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FRACTIONAL DIFFUSION, LOW EXPONENT LÉVY STABLE
LAWS, AND ‘SLOW MOTION’ DENOISING OF HELIUM ION

MICROSCOPE NANOSCALE IMAGERY

ALFRED S. CARASSO∗ AND ANDRÁS E. VLADÁR†

Abstract. Helium ion microscopes (HIM) are capable of acquiring images with better than
1 nm resolution, and HIM images are particularly rich in morphological surface details. However,
such images are generally quite noisy. A major challenge is to denoise these images while preserv-
ing delicate surface information. This paper presents a powerful slow motion denoising technique,
based on solving linear fractional diffusion equations forward in time. The method is easily imple-
mented computationally, using fast Fourier transform (FFT) algorithms. When applied to actual
HIM images, the method is found to reproduce the essential surface morphology of the sample with
high fidelity. In contrast, such highly sophisticated methodologies as Curvelet Transform denoising,
and Total Variation denoising using split Bregman iterations, are found to eliminate vital fine scale
information, along with the noise. Image Lipschitz exponents are a useful image metrology tool for
quantifying the fine structure content in an image. In this paper, this tool is applied to rank order
the above three distinct denoising approaches, in terms of their texture preserving properties. In
several denoising experiments on actual HIM images, it was found that fractional diffusion smoothing
performed noticeably better than split Bregman TV, which in turn, performed slightly better than
Curvelet denoising.

Key words. HIM images; image denoising; image texture; image metrology; total variation;
curvelet transform; low exponent Lévy stable laws; image Lipschitz exponents; surface morphology.

1. Introduction. This paper presents an easily implemented denoising method-
ology, based on solving linear fractional diffusion equations using fast Fourier trans-
form (FFT) algorithms. When appplied to state of the art nanoscale imagery, this
method can outperform computationally more sophisticated denoising techniques
based on Curvelet Transform thresholding, or on minimizing image Total Variation.

Both scanning He ion microscopes (HIM), and scanning electron microscopes
(SEM), are capable of acquiring images with better than 1 nm resolution. Such im-
agery is very much needed in nano-scale research and development and production.
HIM images provide better surface-related information than SEM images, but are
generally noisier. SEM images at the highest magnifications are also prone to noise.
The important nano-structures are usually very small, and only the sharpest focused
beams can resolve them. Such beams, formed with pA currents, involve a few hun-
dred to a few thousand atoms, and do not generate a lot of signal. This necessarily
produces very noisy images. Any technique that can improve this situation is very
much needed, and would result in otherwise unavailable acquisition speed and/or in-
formation. However, preserving the fidelity of the essential sample-related fine details
is of paramount interest.

This paper develops a useful approach to this difficult problem, based on solving
linear fractional diffusion equations. The use of fractional diffusion equations and
related isotropic Lévy stable laws, were introduced in image analysis in [4], where they
were applied to solve an important class of image deblurring problems. Subsequently,
it was discovered that low exponent Lévy stable laws could be successfully applied in
blind deconvolution of a large variety of real blurred imagery of considerable scientific
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interest, including SEM images, and Hubble space telescope and other astronomical
images, [5], [7], [8]. In such deblurring applications, one solves ill-posed fractional
diffusion equations backwards in time, with the blurred image as data at time t = 1. In
contrast, the present denoising application involves solving well-posed linear equations
forward in time, with the noisy image as data at time t = 0. In that context, the
significance of low Lévy exponents is expressed by the sharp inequality developed in
Eq. (15) below. That inequality indicates that for small t > 0, low Lévy exponent
fractional diffusion smoothing retains considerably more of the fine structure in the
initial data, than does Gaussian smoothing, which corresponds to smoothing with the
classical heat conduction equation.

In an entirely different direction, there has been considerable interest in recent
years in the use of nonlinear anisotropic diffusion equations in image denoising, [1],
[15], [16], [17]. Here, the denoised image is defined to be the steady-state solution
to this nonlinear problem. The Total Variation (TV ) approach is the best-known
example of this class of methods. Up to date surveys of TV denoising methodologies
together with useful software, may be found in [10] and [12]. The TV approach is
especially useful when the ideal sharp image is piecewise smooth, and consists of
isolated smooth objects with well-defined edges. Such images belong to the class
BV (R2) of functions of bounded variation, which plays an essential role in this theory.
Important examples of effective TV denoising of such images, in the field of medical
computed tomography, are discussed in [23].

Another important class of methods centers on wavelet transforms, and filtering
the image by appropriately thresholding the wavelet coefficients. Recently, a more
effective approach has been developed, based on the use of Curvelets that can better
represent curved edges in the image, [3], [20]. In [18], curvelet transform denoising is
again successfully applied to computed tomography brain slices.

While both TV and Curvelet denoising work quite well on BV (R2) images, many
important classes of images f(x, y) display significant fine scale details or texture,
together with amorphous features, and do not belong to BV (R2), [6], [13]. Use of
TV or Curvelet processing of such imagery may eliminate texture along with the
noise, while preserving edges. The L1 Lipschitz exponent α, where 0 < α ≤ 1,
is a mathematical index that can capture the fine-structure content and degree of
unsmoothness in an image, provided that image is relatively noise free. Images that
are of bounded variation (including smoothly differentiable images) have α = 1. The
value of α decreases systematically with increasing roughness. Images with significant
non differentiable small scale structures typically have α ≪ 1. A method of estimating
image Lipschitz exponents is developed in [6] and applied to image restoration in [9].

HIM images are examples of images where texture and detailed surface morphol-
ogy are of prime interest, and for which TV and Curvelet denoising may not be
appropriate. In this paper, we exhibit several examples of real HIM data, where
fractional diffusion denoising is superior to both Curvelet and split Bregman TV de-
noising, in retaining essential sample-related features. These improvements may not
be visually apparent in the reduced size images in the printed issue of this journal.
However, significant enhancement becomes evident when the on-line version of this
paper is viewed at full size on a modern high resolution device, such as a wide screen,
active matrix, liquid crystal display (LCD) monitor. By estimating image Lipschitz
exponents α before and after denoising, we can use α as a useful metric to rank order
these three distinct denoising methods in their ability to retain texture, and confirm
the visual results.
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2. Fourier space characterization of textured imagery. For purposes of
theoretical analysis it is helpful to think of images f(x, y) as functions in Lp(R2), p =
1, 2, i.e., functions such that

‖ f ‖p=

{
∫

R2

|f(x, y)|pdxdy

}1/p

< ∞, p = 1, 2.(1)

Define the 2D Fourier transform of f(x, y) by

F{f} = f̂(ξ, η) ≡

∫

R2

f(x, y) exp{−2πi(ξx + ηy)}dxdy.(2)

The L1 norm of f(x, y) is proportional to the total image radiant flux, and con-
servation of ‖ f ‖1 is a desirable attribute in any image processing method. Since

f(x, y) ≥ 0, it follows from Eq. (2) that f̂(0, 0) =‖ f ‖1.
Let |∇f | = (f2

x + f2
y )1/2. The class BV (R2) is the class of functions f(x, y) for

which |∇f | ∈ L1(R2). Thus, ‖ ∇f ‖1 is finite. Assume |∇f | ∈ L1(R2)
⋂

L2(R2) so
that both ‖ ∇f ‖1 and ‖ ∇f ‖2 are finite. Then, from Parseval’s theorem

∫

R2

|∇f(x, y)|2dxdy =

∫

R2

(

f2
x + f2

y

)

dxdy =

∫

R2

(ξ2 + η2)|f̂(ξ, η)|2dξdη < ∞.(3)

This implies that |f̂(ξ, η)| must decay sufficiently fast at infinity to make the last
integral converge. Images f(x, y) with significant fine structure need not satisfy the
assumption |∇f | ∈ L1(R2)

⋂

L2(R2), and both ‖ ∇f ‖1 and ‖ ∇f ‖2, may be infinite.

In that case, |f̂(ξ, η)| does not decay fast enough at infinity.

3. Total variation (TV ) denoising. Given a noisy image f(x, y), and the
regularization parameter ω > 0, total variation denoising seeks a function fT (x, y)
with finite ‖ ∇fT ‖1, such that

fT (x, y) = Arg min
u∈BV (R2)

{

‖ ∇u ‖1 +ω/2 ‖ u − f ‖2
2

}

.(4)

There are several methods that can been used to solve this minimization problem,
[10], [12], [15]. The method in [15] obtains fT (x, y) as the unique steady-state solution
to a nonlinear anisotropic diffusion equation with f(x, y) as initial data. A more
effective method is the split Bregman iteration discussed in [12]. In this paper, we
apply a MATLAB implementation of the split Bregman approach, as developed by
the authors in [12], to denoise HIM images. Split Bregman TV denoising of f(x, y)
typically reduces ‖ ∇f ‖1 considerably, and need not preserve ‖ f ‖1.

4. Curvelet denoising. The curvelet transform is designed to represent edges
and other singularities along curves, more efficiently than traditional wavelet meth-
ods, [3], [20]. In this paper we use a MATLAB implementation of curvelet denoising
developed by the authors in [20], and made available in their CurveLab package. The
basic idea is discussed in [20, section 5]. The noisy image f(x, y) is assumed cor-
rupted by white noise with a noise level σn. Let Wλ be the noisy curvelet coefficients
corresponding to f(x, y). The code estimates the variances σλ of the coefficients Wλ,
using knowledge of σn together with a Monte Carlo simulation that estimates the L2

norms of individual curvelets. The denoised image curvelet coefficients Wλ are then
obtained by thresholding the noisy coefficients as follows

Wλ = Wλ, if |Wλ|/σn ≥ kσλ, Wλ = 0, if |Wλ|/σn < kσλ.(5)
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Here, k = 3, except for the finest scale, where k = 4. As in the TV case, curvelet
denoising significantly reduces ‖ ∇f ‖1, and need not preserve ‖ f ‖1.

The curvelet denoising experiments discussed in [3], [20], and [18], involve syn-
thetically noised images, where both the noise level σn, as well as the type of noise, are
known. In our experiments below on real HIM images, such knowledge is unavailable,
and we must use educated guesses for the input σn.

5. Linear fractional diffusion equations and Lévy stable denoising. For
fixed β with 0 < β ≤ 1, consider the linear fractional diffusion initial value problem
in L2(R2),

wt = −(−∆)βw, t > 0, w(x, y, 0) = f(x, y),(6)

where ∆ denotes the 2D Laplacian. This reduces to the classical heat equation when
β = 1. Eq.(6) has the unique Fourier space solution

ŵ(ξ, η, t) = exp{−t(ξ2 + η2)β}f̂(ξ, η), t > 0,(7)

from which w(x, y, t) can be found by inverse Fourier transformation

w(x, y, t) =

∫

R2

exp{2πi(ξx + ηy)} exp{−t(ξ2 + η2)β}f̂(ξ, η)dξdη.(8)

In Eq. (7), the function

ĥ(ξ, η, t) = exp{−t(ξ2 + η2)β}, t > 0,(9)

is the Fourier transform of the Green’s function for the linear fractional diffusion
equation in Eq. (6). For each fixed t > 0, Eq. (9) is also the Fourier transform
of an isotropic Lévy stable probability density function with exponent 2β, [11], [14],
[19]. In physical (x, y) space, such probability densities are bell-shaped functions with
increasingly heavy tails as β decreases from β = 1. The choice β = 1 corresponds to
the Gaussian density, while β = 1/2 corresponds to the Lorentzian density. For other
values of β, the corresponding density is not known in closed form in physical (x, y)
space. As t decreases, these functions become steeper and narrower, approaching the
2D Dirac δ-function as t ↓ 0. In the image deblurring applications discussed in [5],
[7], [8], such Lévy stable laws play a vital role as candidate point spread functions.
In the present application, denoising is accomplished by effectively blurring the noisy
image with such narrow point spread functions.

We note that from Eq.(7), ŵ(0, 0, t) = f̂(0, 0), t > 0. Hence,

‖ w(., t) ‖1=‖ f ‖1, t > 0,(10)

and the linear diffusion smoothing process in Eq.(6) conserves the image L1 norm.

6. Monotonicity and the significance of low β values. In the Hilbert space
L2(R2), the unique solution w(x, y, t) in Eq. (8) satisfies

‖ w(., t) − f ‖2
2=

∫

R2

{

1 − exp(−t(ξ2 + η2)β)
}2

|f̂(ξ, η)|2dξdη.(11)

Hence,

‖ w(., t2) − f ‖2 ≥ ‖ w(., t1) − f ‖2, t2 ≥ t1 ≥ 0.(12)
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At the same time, from Eq. (3), |∇w(x, y, t)| satisfies

‖ ∇w(., t) ‖2
2=

∫

R2

(ξ2 + η2) exp(−2t(ξ2 + η2)β) |f̂(ξ, η)|2dξdη.(13)

Hence,

‖ ∇w(., t2) ‖2 ≤ ‖ ∇w(., t1) ‖2, t2 ≥ t1 ≥ 0.(14)

If |∇f | ∈ L2(R2), then ‖ ∇w(., t) ‖2≤‖ ∇f ‖2, t ≥ 0. If |∇f | /∈ L2(R2), then
‖ ∇w(., t) ‖2 is finite for t > 0, but becomes infinite as t ↓ 0. The rate at which this
happens depends on β, as ‖ ∇w(., t) ‖2= O(t−1/2β), t ↓ 0. In fact, with e = 2.71828...,
the following sharp inequality is a consequence of Eq. (13),

‖ ∇w(., t) ‖2 ≤ sup
ρ≥0

{

ρ exp (−tρ2β)
}

‖ f ‖2= {2βte}−1/2β ‖ f ‖2, t > 0.(15)

In the case of Gaussian smoothing, corresponding to β = 1, this inequality implies
‖ ∇w(., t) ‖2= O(t−1/2), as t ↓ 0. In contrast, ‖ ∇w(., t) ‖2= O(t−5), as t ↓ 0, when
β = 0.1. This indicates that for small t > 0, the solution wβ(x, y, t), with β ≪ 1,
retains considerably more of the small acale features in the initial data f(x, y), than
is the case with Gaussian smoothing. As a practical consequence, low exponent Lévy
stable smoothing results in more moderate reductions in ‖ ∇f ‖1 than is the case
with TV or curvelet denoising, while conserving ‖ f ‖1.

7. Computational considerations. We deal exclusively with square images
g(x, y) of size 2N × 2N pixels, and the fast Fourier transform (FFT) is the primary
computational tool used in this paper. In order to render mathematical formulae
more transparent, we use the same notation, ĝ(ξ, η), for both discrete and continuous
Fourier transforms. In the discrete FFT case, the frequencies ξ and η are understood
to be integer-valued and to range from −N to N . Likewise, g(x, y) denotes both
discrete and continuous images. In the discrete case, the variables x, y are measured
in pixels and range from 1 to 2N .

We may compute the solution w(x, y, t) in Eq. (6) at any given t > 0, by using
the forward and inverse FFT to implement the operations in Eq. (7) and Eq. (8)

respectively. However, a more efficient recursive procedure can be used. With ĥ(ξ, η, t)
as in Eq. (9), let ̟ = 1.0/K for a fixed positive integer K sufficiently large, and define

Q(ξ, η) = ĥ(ξ, η, ̟). With ŵ(ξ, η, 0) = f̂(ξ, η), consider the following recursion

ŵ(ξ, η, k̟) = Q(ξ, η)ŵ(ξ, η, (k − 1)̟), k = 1, 2, 3, · · · .(16)

An inverse FFT in Eq.(16) at each integer k, generates the solution w(x, y, t) at as
many discrete times tk = k̟, as desired. Diagnostic statistical information about
w(x, y, t) can also be calculated for selected values of tk as t increases. Of particular
interest are the discrete Lp norms, p = 1, 2, defined as follows

‖ wd(., t) ‖p=

{

(2N)−2
2N
∑

x,y=1

|w(x, y, t)|p

}1/p

.(17)

As in Eq.(10), we have ‖ wd(., t) ‖1=‖ wd(., 0) ‖1, t > 0. We also define the discrete
analogs of ‖ ∇w(., t) ‖p, p = 1, 2, as follows

‖ ∇dw(., t) ‖p=

{

(2N)−2
2N−1
∑

x,y=1

(

{wx(x, y, t)}2 + {wy(x, y, t)}2
)p/2

}1/p

.(18)
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            t=0.0                              t=0.02                            t=0.04

               t=0.06                            t=0.08                            t=0.1

Fig. 1. Poisson noised Marilyn Monroe image f(x, y) at t = 0, is progressively denoised using
the recursion in Eq.(16) to solve Eq.(20) from t = 0 to t = 0.1, with β = 0.2. In that time interval,
for p = 1, 2, ‖ ∇dw(., t) ‖p, decreases monotonically by a factor λ ≈ 0.46, while ‖ wd(., t) ‖1 is
conserved.

where

wx(x, y, t) = (2N)−1 (w(x + 1, y, t)− w(x, y, t)) ,

wy(x, y, t) = (2N)−1 (u(x, y + 1, t) − u(x, y, t)) .(19)

Note that for a mathematical image f(x, y) ∈ Lp(R2) as considered in section 2, we
may have ‖ ∇f ‖p= ∞. However, the corresponding 2N × 2N pixels image f(x, y)
will have a finite value for ‖ ∇df ‖p, although that value will be relatively large.

8. Minimum principle for ‘slow motion’ Lévy stable denoising. Given a
noisy image f(x, y), calculate ‖ ∇df ‖p, p = 1, 2. Fix β, with 0 < β < 1/2, and
consider the evolution problem

wt = −(−∆)βw, t > 0, w(x, y, 0) = f(x, y).(20)

As indicated in the previous section, using the recursion in Eq.(16) and FFT algo-
rithms, we may readily solve Eq. (20) and calculate ‖ ∇dw(., t) ‖p, p = 1, 2, for
selected t values as t increases. Analogously to the minimum principle in Eq. (4), we
pose the following minimization problem. For given fixed λ with 0 < λ < 1,

fL(x, y) = Arg min
t>0

{‖ w(., t) − f ‖2 ∋ ‖ ∇dw(., t) ‖2≤ λ ‖ ∇df ‖2} .(21)
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Estimating the Lipschitz exponent in Sydney image

Fig. 2. With µ(τ) as in Eq.(24), red curve A is a plot of µ(τ) versus τ , on a log-log scale.
Image Lipschitz exponent equals twice the slope of majorizing line Σ. That slope is 0.265, indicating
that the Sydney image has L1 Lipschitz exponent α = 0.530.

In view of the monotonicity results in Eq.(12) and Eq. (13), this minimum principle
has the unique solution fL(x, y) = w(x, y, t†), where t† > 0 is the earliest time
at which ‖ ∇dw(., t) ‖2≤ λ ‖ ∇df ‖2. As shown in Figure 1, one can monitor
this denoising process as t increases from t = 0 to t = t†, by displaying the image
evolution, and evaluating the accompanying diagnostic information, ‖ wd(., t) ‖p and
‖ ∇dw(., t) ‖p, p = 1, 2. In Figure 1, a Poisson noised 512 × 512 pixel Marilyn
Monroe image is used as initial data in Eq. (20) with β = 0.2. Initially, ‖ ∇df ‖1=
11, 000, ‖ ∇df ‖2= 15, 000. These gradients decay monotonically to the values 5000
and 6900, respectively, at t = 0.1, while ‖ wd(., t) ‖1 is conserved. Thus, t = 0.1 would
correspond to t†, had λ been chosen to be ≈ 0.46. Such displays enable the user to
decide whether important small-scale information has been smoothed out, along with
the noise, prior to reaching t†. The process can then be restarted with different values
of β and λ. These are valuable exploratory options in practice. Such options are
unavailable in the Total Variation method which, given the regularization parameter
ω, produces a single final denoised image, defined as the limit of the convergent Split
Bregman iteration in [12], or as the steady-state solution in the nonlinear anisotropic
diffusion problem in [15]. Likewise, given the input noise level σn, curvelet denoising
results in a single final denoised image.
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  Original                          Noisy                       TV  Denoised

Lipschitz exponents after noising and denoising

Noisy

Noisy

Orig

Orig

TV denoised

Fig. 3. Noising an image decreases the Lipschitz exponent, while some forms of denoising can
eliminate texture along with the noise, and increase the Lipschitz exponent. Slopes of lines ΣNoisy

and ΣOrig are, respectively, 0.130 and 0.297, indicating that the salt and pepper noisy image has a
substantially smaller Lipschitz exponent, 0.260, than does the original noiseless image, 0.594. The
corresponding Σ line for the TV denoised trace, (brown curve), was not drawn to avoid clutter. That
line has slope 0.406, indicating a Lipschitz exponent of 0.812, substantially higher than the original
noiseless image. TV denoising often removes important texture, and leads to oversmoothed images.

9. Image fine structure and Lipschitz exponents. Most natural images
f(x, y) are not smoothly differentiable functions of x and y, but display edges, localized
sharp features, and other significant fine scale details or texture. The image Lipschitz
exponent measures the fine structure content of an image, provided that image is
relatively noise free. An image f(x, y) has L1 Lipschitz exponent α, if and only if

∫

R2

|f(x + h1, y + h2) − f(x, y)|dxdy ≤ Const |h|α, |h| → 0,(22)
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where |h| = (h2
1 + h2

2)
1/2, and α is fixed with 0 < α ≤ 1. An image that is of bounded

variation, or smoother, has α = 1. The value of α decreases with increasing fine
structure. Most natural images have α < 0.6, and are not of bounded variation.

In [6], [9], an effective method for estimating image Lipschitz exponents is devel-
oped, based on a major theorem in [22]. See also [2], [21]. For fixed τ > 0, define the
linear operator Gτ by means of the Fourier series

{Gτf}(x, y) =

∞
∑

m,n=−∞

exp{−τ(m2 + n2)}f̂mn exp{2πi(xm + yn)},(23)

where f̂mn are the Fourier coefficients of the image f(x, y), the latter assumed defined
on the unit square. Let µ(τ) be the L1 relative error in approximating f(x, y) with
the Fourier series {Gτf}(x, y),

µ(τ) =‖ Gτf − f ‖1 / ‖ f ‖1, τ > 0.(24)

As shown in [22], an image f(x, y) has Lipschitz exponent α if and only if µ(τ) =
O(τα/2) as τ ↓ 0. Because of the exponential decay, the infinite series in Eq. (23)
can be well-approximated by a finite sum for each fixed τ . Such a sum can be formed
using FFT algoritms, and Gτf can be evaluated for each fixed τn > 0 in a sequence
{τn} tending to zero, together with µ(τn). By plotting µ(τn) vs τn on a log-log scale,
positive constants C and α can be located such that µ(τ) ≤ C τα/2 as τ ↓ 0.

Figure 2 describes this Lipschitz estimation procedure as applied to a 512 × 512
pixels Sydney image f(x, y). The above FFT procedure was used to obtain µ(τn)
in Eq. (24) at 400 values τn = 0.5(0.95)n, n = 1, 400. A plot of µ(τ) versus τ
on a log-log scale produced the red curve A in Figure 2. The curve A exhibits a
characteristic elbow shape. It consists of a straight line segment with slope ≈ 1,
beginning near log τ = −15 and continuing to near log τ = −10. There is then a
transition to a different regime, one that is more slowly increasing and that continues
to near log τ = 0. As explained more fully in [6], [9], the rapidly varying portion
for log τ < −10 is a fallacious finite-dimensionality artifact, unrelated to the true
image Lipschitz exponent. Only the slowly varying part of A is relevant to estimating
Lipschitz exponents. Least squares fitting on −9 ≤ log τ ≤ −4 was used to find the
majorizing straight line Σ for the slowly varying part of the red curve A. The y-axis
intercept value obtained by least squares was slightly increased so as to make the line
Σ lie visibly above the red curve A. However, the slope of Σ remains the same as that
obtained from least squares. The line Σ is defined by log µ(τ) = −0.902+ 0.265 log τ ,
implying that µ(τ) ≤ 0.493 τ0.265 as τ ↓ 0. According to the theorem in [22], the
Sydney image has Lipschitz exponent α = 0.530.

10. Noise contamination, smoothing, and image Lipschitz exponents.
The behavior of image Lipschitz exponents α before and after processing, is of major
interest. As shown in Figure 3, an original sharp, noiseless, 512 × 512 pixel Marilyn
Monroe image f(x, y), has α = 0.594 and ‖ ∇df ‖1= 5600. This is synthetically
contaminated by addding salt and pepper noise with density 0.1. Such noise artificially
decreases α to the value α = 0.260, while simultaneously increasing ‖ ∇df ‖1 to the
value 22000. As previously noted, the Lipschitz exponent is a true measure of image
fine structure, only if that image is relatively noise free. A variety of algorithms may
now be applied to denoise the noisy Marilyn Monroe image, with varying degrees of
success. Some algorithms may smooth out genuine fine details along with the noise,
decreasing ‖ ∇df ‖1 and simultaneously increasing α, often well beyond their true
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values in the original noiseless image. This is the case with the TV denoised image
in Figure 3, which has ‖ ∇df ‖1= 2010, and α = 0.812. Here, a procedure different
from the split Bregman method was used for TV denoising. This is the previously
mentioned approach in [15], where the denoised image corresponds to the steady-state
solution in a nonlinear anisotropic diffusion equation. The finite difference scheme in
[15] was used with ∆t = 0.1(∆x)2, regularization parameter Λ = 2.0, and forward
integration carried for 300 time steps ∆t. In contrast, denoising the Poisson noised
Marilyn Monroe image in Figure 1, using Lévy stable fractional diffusion, results in
‖ ∇df ‖1= 5000, which is close to the true value in the sharp noiseless image. These
observations will be helpful in the next section.

11. Denoising state of the art HIM imagery. The Helium Ion Microscope
(HIM) is a new type of microscope that works by scanning a well-focused He ion
beam over the surface of the sample in a raster pattern. The technique is very similar
to the method used in scanning electron microscopes (SEM). As in the SEM case,
the most significant signal is produced by the secondary electrons (SE), especially
the SE1 electrons that are generated right at the point where the charged beam hits
the sample. These electrons carry information about the finest morphological details
of the sample. In the HIM case, more of these electrons are produced than in the
SEM case, with a higher proportion of SE1 and other SE signals. Consequently, the
resulting secondary electron images are richer in surface details. The price for this is
a generally somewhat worse signal-to-noise ratio. The He beam current is typically
smaller, and even the use of sub-pA current is feasible. With certain samples it is
recommended to use low beam currents to avoid the erosion of the samples.

The resulting higher noise levels hamper the extraction and interpretation of
needed morphological information from HIM images. The resolution of HIMs and
state-of-the-art SEMs is better than 1 nm, and in some cases, it is under 0.5 nm. While
efforts to further improve resolution are currently focused on new hardware designs, it
is important to explore and develop software-based solutions as well. One solution lies
in denoising HIM and SEM images, which when done well, can substantially improve
image quality. High-frequency components of the signal carry the information about
the fine details, sharp edges, and fast transition in grey levels. Imaging instruments
typically have a transfer function that shows worsening signal-to-noise ratio for fine
details, because the noise is commonly worse in the high-frequency range. Simple
denoising methods that merely delete the high-frequency portion of the signal are not
helpful. Methods that introduce unacceptably large distortions, or lead to significant
blurring, are not very valuable either, especially for measurement purposes. Many
of the currently available denoising methods fall into this category. However, the
split Bregman total variation minimization method, and the Curvelet Thresholding
method, are two highly sophisticated denoising methods that have undergone intensive
development over the last ten years, and have found useful application in many areas,
[12], [3], [20]. Accordingly, it is appropriate to evaluate the fractional diffusion method
on HIM imagery by comparing it with these two well-esteemed approaches.

The three HIM sample images discussed below involve signal-dependent noise
of unknown characteristics and intensity. Educated guesses must be used for the
input regularization parameters. After some preliminary experimentation, a value
of ω = 0.025 in Eq.(4) was selected for the split Bregman TV method, and a value
σn = 30 in Eq.(5) was adopted for the Curvelet Thresholding method. These values
were used for all three samples, and they are well within the ranges recommended by
the authors in [12], [3], [20], in the MATLAB implementations of their methods. In
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the fractional diffusion method, we used β = 0.2 in Eq.(20), and selected the solution
at t = 0.1 as the denoised image in all three samples. This turned out to be equivalent
to having chosen λ ≈ 0.33 in Eq.(21), so that t† = 0.1.

The following discussion presupposes access to the on-line version of this journal,
together with a high-resolution computer screen. Figure 4 deals with an actual HIM
image of an Au-decorated gold on carbon sample, with a field of view of 600 nm. In
Figure 4, the Lévy denoised image has maintained fidelity to the surface texture in the
foreground, as is evident from the jagged edges, as well as to the small structures in the
backgound. Such background structures are not well-recovered in the TV denoised
image, while the foreground surface texture has been smoothed. The background
structures are better recovered in the Curvelet denoised image; however, the jagged
edges in the foreground surface texture have now been eliminated. This becomes more
evident when examining a portion of the sample, as shown in Figure 5. In Table 1,
we see that Lévy stable denoising conserves ‖ fd ‖1, while reducing ‖ ∇df ‖1 by a
factor of three. However, TV and Curvelet denoising do not conserve ‖ fd ‖1, and
reduce ‖ ∇df ‖1, by a factor of seven or more.

The behavior of the L1 Lipschitz exponent α in Figure 6 provides a useful metric
in the denoising experiment in Figures 4 and 5. The original noisy HIM image has
α = 0.236, while the Lévy stable image has α = 0.462. The TV and Curvelet images
have substantially higher values of α, namely 0.778 and 0.845, respectively. This is
consistent with the behavior of ‖ ∇df ‖1 in Table 1.

A very different sample image is considered in Figure 7 but the denoising results
show a similar pattern. Here, a salt crystal on radiolaria HIM image, with a field of
90 µm is denoised. By examining a portion of the image in Figure 8, it is evident that
surface morphology is better reproduced in the Lévy stable image than it is in the TV
and Curvelet images. The Lipschitz traces in this experiment (not shown) are very
similar to those in Figure 6. The original noisy HIM image has α = 0.288, while the
Lévy stable image has α = 0.492. The TV and Curvelet images have higher values
of α, namely 0.666 and 0.674, respectively. Again, Table 2 shows quite significant
reductions in ‖ ∇df ‖1 in the TV and Curvelet images, as compared with the Lévy
stable image. In this example, the 30% drop in ‖ fd ‖1 after split Bregman TV
processing, is striking.

The last example, in Figures 9 and 10, is instructive. This is a gold on carbon
sample, with a field of view of 300 nm. The original HIM image appears very noisy,
and ‖ ∇df ‖1= 47000. Lévy stable denoising removes a considerable amount of noise,
with ‖ ∇df ‖1 reduced to 15000, but the resulting surfaces are still fuzzy. However,
such surface fuzziness may be characteristic of the sample, much like the surface
of a peach. The TV and Curvelet images exhibit aggressive denoising, resulting in
‖ ∇df ‖1≤ 3500, and surfaces as smooth as the surface of an apple. The Lipschitz
traces in this experiment (not shown), are again very similar to those in Figure 6. The
original noisy HIM image has α = 0.085, while the Lévy stable image has α = 0.211.
The TV and Curvelet images have significantly higher values of α, namely 0.696 and
0.704, respectively. In this example, Lévy stable denoising provides the microscopist
with a more prudent reconstruction, to be considered alongside the TV and Curvelet
images.

12. Concluding remarks. Lévy stable denoising exploits the fact that in the
evolution equation wt = −(−∆)βw, t > 0, w(x, y, 0) = f(x, y), the solution w(x, y, t)
satisfies ‖ ∇w(., t) ‖2= O(t−1/2β), t ↓ 0. Thus, if β is chosen small, and f(x, y) is not
smooth, ‖ ∇w(., t) ‖2 blows up much more rapidly as t ↓ 0, than would be the case
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with Gaussian smoothing (β = 1). This suggests that for such small β, the solution
wβ(x, y, t) retains a great deal of the fine structure in the initial data f(x, y), at small
values of t > 0. This expectation is borne out in practice. When this method is applied
to noisy HIM imagery, it is found that a considerable portion of the noise is removed,
without significantly altering the original information content of the image. In Figures
4, 5, 7, 8, 9 and 10, jagged edges in the surface texture, and several other aspects in
the original surface morphology, are preserved in the Lévy stable image. This implies
fidelity to high frequency information. An important diagnostic is provided by the
value of ‖ ∇df ‖1, which was typically reduced by a factor of 3 in the Lévy images.

Surprisingly, such fidelity to the original surface morphology was not feasible with
the split Bregman TV method, or with the Curvelet Thresholding method. The TV
method succeeds in its aim at minimizing ‖ ∇df ‖1 in the denoised image. In Figures 4
and 9, ‖ ∇df ‖1 is reduced by factors of 7 and 13, respectively, after split Bregman TV
denoising. Unexpectedly, Curvelet denoising produces even more severe reductions in
‖ ∇df ‖1. Clearly, significant fine structure information has been removed, along with
the noise, in the TV and Curvelet images. This is confirmed by the sizeable increases
in image Lipschitz exponents.

A very significant advantage of the fractional diffusion method, is the slow mo-

tion option which enables monitoring of the denoising process, and the possibility of
backtracking to a more optimal image. With unknown noise characteristics, it is dif-
ficult to guess optimal choices for the regularization parameters in the split Bregman
TV and Curvelet Thresholding methods, and equally difficult to decide whether a
better denoised image may even be feasible. However, preliminary denoising experi-
ments using the fast Lévy stable method, may provide useful guidance in the choice
of regularization parameters in the TV or Curvelet method.
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stable laws”, SIAM J. Appl. Math. 63, 593–618 (2002).

[6] A. S. Carasso, ”Singular integrals, image smoothness, and the recovery of texture in image
deblurring,” SIAM J. Appl. Math. 64, 1749–1774 (2004).

[7] A. S. Carasso, D. S. Bright, and A. E. Vladár, ”The APEX method and real-time blind de-
convolution of scanning electron microscope imagery”, Optical Engineering 41, 2499-2514
(2002).

[8] A. S. Carasso, ”APEX blind deconvolution of color Hubble space telescope imagery and other
astronomical data”, Optical Engineering 45, 107004 (2006).

[9] A. S. Carasso and A. E. Vladár, ”Calibrating image roughness by estimating Lipschitz xponents,
with applications to image restoration,” Optical Engineering 47, 037012 (2008).

[10] J. Dahl, P. C. Hansen, S. H. Jensen, and T. L. Jensen, ”Algorithms and software for total
variation image reconstruction via first-order methods,” Numer Algor 53, 67–92 (2010).

[11] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, Second ed., Wiley,
New York, 1971.

[12] T. Goldstein and S.Osher, ”The split Bregman method for L1 regularized problems,” SIAM J.
Imaging Sci. 2, 323–343 (2009). See also http://www.math.ucla.edu/ tagoldst/code.html

[13] Y. Gousseau and J. M. Morel, ”Are natural images of bounded variation ?” SIAM J. Math.
Anal. 33, 634–648 (2001).



13

Levy  stable  denoising

        TV denoising                   Curvelet denoising

Noisy original image

Fig. 4. Denoising of actual HIM Au-decorated gold on carbon sample, using Lévy fractional
diffusion, split Bregman TV, and Curvelet thresholding. Here, field of view is 600 nm. Important
loss of structural detail is evident in TV and Curvelet images. This is confirmed by examining a
portion of the sample as shown in Figure 5, as well as the behavior of ‖ ∇df ‖1 in Table 1, and the
Lipschitz traces in Figure 6. The original noisy image has Lipschitz exponent α = 0.236; the Lévy
stable image has α = 0.462; the split Bregman TV image has α = 0.778; and the Curvelet image
has α = 0.845

.
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          TV  denoising                  Curvelet denoising

  Noisy original detail            Levy stable denoising

Fig. 5. Poor recovery of surface morphology in TV and Curvelet denoising experiments on
Au-decorated gold on carbon sample in Figure 4. Here, field of view is 300 nm. This behavior is
compatible with Table 1 below, and the Lipschitz traces in Figure 6.

TABLE 1.

Behavior of ‖ fd ‖1, ‖ fd ‖2, and ‖ ∇df ‖1, in Figure 4 denoising.

Note severe ‖ ∇df ‖1 reduction in Curvelet and TV denoising.

Image f(x, y) ‖ fd ‖1 ‖ fd ‖2 ‖ ∇df ‖1

Noisy original 88 99 25000

Lévy stable (β = 0.2, t† = 0.1) 88 94 8500
Split Bregman TV (ω = 0.025) 74 89 3400
Curvelet thresholding (σn = 30) 81 91 2700
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Fig. 6. Behavior of L1 image Lipschitz exponents in denoising experiment on Au-decorated
gold on carbon sample in Figures 4 and 5. Here, only majorizing Σ line for original trace is shown.
Remaining Σ lines are not drawn to avoid clutter. Red curve is original noisy trace with Lipschitz
exponent α = 0.236. Blue curve is Lévy denoised trace with exponent α = 0.462. Purple curve
corresponds to split Bregman TV trace, with substantially larger exponent α = 0.778. Brown curve
is Curvelet trace with exponent α = 0.845. These values quantify the loss of fine-structure evident
in Figure 4 and 5.
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Levy stable denoising

TV denoising                  Curvelet denoising

Noisy original image

Fig. 7. Denoising of actual HIM salt crystals on radiolaria sample, using Lévy fractional
diffusion, split Bregman TV, and Curvelet thresholding. Here field of view is 90 µm. Loss of
structural detail is evident in TV and Curvelet images. This is confirmed by examining a portion
of the sample as shown in Figure 8, as well as the behavior of ‖ ∇df ‖1 in Table 2. Note 30% drop
in ‖ fd ‖1, after split Bregman TV processing, in Table 2. Lipschitz traces for this experiment (not
shown), are very similar those in Figure 6. Original noisy image has Lipschitz exponent α = 0.288.
Lévy denoised image has α = 0.492. Split Bregman TV denoised image has α = 0.666. Curvelet
denoised image has α = 0.674.
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Levy stable denoising

TV denoising                  Curvelet denoising

Noisy original detail

Fig. 8. Examination of parts of the salt crystals on radiolaria sample in Figure 7, under
magnification, reveals significant erosion of surface morphology in TV and Curvelet images, as
compared with Lévy stable image. Here, field of view is 45 µm. Image Lipschitz exponents can
quantify the loss of fine structure.

TABLE 2.

Behavior of ‖ fd ‖1, ‖ fd ‖2, and ‖ ∇df ‖1, in Figure 7 denoising.

Note severe ‖ ∇df ‖1 reduction in Curvelet and TV denoising.

Image f(x, y) ‖ fd ‖1 ‖ fd ‖2 ‖ ∇df ‖1

Noisy original 54 65 14000

Lévy stable (β = 0.2, t† = 0.1) 54 61 4900
Split Bregman TV (ω = 0.025) 37 57 3000
Curvelet thresholding (σn = 30) 46 56 2600



18

Levy  stable  denoising

        TV denoising                   Curvelet denoising

Noisy original image

Fig. 9. Denoising of actual HIM gold on carbon sample, using Lévy fractional diffusion, split
Bregman TV, and Curvelet thresholding. Here, field of view is 300 nm. TV and Curvelet denoising
produce smoother surfaces than Lévy stable denoising. However, true surfaces may not be smooth.
Lipschitz traces for this experiment (not shown), are again very similar to those in Figure 6. Here,
the original noisy image has α = 0.085; the Lévy stable image has α = 0.211; the split Bregman TV
image has α = 0.696; and the Curvelet image has α = 0.704
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Levy stable denoising

TV denoising                  Curvelet denoising

Noisy original detail

Fig. 10. Examination of parts of the gold on carbon sample in Figure 9, under magnification,
reveals extent of TV and Curvelet smoothing of surface texture, as compared with Lévy stable image.
Here, field of view is 150 nm.

TABLE 3.

Behavior of ‖ fd ‖1, ‖ fd ‖2, and ‖ ∇df ‖1, in Figure 9 denoising.

Note severe ‖ ∇df ‖1 reduction in Curvelet and TV denoising.

Image f(x, y) ‖ fd ‖1 ‖ fd ‖2 ‖ ∇df ‖1

Noisy original 74 84 47000

Lévy stable (β = 0.2, t† = 0.1) 74 78 15000
Split Bregman TV (ω = 0.025) 73 82 3500
Curvelet thresholding (σn = 30) 64 70 3000
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