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Abstract: A proposal is made for the generation of polarization-entangled
photon pairs from a periodically poled crystal allowing for high collection
efficiency, high entanglement, and stable operation. The theory is for-
mulated for colinear propagation for application to waveguides. The key
feature of the theory is the use of type II phase matching using both the +1
and −1 diffraction orders of the poling structure. Although these conditions
are fairly restrictive in terms of operating parameters, practical operating
conditions can be found. For example, we find that a HeNe pump laser
may be used for a periodically poled rubidium-doped potassium titanyl
phosphate (Rb:KTP) waveguide to yield single mode polarization-entangled
pairs. Fidelities of 0.98 are possible under practical conditions.
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1. Introduction

Photonic entanglement is essential to the study of fundamental physics and quantum informa-
tion science. Polarization is frequently used as the entanglement degree of freedom although
other variables such as momentum, orbit-angular-momentum, time and energy are also choices.
Many pioneering experiments such as a non-locality test [1] and quantum teleportation [2]
were explored using polarization-entangled photons. Recently field tests for quantum-key-
distribution with polarization-entangled photon pairs have begun [3]. These applications de-
mand the development of a simple, high quality source of polarization-entangled photon pairs.
We propose and model a new scheme that offers efficient collection, high entanglement fidelity,
and stable, convenient operation.

While the principle has been around for a long time [4], the most common sources of
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polarization-entangled photons still create pairs via spontaneous parametric down conversion
(SPDC) in nonlinear crystals, and advances continue to be made. The basic design has been
to effectively create two pair sources with orthogonal polarization and place them so that one
cannot determine which source generated the pair other than through the emitted polarization
thus yielding entangled pairs. The first such source used type-II phase-matched SPDC in which
the down-converted photons were emitted into two non-concentric cones, one with ordinary
polarization and the other with extraordinary polarization. These two cones intersect along two
lines with polarization-entangled photon pairs collected only along those two special angular
directions [5]. In 1999, Kwiat and his colleagues demonstrated a new source scheme using
type-I SPDC where an extraordinary polarized pump produces two photons that have matching
ordinary polarizations [6]. They stacked together two such identical thin nonlinear crystals but
rotated one crystal 90◦ about the pump direction. The pump laser beam is linearly polarized
at 45◦ with respect to both crystals’ extraordinary axes. Half of the pump beam light drives
a type-I parametric down-conversion process in one crystal; the other half drives an identi-
cal type-I parametric down-conversion process in the second crystal, but with polarizations of
pump and two daughter fields orthogonal to the corresponding fields in the first crystal. The en-
tire emission cones of the two type-I parametric processes nearly perfectly overlap each other.
Polarization-entangled photon pairs can be selected from any azimuthal angle around the axis
of the cone. This bright source allows many interesting applications such as high-dimensional
entanglement [7] and hyper-entanglement [8]. A new polarization-entangled-pair source devel-
opment was contributed recently by Kim, Fiorentino, and Wong [9]. They placed a periodically
poled Potassium Titanyl Phosphate (PPKTP) crystal in a Sagnac interferometer. Pump beams
entering each end of the crystal coherently drove two identical type-II SPDC processes. The
Sagnac arrangement combines the output of the two SPDC processes so that the creation direc-
tion cannot be determined, the yielding entangled photon pairs. The advantage of this source is
that all beams propagate coaxially, greatly easing the optical alignment including the collection
of entangled photons which has been cumbersome in previous sources.

In this paper, we propose a new source scheme for polarization-entangled photon pairs, one
which builds on the two-source theme of Kwiat and co-workers [5, 6] and Kim et al. [9] by
effectively creating two sources within a single crystal and using only a single pass of the
pump laser beam through that crystal. With a proper choice of poling period and a simple
compensation of the temporal walk-off, an entanglement fidelity near unity can be achieved.

Our scheme, shown in Fig. 1, employs a periodically poled waveguide in which two different
type-II SPDC processes occur. Each of the processes are quasi-phase matched type II SPDC
but the poling contributes a wave vector of opposite sign for the two different processes, as
illustrated in Fig. 1(b). Typical optics for a two-photon coincidence experiment are shown in
Fig. 1(c). This arrangement takes advantage of the high two-photon brightness made possible
by quasi-phase matching and periodic poling and a waveguide geometry is used to limit the
pair production to a single spatial mode. The waveguide is formed by the diffusion of Rb [10]
into KTP which displaces some of the K ions in the lattice, forming and an alloy of Rubidium
Titanyl Phosphate (RTP) and KTP varying from pure RTP at the surface to pure KTP at a depth
of tens of micrometers. (We denote this system as an Rb:KTP waveguide.) The complexity of
the alignment is much reduced compared to previous sources, leading to superior stability and
high fidelity.

2. Polarization-entangled two-photon state in a crystalline waveguide

Quasi-phase matching has been extensively applied in SPDC to create photon pairs at chosen
wavelengths [11]. In quasi-phase matching, the domain of the crystal of length L = 2� is re-
versed in a pattern with period Λ, called the poling period, so that the usual wave vectors of
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Fig. 1. Optical system for the generation of polarization-entangled photons. (a) A wave-
guide in KTP, showing the crystal axes X , Y , and Z. The crystal axes are aligned along
spatial z, x, and y, respectively. The region of high Rb is shown. (b) An illustration of two
different ways to achieve type-II phase matching. (c) The optical system for a two-photon
interference experiment. The first dichroic mirror prevents parametric down conversion
in the temporal KTP compensator. The beams enter a bulk KTP crystal whose length is
0.4844 of the length of the waveguide and whose orientation is rotated 90◦ about the optic
axis with respect to the KTP waveguide, i.e., matching the spatial axes (x,y,z) to the crystal
axes (−Z,Y,X). The beams are then separated with a dichroic mirror and filtered to remove
down converted photons from higher harmonics of the poling period. The mirror on the
idler branch may have a polarization dependent reflectivity which may enhance the fidelity
as discussed in the text. The beams are coupled into unpolarized single mode optical fibers.

phase matching are supplemented by wave vectors corresponding to 2π/Λ times an integer
m [12]. If the pattern is chosen to correspond to a square wave with a 50 % duty cycle, then
the additional spatial frequencies are 2mπ/Λ but include only the integer pairs m = ±1, ±3.
To avoid an edge effect, L should be in an integral multiple of Λ, although L >> Λ is a suf-
ficient condition. (Hereafter we will not distinguish between phase matching and quasi-phase
matching.)

Spontaneous parametric down conversion in a waveguide which supports only a single mode
for the daughter photons yields a two-photon state which may be written as

|2̄〉= 4
∫

dωs dωid�rs d�ri β (ωs,ωi)UY (�rs,ωs)UZ(�ri,ωi)a†
Y (�rs,ωs)a

†
Z(�ri,ωi)|0〉, (1)

where the spatial integral is taken over the waveguide, the angular frequencies are each inte-
grated from −∞ to ∞, β (ωs,ωi) is a two-photon joint spectral amplitude, where ωs and ωi are
the frequencies of the signal and idler fields, Uj(�r,ω) is the spatial mode of the waveguide,
for polarizations along crystal axes j = Y,Z, a†

j(�r,ω) is the creation operator for a photon at a
point�r with angular frequency ω and polarization j, and |0〉 is the photonic ground state. We
use the convention that a bar over a state is unnormalized. We consider the case in which the
confined modes at both the signal and idler frequencies are unique (i.e., single mode) for each
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of the two polarizations. The effect of the slightly different spatial modes for each polarization
proves to be modest, so we defer its treatment to Appendix A. Neglecting the effect of spatial
modes, Eq. (1) reduces to

|2̄〉= 4
∫

dωs dωi β (ωs,ωi)a†
Y (ωs)a†

Z(ωi)|0〉, (2)

where the creation operators create photons in a mode with a fixed spatial dependence.
The pump photon with angular frequency ωp turns into a signal and idler photon pair. En-

ergy is conserved, so ωp = ωs +ωi. If we consider parametric down conversion in a straight
crystalline waveguide or a bulk crystal of length L = 2�, the joint spectral amplitude is given by

β (ωs,ωi) = α(ωs +ωi)
∞

∑
m=−∞

cm sinc[Δkm(ωs,ωi)�] . (3)

Here, α(ωp) is the pump spectrum, sinc[Δkm(ωs,ωi)�] is a phase matching function, and the cm

are taken to be constants [13].
A typical choice for the pump spectrum in Eq. (3) is the Gaussian

α(ωp) =
1

(2π)1/4σ1/2
p

exp

(
− (ωp −ω(1)

p )2

4σ2
p

)
, (4)

where ω(1)
p is the central pump angular frequency and σp is the width. We have chosen the

constants in Eq. (4) so that for the CW case

lim
σp→0

[α(ωp)]
2 = δ (ωp −ω(1)

p ). (5)

We only consider the CW case in this paper.
A key feature here is that we assume c1 ≈ c−1 in Eq. (3) and that all the other cm may be

neglected. (The first assumption is justified in Appendix B. The terms cm with |m|> 1 may be
neglected because the effective nonlinear coefficient deff = 2dbulk/(|m|π), so the m =±1 terms
are the largest; moreover, the other terms lead to phase matched frequencies which are different
from those of m =±1 and are removed by spectral filtering of the light, as shown in Fig. 1(c).)
Our goal is to find conditions so that both the m = 1 and m = −1 terms support parametric
down conversion simultaneously, with these two processes being the heart of our entangled
photons source. The case using type-0 SPDC with m = 0 and type-II SPDC with |m| = 1 has
been implemented experimentally [14].

The wave vector mismatch in Eq. (3) is given by

Δkm(ωs,ωi) = kZ(ωs)+ kY (ωi)− kY (ωp)+
2πm

Λ
(6)

for type II phase matching in a periodically poled crystal with poling period Λ; the choice of Λ
is set by our use of periodically-poled KTP with Y and Z representing directions of polarization
in the crystal. The wave vectors are defined by k j(ω) = ωn j(ω)/c, where n j(ω) is the index of
refraction for the polarization indexed by j, and c is the speed of light.

The two-photon joint spectral amplitudes β (ωs,ωi) will be largest when ωp is centered on

angular frequency ω(m)
p = ω(m)

s +ω(m)
i for which Δkm(ω

(m)
s ,ω(m)

i ) = 0. In order to achieve a
polarization-entangled state, we select an operating point such that

Δk1(ωs,ωi) = kZ(ω
(1)
s )+ kY (ω

(1)
i )− kY (ω

(1)
p )+

2π
Λ

= 0
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Δk−1(ω
(1)
i ,ω(1)

s ) = kZ(ω
(1)
i )+ kY (ω

(1)
s )− kY (ω

(1)
p )− 2π

Λ
= 0, (7)

i.e., ω(1)
s = ω(−1)

i and ω(−1)
s = ω(1)

i , which implies ω(1)
p = ω(−1)

p . The situation is illustrated in
Fig. 2 for a case studied in the next section.

We develop a Taylor series about these points, introducing detuning frequencies ξp = ωp −
ω(1)

p , ξs = ωs −ω(1)
s , and ξi = ωi −ω(1)

i . Expanding about these points

Δk±1(ωs,ωi) = kz(ωs)+ ky(ωi)− ky(ωp)± 2π
Λ

≈ kz(ω
(±1)
s )+ k′z(ω

(±1)
s )ξs + ky(ω

(±1)
i )+ k′y(ω

(±1)
i )ξi

− ky(ω
(±1)
p )− k′y(ω

(±1)
p )ξp ± 2π

Λ
, (8)

hence

Δk(0)±1(ξs,ξi) ≈ k′z(ω
(±1)
s )ξs + k′y(ω

(±1)
i )ξi − k′y(ω

(±1)
p )(ξs +ξi) (9)

Fig. 2. Contours of Δkm(ωs,ωi) = 0 (vertical, red) and Δkm(ωi,ωs) = 0 (horizontal, blue)
for Λ = 1 mm and m =±1,±3, as defined in Eq. (6). The axes are labeled by frequencies
ν = ω/2π as well as by the free space wavelengths λ = c/ν . The line with negative slope
obeys ωs +ωi = ωp for λp = 632.58 nm. The line with positive slope indicates ωs = ωi.

The large black dots represent the pairs (ω(1)
s ,ω(1)

i ) = (ω(−1)
i ,ω(−1)

s ) and (ω(1)
i ,ω(1)

s ) =

(ω(−1)
s ,ω(−1)

i ) as defined in Eq. (7). The small black dots represent the pairs of daughter

photons generated at the frequencies pairs (ω(±3)
s ,ω(±3)

i ) and (ω(±3)
i ,ω(±3)

s ). Additional
frequency pairs will be generated for additional pairs of odd ±m, but these are not in the
range of the figure.
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where the function Δk(0)±1(ξs,ξi) = Δk±1(ωs,ωi) and the primes denote differentiation with re-

spect to the argument. In the special case ω(±1)
s = ω(∓1)

i ,

Δk(0)−1(ξi,ξs) ≈ k′z(ω
(1)
i )ξi + k′y(ω

(1)
s )ξs − k′y(ω

(1)
p )(ξs +ξi) (10)

where we have swapped the order of the arguments ξs and ξi as well as eliminating the variables

ω(−1)
j in favor of ω(1)

j .
Introducing the times

τ1s =
(

k′z(ω
(1)
s )− k′y(ω

(1)
p )

)
�,

τ1i =
(

k′y(ω
(1)
i )− k′y(ω

(1)
p )

)
�,

τ−1s =
(

k′y(ω
(1)
s )− k′y(ω

(1)
p )

)
�, and

τ−1i =
(

k′z(ω
(1)
i )− k′y(ω

(1)
p )

)
�, (11)

we may write

Δk(0)1 (ξs,ξi)� ≈ τ1sξs + τ1iξi

Δk(0)−1(ξi,ξs)� ≈ τ−1sξs + τ−1iξi. (12)

These times are the difference of the transit times for the pump and another mode across half
of the crystal. This completes the formalism related to linearizing Eq. (3).

Fidelity of entanglement

We develop an analytic formula for the fidelity of an entangled state and follow up in the next
section with numerical results for a particular Rb:KTP waveguide.

Interchanging the variables of integration ωs ↔ωi in Eq. (2) and then interchanging the order
of integration, we may write

|2̄〉 = 2
∫

dωs dωi

[
β (ωs,ωi)a

†
Y (ωs)a

†
Z(ωi)+β (ωi,ωs)a

†
Y (ωi)a

†
Z(ωs)

]
|0〉. (13)

If we define two additional unnormalized two-photon states

|2̄±〉=
∫

dωs dωi [β (ωs,ωi)±β (ωi,ωs)]
[
a†

Y (ωs)a
†
Z(ωi)±a†

Y (ωi)a
†
Z(ωs)

]
|0〉, (14)

we find these states are related by

|2̄〉= ∑
±
|2̄±〉 (15)

using ∑± 1 = 2 and ∑±±1 = 0.
The normalized state from Eq. (2) is written

|2〉= |2̄〉
〈2̄|2̄〉1/2

(16)

and, similarly, for Eq. (14), |2±〉= |2̄±〉/〈2̄±|2̄±〉1/2. For an ideal polarization-entangled state,
|2̄〉 = |2̄±〉 corresponding to β (ωs,ωi) = ±β (ωi,ωs). By considering the relevant matrix el-
ement of creation and destruction operators, the orthogonality relation 〈2̄+|2̄−〉 = 0 may be
derived and so

〈2̄|2̄〉= ∑
±
〈2̄±|2̄±〉. (17)
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The fidelity of a state is defined as F = Tr{ρ |2〉〈2|} [15]. We will focus on to the case of the
symmetric state by using the density matrix ρ = |2+〉〈2+|. (Any other choice of ρ leads to a
lower figure for the fidelity assuming we are testing for the dominant state.) Substituting this
form for ρ into the fidelity formula leads to

F = |〈2+|2〉|2

=
〈2̄+|2̄+〉
〈2̄|2̄〉 (18)

using Eq. (16), Eq. (17), and 〈2̄+|2̄−〉= 0. The problem of finding the fidelity F has reduced to
the evaluation of 〈2̄±|2̄±〉 because of Eq. (17).

We need the matrix element

〈0|[aZ(ω̄i)aY (ω̄s)±aZ(ω̄s)aY (ω̄i)]
[
a†

Y (ωs)a
†
Z(ωi)±a†

Y (ωi)a
†
Z(ωs)

]
|0〉

= 2δ (ω̄s −ωs)δ (ω̄i −ωi)±2δ (ω̄s −ωi)δ (ω̄i −ωs) (19)

to write

〈2̄±|2̄±〉 =
∫

dω̄s dω̄i dωs dωi [β (ω̄s, ω̄i)±β (ω̄i, ω̄s)]
∗[β (ωs,ωi)±β (ωi,ωs)]

× [2δ (ω̄s −ωs)δ (ω̄i −ωi)±2δ (ω̄s −ωi)δ (ω̄i −ωs)]. (20)

As discussed in Appendix A, the foregoing discussion needs to be modified for a waveguide to
take into account the differences in the spatial modes. Next, we define the direct integral

I =
∫

dωs dωi |β (ωs,ωi)|2 (21)

and the exchange integral

J =
∫

dωs dωi β ∗(ωi,ωs)β (ωs,ωi). (22)

In terms of the direct and exchange integrals,

〈2̄±|2̄±〉 = 8I±8ReJ. (23)

The fidelity is given by

F =
1
2

(
1+

ReJ
I

)
. (24)

using Eq. (17), Eq. (18), and Eq. (26).
The integrals I and J are evaluated in Appendix C, leading to the expression

F = 1− |Δτ+−Δτ−|
2(Δτ++Δτ−)

(25)

using the symbols defined near Eq. (42). Eq. (25) implies 1
2 ≤ F ≤ 1. The maximum value

F = 1 is achieved when Δτ+ = Δτ−. Restated, we obtain a high fidelity symmetric state when

|τ1s − τ1i| ≈ |τ−1s − τ−1i|, or equivalently, when |k′z(ω(1)
s )− k′y(ω

(1)
i )| ≈ |k′y(ω(1)

s )− k′z(ω
(1)
i )|.

In the limit of zero pump bandwidth (i.e., a CW source), F is independent of both k′y(ω
(1)
p )

and the crystal length L = 2�. While the natural range of F is 0 to 1, the assumption c1 = c−1

limits the range of F . Although we do not explore it here, c1 = −c−1, leads to 0 ≤ F ≤ 1
2 and

is relevant for generating a pure state |2−〉.
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Table 1. Comparison of Present Sellmeier Equation to Experimental Results for Type I
Second Harmonic Generation, which is the Inverse of Degenerate SPDC

Λ (nm) Expt. λ (nm) Present λ (nm)
Katz et al. [21] 8.99 1064 1061
Samanta et al. [22] 9.01 1064 1062
Torabi-Goudarzi and Riis [23] 4 846 842

3. Fidelity of polarization-entangled states for our source

We propose and explore an operating point for our periodically-poled KTP (PPKTP) wave-
guide. We chose this medium for our waveguide because it has been used previously for SPDC-
based sources in waveguides [14,16,17] and in the bulk [18,19]. In our proposed system, shown
in Fig. 1, a pump laser (possibly HeNe) is coupled to a waveguide formed from Rb diffused into
a periodically-poled KTP crystal. Polarization-entangled signal and idler waves are generated
through parametric down conversion. Upon exiting the crystal, the pump wavelength is removed
from the beam. These waves pass through a bulk KTP crystal rotated by 90◦ for pulse timing
compensation [5, 16, 20].

The index of refraction is usually parametrized using a Sellmeier equation. For KTP, we
follow König and Wong [24] who recommend the Sellmeier equation of Fradkin et al. for

n(KTP)
z [25] and who introduce a new Sellmeier equation for n(KTP)

y . For the difference in the

indices of KTP and RTP, n(RTP)
j − n(KTP)

j for j = Y,Z, we use the measurements of Cheng et
al. [26] who reports values for both crystals with one set of instruments. The index of refraction
for the bulk crystals is given in Fig. 3. We followed this mixed procedure because the Sellmeier
equation of König and Wong was developed specifically for PPKTP. This Sellmeier equation
accounts for the reported type-0 phase matching for SHG in PPKTP as shown in Table 1.

We calculated the effective index of refraction for waveguides with Rb diffused into KTP
(Rb:KTP) using the Sellmeier equations given above and the commercial software package
Comsol Multiphysics including its RF (Radio Frequency) Module [27]. The waveguide param-
eters are the width w and the profile of the Rb dopants whose index profile decreases with
depth into the crystal from the bulk RTP value to the bulk KTP value following the function
erfc(−Z/Z0) [28] where the crystal surface is at Z = 0, and Z ≤ 0 in the waveguide and in the
crystal. We used a simulation region consisting of two quarter-circles filled with KTP with a
20 μm radius, a rectangular region of width w between the quarter circles to represent the wave-
guide proper, and a rectangular region of (40 μm +w) × 4 μm above to represent the air. A
sketch of the simulation region is shown in Fig. 4 (top), along with the variation of the index of
refraction in a particular case (bottom left). On the boundary, the fields were required to vanish.
This approximation causes little error because the fields were exponentially confined. The sim-
ulation region was large enough that boundary effects were negligible as tested by comparing
to a 30 μm radius boundary in selected cases and by visual inspection of the confined modes.
The parameter w was chosen to ensure that the down converted photons are in a single mode
for the signal and the idler.

In the standard approach, a crystal used for dispersion compensation matches the source
crystal except for being half their length and rotated by 90◦ [5]. Here, to avoid the necessity of
coupling into a second PPKTP waveguide, we propose using a rotated bulk KTP crystal instead.
The compensation is adequate even though the materials are not exactly matched. For the case
of a waveguide shown in Fig. 1, with a poling period Λ=1 mm, λs = 1247 nm and λi = 1284 nm.
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Fig. 3. The index of refraction for bulk RTP and KTP is given as a function of the free space
wavelength for polarization along the crystal Y and Z axes. The effective index of refraction
for the fundamental mode is given for an Rb:KTP waveguide (WG) with parameters w =
3.5 μm and Z0 = 4.5 μm.

The spread in the wave packet arises because photons converted near the exit face of the wave-
guide exit at almost the same time, whereas those converted near the entrance of the wave-
guide exit with a time difference given by (L/c)[nZ(λs)− nY (λs)] or (L/c)[nZ(λi)− nY (λi)],
corresponding to 0.08069L/c and 0.08083L/c. For the bulk crystal, the corresponding figures
are 0.08325L/c and 0.08348L/c. With a single length for the bulk crystal, we may compensate
the average delay by choosing the bulk crystal length to be 0.9688/2 of the waveguide instead of
the traditional 1/2. This deviates from the ideal compensation by ±2×10−5L/c, which is only
2.5× 10−4L/c of the broadening by the waveguide. Hence, we conclude that bulk KTP may
be used to compensate the timing of the broadening of two-photon wave packets in the KTP
waveguides in analogy with the standard compensation scheme. For reference, if L = 10 mm,
then L/c = 33 ps, the delay is about 2.6 ps, and the compensation error is about 0.7 fs.

We estimate that the conversion of photons from higher pump modes is negligible. Some
of the higher pump modes will have odd parity under crystal Y ↔ −Y about the waveguide
centerline and hence yield a vanishing triple mode integral, yielding no signal and idler photons.
The first higher mode with even parity, the third mode overall, yields a triple mode integral of
39 % that of the fundamental mode integral at (λp,λs,λi) = (625,1250,1250) nm, and this
factor enters the production rate squared, i.e., 0.15. Coupling to the input pump beam is likely
to be weak compared to coupling to the fundamental pump mode of the waveguide. Finally, the
effective index of refraction of this higher pump mode is 1.871 vs. 1.786 for the fundamental
mode at λp = 625 nm, suggesting the higher mode’s signal and idler photons will be generated
far from phase-matching conditions.
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Fig. 4. (top) The simulation domain, including a 3.5 μm wide strip of Rb:KTP, two quarter
circles of KTP of radius 20 μm, and an air cap with a height of 4 μm. The light blue region,
a 4.5 μm × 5.5 μm rectangle, is expanded in the panels below. (bottom left) The index of
refraction, with white for air (1), blue for KTP (1.74), and the Rb:KTP strip ranging from
the pure RTP value of 1.765 to 1.74. Specifically nY (λ = 1265.4 nm) is shown. (bottom
middle) The Z polarized mode at λ = 1265.4 nm. (bottom right) The Y -polarized mode
at λ = 1265.4 nm. In the bottom three figures, horizontal lines are drawn at a depth of
1 μm, 2 μm, and 3 μm. The inner vertical lines are 3.5 μm apart and mark the edge of the
Rb-doped region.

When the wave vector mismatch given in Eq. (6) vanishes, the phase matching condition is
satisfied. The poling period Λ required to achieve phase-matched degenerate SPDC in bulk KTP
and a periodically poled waveguide of width w = 3.5 μm and Z0 = 4.5 μm with the parameters
defined in Table 2 is shown in Fig. 5. The poling periods required for type II phase matching
are much longer than that needed for type 0 phase matching. This may be understood because
the higher index of refraction for the Z polarized wave partially cancels the higher index of the
(short wavelength) pump. Varying w or Z0 has a very modest effect on the results as shown in
Table 2. This Table also shows it is possible to obtain phase-matched degenerate SPDC with a
HeNe laser λp = 632.8 nm for certain values of (w,Z0) such as (3.4,4.5) μm and (3.7,4.5) μm.

The signal, idler, and (doubled) pump wavelengths are shown in Fig. 6 as a function of the
poling period Λ. To obtain Fig. 6 it was necessary to find the intersection points of curves
Δk(ωs,ωi) = −Δk(ωi,ωs), illustrated in Fig. 2 for the case of Λ = 1 mm. Because we are
imposing the constraints of Eq. (7), once the material, geometry, and Λ are chosen, there are
no additional degrees of freedom. Hence, it is fortunate that the wavelengths are reasonably
convenient, and that, with carefully chosen parameters, operation with HeNe laser for the pump
should be possible. The curves are given for room temperature. The curves for the KTP are
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Fig. 5. Poling period as a function of degenerate SPDC wavelength (λs = λi = 2λp) for
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with parameters from Fig. 3. The wavelengths for unpoled type-II SHG are indicated. The
curves for RTP are similar to KTP, but shifted to longer wavelengths including a shift of
the the unpoled wavelength to 1139 nm. The diffraction order m as defined in Eq. (6) is
indicated on the graph; the type 0 phase matching always uses m = −1, but type II phase
matching uses m =−1 for shorter wavelengths and m =+1 for longer wavelengths.

shifted upwards by about 0.6 nm for a 20 C rise above room temperature. Curves for RTP and
the waveguide are similarly affected. The temperature coefficients for the index of refraction
were taken from Emanueli and Arie [29] for KTP and Mikami et al. for RTP [30].

Next, we come to the main goal of this paper, the estimate of the fidelity of the polarization-
entangled states, according to Eq. (25). The results for KTP, RTP, and an Rb:KTP waveguide
are shown in Fig. 7. (We have assumed colinear propagation, so the meaning of the results for
the bulk crystals is hypothetical.) The main point is that high fidelities may be achieved for long
poling periods. For example, for Λ = 1 mm, a fidelity of 0.987 may be achieved in the wave-
guide for (λp, λs, λi) = (632.6, 1246.8, 1284.1) nm. As the poling period becomes increasingly
long, the signal and idler wavelengths become more similar, as shown in Fig. 6.

The condition in Eq. (36) becomes increasingly important as Λ → ∞, the small parameters

(|τ±1s−τ±1i||ω(1)
s −ω(1)

i |)−1 growing from about 1 % at Λ= 1 mm to about 8 % at Λ= 10 mm.
For the longer Λ and high precision studies, it would be necessary to consider the terms which
were neglected in Eq. (35) and Eq. (40).

In an experiment, the fidelity may be affected by the spatial mode structure. These are very
similar but not identical for the Y and Z polarized photons leaving the waveguide. For example,
for 1250 nm photons, the overlap integral the electric fields for the two polarizations, (omitting
the orthogonality due to polarization) is 0.97, when the two fields are normalized to unit self-
overlap integrals. A simple way to nearly eliminate the effect of the spatial mode structure
is to use a single mode optical fiber to produce identical spatial modes, albeit at the price of
some coupling loss. (See Fig. 1.) Maintaining high efficiency throughout the optical path will
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require considerable care, including the use of antireflective coatings which reduces the need
for reliance in posst selection by reducing the fraction of broken pairs. We also note that these
losses do not affect fidelity, unless the contributions of background light or detector dark count
rates become significant. In a similar way, polarization and frequency-dependent absorption can
ameliorate the effect of an imbalance (i.e., deviation from unity) in the c1/c−1 ratio discussed
in Appendix B.

4. Concluding remarks

We have presented a proposal for a source of intrinsically-created polarization-entangled pho-
tons using type II parametric down conversion in a periodically-poled Rb:KTP waveguide. The

Table 2. Pump and Degenerate SPDC Wavelengths (nm) in Unpoled Rb:KTP Waveguides
and Bulk RTP and KTPa

w (μm) Z0 (μm) λp (nm) λs = λi (nm)
3.0 4.5 634.9 1269.9
3.5 4.5 632.7 1265.4
4.0 4.5 634.3 1268.5
3.5 6.0 629.8 1259.6
bulk RTP 569.5 1139.0
bulk KTP 536.3 1072.6

aThe parameters of width w and depth Z0 are defined in the text. By interpolation, the HeNe wavelength
of 632.8 nm may be applied to a waveguide with w = 3.4 μm or w = 3.7 μm and Z0 = 4.5 μm.
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to reduce the fidelity by a factor of 0.97 for Λ ≥ 0.2 mm, falling to 0.89 for Λ = 0.1 mm.
However, the spatial mode effect can be largely eliminated, as discussed in the text.

new source’s simple optical design is expected to be more stable and easier to implement than
previously demonstrated sources. The brightness and fidelity are expected to be comparable to
the best existing sources.

The key feature of the new source is the simultaneous quasi-phase matching of photons using
both orders m =±1 of the periodically poled KTP waveguide A disadvantage of the scheme is
that the available pump, signal, and idler wavelengths are highly constrained. However, we have
shown that solutions are possible and even a common HeNe laser generating light at 632.8 nm
may be used as a pump for certain geometries.

A. Spatial mode effect

After the introduction of Eq. (1), we noted that the effect of spatial modes disappears if the
modes are identical. Here, we consider explicitly the effect of different spatial modes. In an
ideally entangled Bell state of the type |YZ〉+ |ZY 〉, we may perform the interchange Z ↔
Y with the state remaining invariant [31, 32]. (Other authors use |HV 〉+ |VH〉 for our state
|YZ〉+ |ZY 〉.)

To avoid too much notational complexity, we will take β (ωs,ωi) ≈ β (ωi,ωs) in this Ap-
pendix. In analogy with Eq. (20), the norm is

〈2̄±|2̄±〉 = 2
∫

dω̄s dω̄i dωs dωi d ¯� srd�̄ irβ ∗(ω̄s, ω̄i)β (ωs,ωi)

∑
±
[U∗

Y (
¯� sr, ω̄s)U

∗
Z (�̄ ir, ω̄i)±U∗

Y (�̄ ir,ωi)U
∗
Z (

¯� sr, ω̄s)][UY (�rs,ωs)UZ(�ri,ωi)±UY (�ri,ωi)UZ(�rs,ωs)]

[2δ (ω̄s −ωs)δ (ω̄i −ωi)δ ( ¯� sr−�rs)δ (�̄ ir−�ri)±2δ (ω̄s −ωi)δ (ω̄i −ωs)δ ( ¯� sr−�ri)δ (�̄ ir−�rs)]

= 8I±8J
∫

d�rs d�riU
∗
Y (�rs,ωs)U

∗
Z (�ri,ωi)UY (�ri,ωi)UZ(�rs,ωs)

(26)
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using the normalization integral
∫

d�r|Uj(�rs,ωs)|2 = 1 for j = Y,Z. If we assume that the ex-
change integral is independent of frequency, then we have

〈2̄±|2̄±〉 = 8I±8J

∣∣∣∣
∫

d�r UY (�r)
∗UZ(�r)

∣∣∣∣
2

. (27)

Thus, the net effect of the spatial mode structure on the fidelity is to make the exchange integral
smaller by a factor of the spatial mode overlap integral in Eq. (24). For our waveguide, for
λ = 625 nm, the spatial mode integral factor reduces the fidelity by a factor of 0.9738. The
spatial modes are show for this case in Fig. 4 (bottom middle and bottom right). The modes
are seen to be very similar, although not identical. The factor is only a weak function of the
wave vector mismatch. For example, for Λ = 0.1 mm, 0.5 mm, and 1 mm, we obtain values of
0.8906, 0.9693, and 0.9697.

As discussed in Sec. III, near Λ = 1 mm, the fidelity (omitting the spatial mode effect) can
exceed 0.98. Hence, this may be the limiting factor in obtaining high fidelity. Manipulating the
signal and idler beams after waveguide may be used to relieve this problem, in analogy to the
temporal compensators which were established in the 1990’s. The simplest approach is to let
the spatial modes enter a single mode fiber without polarization dependence.

B. Generation rates of two output channels

The coefficients c1 and c−1 are proportional to matrix elements of the interaction Hamiltonian
for parametric down conversion. This theory was developed for periodically poled waveguides
by Fiorentino and coworkers [17] adapting an earlier development for parametric down conver-
sion in periodically poled bulk crystals [11]. Indeed, the development of the present paper is
anticipated to a certain extent by Ref. [11] in that they expand the position-dependent nonlinear
coefficient d(x,z) as a Fourier series

d(x,z) =
+∞

∑
n=−∞

dn(x) e−inKz (28)

which is Eq. (8) of Ref. [11]. (Our co-ordinate system in explained in Fig. 1(a).) They remark
“the only term in Eq. (8) which will lead to a constructive interaction between the pump wave
and the signal and idler is dn(x).” They then present a phase matching equation equivalent to
our Eq. (6). Here, we consider more than one such term. Each yields the same form for the
interaction matrix element which is given in Eq. (11) of Ref. [17] which is

〈 f |HI |i〉= dh̄(2Pp ωsωi)
1/2

(ε0cn2
s n2

i np)1/2
L sinc

(
ΔkL

2

) ∫
A
dxdy Up(x,y)U∗

i (x,y)U∗
s (x,y) (29)

as written in the notation of the reference. Here, d is the effective nonlinear coefficient
(2/π)dbulk [11], Pp is the pump power, ε0 is the electric constant, c is the speed of light,
the n are indices of refraction, L is the crystal length, and A is the cross-sectional area of the
waveguide, and the various U are the modes in the waveguide. In our case, we must remember
that the n and d refer to the applicable polarization. We may write the ratio

c−1

c1
=

dYZY (ωp,ωs,ωi)

dYZY (ωp,ωi,ωs)

nZ(ωi)

nZ(ωs)

nY (ωs)

nY (ωi)

G(ωp,ωs,ωi)

G(ωp,ωi,ωs)
(30)

with

G(ωp,ωs,ωi) =
∫

A
dxdy UY (x,y;ωp)U∗

Z (x,y;ωs)U∗
Y (x,y;ωi) (31)
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where (ωs,ωi) is evaluated at (ω(1)
s ,ω(1)

i ).
We estimate the dispersion of the nonlinear coefficients using Miller’s rule [33], namely

dYZY (ωp,ωs,ωi)≈ δYZY χYY (ωp)χZZ(ωs)χZZ(ωi) (32)

where δYZY is taken to be a constant and the χ are the linear susceptibilities, which are related
to the index of refraction by 4πχ j j(ω) = n2

j(ω)−1. This permits us to estimate

c−1

c1
=

n2
Z(ωs)−1

n2
Z(ωi)−1

n2
Y (ωi)−1

n2
Y (ωs)−1

nZ(ωi)

nZ(ωs)

nY (ωs)

nY (ωi)

G(ωp,ωs,ωi)

G(ωp,ωi,ωs)
. (33)

In the limit of degenerate parametric down conversion, i.e., inverse second harmonic generation,
ωs = ωi, so c−1/c1 = 1. This limit is obtained as Λ → ∞. As may be seen from the derivation in
the text and Appendix C, the fidelity must be reduced by a factor of 2[(c−1/c1)+(c1/c−1)]

−1 ≤
1 assuming I++ ≈ I−− using the symbols defined in Eq. (35).

Numerical calculations for Λ = 0.1 mm, 0.5 mm, and 1 mm show that c−1/c1 is 1.2084,
1.0365, and 1.0125 for the three cases, respectively. The deviation from unity is almost entirely
due to the triple mode integral. The factors involving the index of refraction in Eq. (33) differ
from unity by less than 10−4 for Λ ≥ 0.1 mm. Using the expression at the end of the previous
paragraph, the fidelity needs to be reduced from that shown in Fig. 7 by a factor of 0.9823,
0.9994, and 0.9999, all of which are smaller than deviations from unity shown in the plot for
the associated value of Λ. Hence, the approximation c1 ≈ c−1 is justified.

C. Evaluation of direct and exchange integrals

The direct integral is given in Eq. (21) and the form of β is given by Eq. (3).

I =
∫

dωs dωi [α(ωs +ωi)]
2

{
∑
±

sinc[Δk±1(ωs,ωi)�]

}2

. (34)

In an obvious notation, let

I = I+++ I−−+ I+−+ I−+. (35)

There are large contributions where ωs ≈ ω(1)
s and ωi ≈ ω(1)

i to I++, and large contributions

when ωs ≈ ω(1)
i and ωi ≈ ω(1)

s to I−−, but the mixed terms are nowhere large, assuming that

(ω(1)
s ,ω(1)

i ) is always far from (ω(1)
i ,ω(1)

s ) on the scale of oscillations of the sinc function.
Formally, we require

1 << |τ±1s − τ±1i||ω(1)
s −ω(1)

i | (36)

to neglect I+− = I−+. Equation (??) may be achieved in practice with periodically poled KTP.
We may write I++ as an integral over ξs and ξi as

I++ =
∫

dξs dξi

[
α(0)(ξs +ξi)

]2
sinc2

[
Δk(0)1 (ξs,ξi)�

]

≈
∫

dξs dξi

[
α(0)(ξs +ξi)

]2
sinc2 (τ1sξs + τ1iξi) . (37)

For I−−, we interchange ωs and ωi,

I−− =
∫

dξi dξs

[
α(0)(ξi +ξs)

]2
sinc2

[
Δk(0)−1(ξi,ξs)�

]
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≈
∫

dξs dξi

[
α(0)(ξs +ξi)

]2
sinc2 (τ−1sξs + τ−1iξi) . (38)

The exchange integral is given by

J =
∫

dωs dωi [α(ωs +ωi)]
2 ∑± {sinc[Δk±1(ωs,ωi)�]sinc[Δk±1(ωi,ωs)�]

+ sinc[Δk±1(ωs,ωi)�]sinc[Δk∓1(ωi,ωs)�]}. (39)

In a similar obvious notation similar to that above, let

J = J+++ J−−+ J+−+ J−+. (40)

In this case, the terms J++ and J−− may be neglected because the arguments to the two sinc
functions are never simultaneously small. However, for J+− = J−+ both arguments may be
simultaneously small.

J+− =
∫

dξs dξi

[
α(0)(ξs +ξi)

]2
sinc

[
Δk(0)1 (ξs,ξi)�

]
sinc

[
Δk(0)−1(ξi,ξs)�

]

≈
∫

dξs dξi

[
α(0)(ξs +ξi)

]2
sinc(τ1sξs + τ1iξi)sinc(τ−1sξs + τ−1iξi) . (41)

If we take the pump bandwidth to be zero, Eq. (5) applies. Introducing δτ± = τ±1s − τ±1i,
the integrals in Eq. (37) and Eq. (38) reduce to

I±± =

∫
dξ sinc2(δτ±ξ )

=
π

Δτ±
, (42)

where Δτ± = |δτ±|. To obtain Eq. (42), we use the change of variables ξp = ξs + ξi and ξ =
(ξs−ξi)/2 which has a unit Jacobian; also ξs =−ξi where the δ function of Eq. (5) is non-zero.
Similarly, from Eq. (41),

J+− =
∫

dξ sinc(δτ+ξ )sinc(δτ−ξ )

= π
Δτ++Δτ−−|Δτ+−Δτ−|

2Δτ+Δτ−
. (43)

We may use Δτ± instead of δτ± because the sinc function is even.
We may write

I ≈ ∑
±

I±± = π
Δτ++Δτ−

Δτ+Δτ−
(44)

and J ≈ 2J+−. These expressions for I and J, combined with Eq. (24), lead to Eq. (25).
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