-field results.

12.3.5 Summary of theoretical predictions for Coulomb impurities

The material in this chapter has covered several different transport regimes in-
cluding the full crossover from quantum transport to semi-classical transport,
and several different impurity models from Coulomb scatterers to Gaussian
correlated impurities. In this last section, we narrow our focus to consider
the framework necessary to understand the initial graphene transport exper-
iments. To this end, we specialize to the case of semi-classical transport in
graphene with long-range Coulomb impurities. The impurity potential is fully
specified by two parameters: The impurity concentration nimp and the typical
distance d between the impurities and the 2D graphene sheet. We use nimp

as the single parameter to distinguish various graphene experiments by fixing
d = 1 nm, which is the correct order-of-magnitude for impurities either in the
interfacial layer of the substrate or on top of the graphene sheet, and also
fixing rs = 0.8 which corresponds to the most common case of graphene on
top of a SiO2 substrate. We use two additional results (that due to space con-
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Fig. 12.13. Summary of theoretical predictions of the self-consistent ap-
proximation. Curves (from top to bottom) are for impurity density nimp =
[20, 40, 80, 160, 320] × 1010 cm−2 and are offset by 100 e2/h for clarity. The self-
consistent theory [14] predicts that for charged impurity scattering, cleaner samples
have (i) higher mobility, (ii) narrower minimum conductivity plateaus, (iii) smaller
Dirac point offsets, and (iv) larger values for the minimum conductivity.

straints were not discussed elsewhere in this chapter): First, for d . 1 nm, the
high-density conductivity is only weakly dependent on d, and it is sufficient to
use the analytic d = 0 result (Eq. 12.12). Second, as discussed in Sec. 12.3.1,
once n∗ is known, one can compute any moment of the disorder potential (see
Eq. 12.22). In particular, the first moment 〈VD〉 = nimpφ̃(q = 0) gives the
shift of the Dirac point assuming that the disorder potential comprises only
negatively charged impurities. Using the approximation of Eq. 12.30, we can
summarize our results for graphene in a very compact analytical form [14]

σ(n− n̄) =

{

20e2

h
n∗

nimp
if n− n̄ < n∗,

20e2

h
n

nimp
if n− n̄ > n∗,

(12.37)

n̄ =
n2
imp

4n∗ ,
n∗

nimp
= 2r2sC0

(

rs = 0.8, d = 1 nm, a = 4d
√
πn∗

)

,(12.38)

C0(rs, a) = −1 +
4E1(a)

(2 + πrs)2
+

2e−ars
1 + 2rs

+ (1 + 2rsa) e
2rsa(E1[2rsa]− E1[a(1 + 2rs)]). (12.39)

These theoretical predictions are shown in Fig. 12.13.

12.4 Comparison with experiments

In this brief section, we discuss only three experimental tests of the predictions
made by the theory. In the literature, one can find several other examples
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(some of which are discussed in the review article [15]). These three were
picked as representative examples and are presented in chronological order.
The important feature of all three experiments is that they span the full
range of carrier density, thereby demonstrating that the physics at the Dirac
plateau is governed by the same impurities that scatter carriers at high density
where the semi-classical Boltzmann transport theory is expected to be a good
approximation.

12.4.1 Magnetotransport: dependence of σxx and σxy on carrier
density

The first test of the self-consistent theory was done in Ref. [43] by comparing
with experimental data from the Manchester group [42]. The zero-magnetic-
field experimental data was compared to the theory Eq. 12.37 and determined
nimp ≈ 1.75× 1012 cm−2. This fit and the experimental data are shown in the
inset of Fig. 12.15. The experimental data for the longitudinal resistivity ρxx
and Hall resistivity ρxy atB = 1 T was compared to the theoretical predictions
given by Eq. 12.34 without introducing any additional fitting parameters.
Since the experimentalists subtracted the Dirac point offset when taking the
measurements, we could not test the additional prediction in Eq. 12.37 for
the impurity induced Dirac point shift. Nonetheless the agreement for the full
magneto-transport data with a single fit parameter is quite remarkable.

12.4.2 Dependence of σmin and mobility on impurity concentration

The theory presented here makes very specific predictions for the depen-
dence of the minimum conductivity on impurity density. In the right panel of
Fig. 12.15 we compare the theoretical results for σmin(nimp) with several dif-
ferent experimental data sets from various groups. We emphasize that there
has been no arbitrary selection of data for this figure, it represents all the
four-probe data sets for graphene on a SiO2 substrate for which we have done
a detailed comparison between theory and experiment.

The data from the Columbia group are the same samples that were ana-
lyzed in Ref. [13], where the values of nimp were obtained from fitting the high-
density data and the shift of the Dirac point. The upward triangles are data
from the Manchester group [10, 42], diamonds from the Maryland group [73]
and the downward triangle taken from Ref. [74]. In all these samples, the value
of nimp is determined by fitting the high-density transport data. The black
circles show the potassium doping experiments of Ref. [44], where charged
impurities were intentionally added to graphene. The data shown here are
for the initial deposition of the charged impurities on graphene. After anneal-
ing the sample, the subsequent runs showed different behavior suggesting the
correlation between the impurity atoms. Our treatment here has been for un-
correlated impurities (see Eq. 12.21), although it is worth mentioning that it is
relatively straightforward to generalize our formalism to the case of correlated
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Fig. 12.14. Comparison of theoretical predictions for magneto-transport with ex-
perimental results. Red curves are Eq. 12.34 and Eq. 12.37 using the single fit pa-
rameter nimp ≈ 1.75 × 1012 cm−2. Blue circles are experimental data at B = 1T .
Dashed lines show the Boltzmann transport result without the self-consistent cor-
rection that diverges at low carrier density. Inset: Conductivity data for the same
sample at B = 0 T.

impurities if the distribution of the impurity positions is known. Subsequent
experiments [75] using transition metal impurities instead of potassium also
showed agreement with the theory before annealing, followed by an increase in
conductivity after annealing, suggestive of impurity correlations. If the resul-
tant potential fluctuations can be characterized by the Gaussian model (see
Eq. 12.23), we speculate that the results shown in Fig. 12.9 should apply,
and in particular, that the minimum conductivity would be a non-monotonic
function of the impurity density. In any case, the agreement between theory
and experiment shown in Fig. 12.15 is strong evidence both for the dominant
role of Coulomb impurities and that the physics of the minimum conductivity
is captured by the self-consistent approximation.

12.4.3 Dependence of σmin and mobility on dielectric environment

Perhaps the most precise test of the theory presented here was done in
Ref. [28]. In this experiment the graphene conductivity was first measured
in ultra-high vacuum (UHV) and fit to the Boltzmann theory discussed here
for short-range and Coulomb impurities. Unlike the experiments discussed in
Sec. 12.2.6, this combination of weak impurities provides a better description
than the strong impurity model.

Several monolayers of ice were then introduced to the sample until there
were no further changes in the transport properties. Since the dielectric con-
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Fig. 12.15. Dependence of graphene minimum conductivity on charged impurity
density. Experimental data is taken from Columbia (squares), Exeter (downward tri-
angle), Manchester (upward triangles) and Maryland (diamonds and circles) groups
(see text for details). The solid blue theoretical curve is the same as in the left panel
of Fig. 12.9. The dashed horizontal line shows the universal quantum limited value of
σmin = (4/π)e2/h and the dotted horizontal line shows σ = 4e2/h that was observed
in the earlier experiments on dirtier samples.

stant for vacuum, SiO2 and ice are all known, the theory makes predictions
for the changes in conductivity with no free parameters. In particular, it pre-
dicts that the low density mobility should increase by 26 % (Fig. 12.2) and
the high density conductivity should decrease by 38 % (Fig. 12.2) and that
the minimum conductivity (Fig. 12.9) should decrease by 0.01 % (i.e. stay
unchanged). The experiments found the mobility increased by (31 ± 1) %,
the high density conductivity decreased by (38 ± 1) %, and the minimum
changed by (0 ± 0.1) %, in excellent agreement with the theory. This experi-
ment demonstrated that the theory presented in this chapter works to within
a 5 % accuracy for large 4-probe samples in UHV. Reports using liquid di-
electrics at room temperature and pressure are more ambiguous [76]. While
these experiments qualitatively show the predicted trends for Coulomb and
short-range impurities [77], quantitative comparisons are more difficult for sev-
eral reasons. For example, one is often at high enough carrier densities that
the opposing effects of long-range and short-range impurities result in only
small changes to the conductivity. Also, the ions in solution could themselves
act as additional charged impurities.

Focusing on the UHV results, in Fig. 12.16 we compare the theoretical
predictions against the experimental data. Again, the theory has no fitting
parameters, and captures not only the high and low density behavior (dis-
cussed above), but also the crossover from when Coulomb scatterers dominate
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Fig. 12.16. Comparison of experimental data and theoretical predictions for σice−
σvac. Since the dielectric constants of vacuum, ice and SiO2 are known, the theory
has no adjustable parameters. Inset shows the experimental data. This figure was
adapted from Ref. [28].

to when short-range scatterers dominate (as reflected in the non-monotonicity
of the curve). We point out that both the theoretical and experimental curves
cross the x-axis at particular carrier densities. If one were to perform the same
experiment sitting close to that point, then theory predicts that one would
observe no changes in the conductivity when changing the dielectric constant,
as discussed above in the context of liquid dielectrics.

12.5 Conclusion

In this chapter we have tried to provide a concise description of the different
physical mechanisms at play in a typical graphene transport experiment. On
one hand, since the carrier transport involves quantum mechanical tunneling
and scattering, many-body interaction effects, and strong disorder induced
spatial inhomogeneities, as well as the absence of a natural perturbation pa-
rameter, the problem could have been completely intractable. However, it
seems that for this first practical realization of Dirac fermions in a condensed
matter system, nature was rather kind. Exfoliated graphene sits at a partic-
ular sweet-spot, where although each of the mechanisms are important, and
none can be neglected, they are each very weak and can be treated to high
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accuracy within their simplest models. What matters then is not exploring
any one constituent part to higher accuracy, but rather to understand the
interplay between these mechanisms and the various competitions that give
rise to the unusual transport properties in graphene.

For example, we have seen that graphene’s minimum conductivity is a
balance between how many carriers are induced by the disorder and how the
disorder then scatters these carriers. The number of carriers induced by the
disorder is in turn a feedback loop where a strong disorder potential induces
more carriers which makes graphene better able to screen external potentials
thereby weakening the effective disorder potential. And it is the highly efficient
quantum tunneling between the electron and hole puddles that allows one to
ignore the quantum transport and use the semi-classical effective medium
theory.

It is primarily because graphene is perched at the intersection of these
different influences that the minimum conductivity seems so insensitive to
perturbations. In Fig. 12.9 we show that changing the disorder concentration
by more than two orders of magnitude changes the value of σmin by a factor
of less than 3. In the same figure we see that for typical disorder concentra-
tions, changing the dielectric constant from 1 (vacuum) to 8 hardly changes
σmin. But the theory also contains the limits. When the disorder is reduced
such that the mean-free-path becomes longer than the distance between the
contacts, then the quantum-limited (and universal) minimum conductivity of
σmin = 4e2/πh should emerge. Achieving this is simpler than one might imag-
ine – rather than looking for cleaner samples, one just needs to make closer
contacts. Similarly, for graphene, we have rs ≤ 2 so that interaction effects are
weak. But strained graphene or graphene in a large magnetic field, or some
of the new Dirac fermion systems found on the surface of topological insula-
tors have stronger interactions. There will certainly continue to be exciting
new directions and ever-more exotic mechanisms to be discovered in graphene
transport experiments in the future; however, we remain convinced that these
will be observed as strong deviations from the weak coupling theory presented
here.
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