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ABSTRACT. The wall effect in liquid scintillation counting (LSC) is the loss of efficiency in the case that an u particle hits 
a surface (wall or air) before c\epositing enough energy to be detected. We report our measurements of this LS inefficiency 
using the 4nu-y anticoincidence method with corrections for the presence ofy-rays, X-rays, and electrons during some u 
decays. We derive the Benjamin equation and test the application of this equation to LS u counting. Our value for the LS inef
ficiency is (6 ± 5) x io-S.t'o; a·typic~llow-energy threshold level. This value is consistent with most literature values, but is 
smaller than the value reported by Cassette (2002) of about 2 x 1 o-3. We discuss possible reasons for this disagreement. 

INTRODUCTION 

Basson and Steyn (1954) first demonstrated the measurement of a activity by liquid scintillation 
counting (LSC). Early work on the method then focused on developing stable LS cocktails and 
improving scintillation efficiency and energy~ resolution. Meanwhile, Engelkemeir and Libby 
(1950) had already characterized the "wall effect;' for internal ga§proportional counting (in addition 
to the end-field effect). That is, p particles are not counted ilthey hit a wall before depositip.g 
enough energy in the 'detector-volume to pass a threshold. 

Horrocks and Studiet (1958) developed an LS cocktail with reduced chemical quenching and 
improved energy resolution for counting mixtures of a emitters and p emitters. The a peak tailing 
that they observed was small enough that the portion of a 239Pu a spectrum that was within the 241Pu 
beta region (endpoint 21 ke V) was only about 0.1 %. The a inefficiency was thus less than about 
0.1% at their typical noise thrtlshbld>of about 5 keV. In a 1965 international comparison of 241Am 
activity determinations (Rytz 1963), the average activity reported for 4 non-wall-effect-corrected LS 
measurements was 0.5 ± 0.4% higher than the average for 15 a-y coincidence determinations, indi
cating no wall effect at that uncertainty level (Brouns 1968). Ihle et al. (1967) compared unquenched 
233U LS samples to strongly quenched samples, and saw no counting difference within their 0.1% 
uncertainty. Vaninbroukx and Spernol (1965) reported 241 Am activity ratios from 3 methods relative 
to LS counting. For 4n: proportional counting, 4n:a-y coincidence counting, and low-geometry 
counting, they report ratios of 1. 0012, 1. 0000, and 0.9998, respectively, giving an average difference 
from LS counting of 0.03%. (It is difficult to determine their uncertainties for the individual values, 
as the paper mostly detailed p counting.) Other wall-effect reports suffered from large uncertainties 
obscuring the effect. 

More recently, Cassette (2002) applied Benjamin's 3H-internal-gas-counting wall effect to LS a 
counting (stating 4 assumptions), thereby predicting a wall effect of0.16% to 0.23% for 238Pu. Cas~ 
sette also made measurements using LS vials into which he had inserted glass plates in order to 
increase the wall losses. He then extrapolated to zero surface area and determined a loss of about 
0.2% for a standard 10-mL LS source using a linear fit of3 wall-surface values. No uncertainty was 
assigned to the 3 data points or to the deduced wall effect. 
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In 2007, we measured 241Am two ways: by commercial LS counter and by 4na(LS)-y anticoin"ci~ 
dence counting at the National Institute of Standards and Technology (NIST). The LS counting 
activity value differed from the anticoincidence extrapolation by (+0.05 ± 0.22)%2; thus, no wall 
effect was revealed at this uncertainty level (NIST 2007). 

In this paper, we report the measured LS a inefficiency using live-timed 4na-y anticoincidence 
counting. We make small corrections to the measured LS inefficiency from effects due to the pres
ence of y-rays, X-rays, and electrons. We derive Benjamin's equation and carefully apply it to the 
results. We also provide a test of the hypothesis that the observed inefficienry is caused by the wall 
effect. 

The possibility of these· small wall-effect losses is important in metrology. For example, in a recent 
international comparison of 241Am standardizations reported by Ratel and Michotte (2003) the typ
ical reported uncertainty was 0.12: %;·.which may be the same order of magnitude as the wall effect. 

DERIVATION OF THE BENJAMIN EQUATION 

Benjamin et al. (1962; abbreviated hereafter as B~njamin) provided an equation that was stated to be 
equivalent to a Monte Carlo simulation for the •~fraction of counts . .crossing the boundaries of the 
counter with energy E." Benjamin stated that this equation was aecurate to 1%, which is not saying 
much, since their caloulated correction factors differed from 1 by less than 2%. This equation, 
derived for 3H counting Ill an.' internal gas proportional counter, has been misapplied to LS counting 
in subsequent literature, as will be described here. 

We begin by deriving the equation :using simple geometry. First, we derive the fraction Z of the vol
ume of a right cylinder, height 'h and radius r, that is not within a distance o of a boundary. Let Vbe 
the volume of the cylinder, anq V~.· be the volume of the enclosed cylinder with boundaries a dis-

f. ·-· / 

tance o from the boundaries of V,,,J'hen, Z is given by 

2 z = V' = n(r-o) (h-2o) 
V nr2h 

(1) 

In the cases considered here (alpha LS counting, 3H proportional counting), 0.98 < Z < 1 and 0/r < 
0.01, o/h < 0.01, so terms of order o2/h2, 82/(rh), and o3/(hr2) can,be ignored. Thus, this fraction can 
be expressed as 

(2) 

Now we determine the fraction of those particles emitted isotropically from a location within a dis
tance o of a surface that will traverse a distance less than or equal to o before hitting that surface. 
This can be done by averaging the fractional wall-subtended-solid-angle (.Q) from the 2 extreme 
cases. If the decay happens on the wall itself, .Q = 1/2 of those alphas will hit the wall immediately, 
while those alphas emitted in the direction opposite the wall will stop within the volume. At the 
other extreme, if the decay happens a distance o from a surface, then n = 0 of the alphas will hit the 
wall since the a particle would have to travel exactly perpendicular to the wall in order to hit the 

2 All unce1iainties reported here are combined standard uncertainties, which approximate 1 standard deviation and are equiv
alent to expanded uncertainties with coverage factor, k= I (BIPM et al. 1995), 



Determination of the Wall Effect for Alpha Emitters 333 

wall. On average, 1/4 of the a particles emitted, fro.mlocations within 8 of a surface will hit that sur-· 
face before traveling 8. (This same value o(l/4 was derived by integration.) Including this solid 
angle factor of 1/4 in the volume factor, Z, results in the expression F, for the attenuation of a parti
cles due to the wall effect: 

(3) 

Note that 1-F is equal to Benjamin's equation (his page 10). Here, we equ,ate 8 to R(Ee,Er) (our 
notation), where R is the "range" traveled by an electron of initial energy Ee to lose enough energy 
to pass the detectio11-, t~r~shold, Er (2 ke V for Benjamin). Understanding this point is important 
because a high-energy electron will travel farther to lose Er than will a low-energy electron. The sit
uation will become even more compl.ic_ated later when we considet\LS counting and quenching. 

We have reproduced Benjamin's correction factors for their proportional counter system using 8 = 
R(Ee, Er) by calculating the average value ofF, weighted by the 3H spectral shape (Fermi function). 
Note that this F-modified spectrum does not correspond to the actual measured spectrum, in which 
some higher-energy electrons will be counted_ at loyver energy, butt,_? the. original spectrum minus the 
counting losses at each energy. We calculate F = 0.986 ± 0.005, in good agreement with Benjamin's 
calculated F = 0.984 ± 0.004, and his experimental F = 0.981 ± 0.004. However, using the full 
stopping range at each'eleotron-energy, R(Ee, Ee,), we calculate F = 0.958 ± 0.008, in disagreement 
with Benjamin's data and calculations. 

USE OF THE BENJAMIN EQUATION FOR LS COUNTING 

The Benjamin equation is frequently referenced in the LS literature, for example in the oft-cited 
works by Gibson and Gale (1968) a:ndGibson (1980). There, R was taken to be the full range for an 
electron of initial energy Ee to lose 'all of its energy, that is, R(Ee Ee)· Interpreted that way, the Ben-, 
jamin equation "only gives the proportion of particles that encounter the wall" (Vatin 1980) not the 
reduction in scintillation response, as claimed by Gibson and Gale. This interpretation of Ben
jamin's R gives the wrong wall effect, as described above. 

60 keV 

237Np 

24Am 

Figure I Simplified 241 Am u decay scheme. 
Branching probabilities are listed in the text. 
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As Cassette (2002) pointed out, application of the Benjamin equation top LS counting is dubious,.~ . 
due, for instance, to the fact that an LS counter has a nonlinear energy response (due to ionization 
quenching), unlike a gas proportional counter. Instead, Cassette used a Monte Carlo simulation to 
determine the modified LS spectra shapes for LS p spectra, and then used those spectra to model the 
wall effect for typical LS counting methods. 

The wall effect is simpler for LS a counting than for LS P counting due to the short range and nearly 
monotonic spectrum of most a emitters. For 238Pu a decay, Cassette used the Benjamin equation as 
a rough estimate of the wall effect, after stating some assumptions. He used the full a range, R = 
30 f!m, in the manner of Gibson and Gale, instead of the range needed for deteLction, 8 = R(Ea, Ea,r)· 
He found the alpha i~efficiency, ia, to be about 2 x 10-3. This result was consistent with his experi
mental work, in whicli'hl'i added glass plates inside the LS vials to increase the effect, and then 
extrapolated back to zero surface area; · · · 

Note that special care is needed when determining, and even expressing, the LS threshold, due, for 
one thing, to ionization quenching. For example, if alphas with energy form a peak centered at chan
nel Non a linear spectrum, then channel N/2 corresponds neither to an Et alpha losing all its energy, 
nor to an Ea alpha losing half its energy. This is on~ of the reasons why an "LS energy calibration" 
is a tricky task. In this paper, we define an energy threshold, Ea,", whi€h·.corresponds to the energy 
loss of an a particle of initial energy Ea (5.6 MeV for 241 Am). Since some LS counters have nom
inal thresholds defined usihg electrons, we also "convert" these energies into approximate electron 
energies, Ee. All of these energy calculations are done using Birks' (1964) equation for ionization 
quenching. For example, in order for an electron to stop in the LS volume and create the same size 
LS signal as an E a alpha that loses E a, r within the LS volume, the electron must have an energy, 
Ee, that satisfies this equation: 

(4) 

where s(E) is stopping power (Berger et al. 2005) and kb is a quench parameter in units of inverse
stopping power. In the present work, we used kb = 0.012 cm!MeV and we solved Equation 4 numer
ically to find equivalent electron thresholds for the alpha thresholds used in the LS counter. We con
sider these equivalent electron energies to be approximate, since LS counters do not have absolute 
Ee thresholds. Rather, electrons with energy Ee may produce pulse heights above or below the LS 
pulse-height threshold. Thus, these electron thresholds are meant only in the sense that they are 
defined in Equation 4. 

USE OF THE BENJAMIN EQUATION IN PRESENT WORK 

To summarize our adaptation of the Benjamin equation, we use the following form for the present 
experimental work: 

1 (1 D F = 1 - -R (E E r) - + -2 a> a, r (5) 

where Ea T is the LS threshold for an alpha emitted with energy Ea. This equation can be written in 
terms of the alpha inefficiency, ia. assuming that the inefficiency is only due to the wall effect, as, 

(6) 
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METHOD 
" 

One goal of this experimental work was to measure the LS a inefficiency, iw using the live-timed 
4na-y anticoincidence method (LTAC) and 241Am LS sources. To do so, we carefully designed the 
experiment, and then made small corrections to the observables, such that the inefficiency measured 
in the experiment, iexp• could be used to determine the true ia· 

Figure 1 shows a simplified illustration of241Am a decay (Ea::::: 5.6 MeV). All nuclear data are from 
the updated Table of Nuclides (Chechev and Kuzmenko 2010) and uncertainties are only listed 
where important for final results. The 241Am decays directly to the 60-keV state of 237Np with a 
probability of0.845, ~nd cascades from all higher-energy states to that 60-keV state with probability 
0.142. Given the emission·ofa 60-keVy-ray (probability 0.36), the 60-keV state is fed directly with 
probability Pa= 0.856 ± 0.001 and from a higher state with Ph= 0.144 ± 0.001. 

( 

The basic strategy was to gate the y~ray channel of the LTAC system ~n the 60-ke V full-energy peak. 
The experimental LS inefficiency was approximated, as usual (Baerg 1981), by the ratio of the anti
coincident y-rays to the tota~ y-rays (after correcting for background and decay): 

(7) 

/ 

This experimental inem~iency was not exactly equivalent to the alpha inefficiency, iw due to the 
occasional presence of electrons and X-rays. The majority of those signals were excluded by the 
experimental design since for the 60-keV y-ray to be counted, that 60-keV state could not decay by 
conversion electron. This would not be the case if the X-rays were allowed in the Nal energy win
dow. Nonetheless, 14% of the titpe that the 60-ke V y-ray was detected, it resulted from a cascade that 
probably created electrons and X-rays (99% of time). Thus, to a good-enough approximation, iexp is 
the weighted average of ia (weighted by P a) and ie, the inefficiency for the various combinations of 
electrons, alphas, y-rays, and X-ra.y.S weighted by Ph. A less significant complication arises from the 
case in which the 60-keVy-ray scatters in the LS counter, depositing on average ~6 keV, and is then 
registered within the full-energy peak in the Nal detector. This possibility was explored both exper
imentally and by Monte Carlo simulation, as described below. The LS efficiency for this scenario 
varies from s1s,y= 0.04 to 0 for the threshold ranges reported here, and so only led to a small correc
tion. Considering our small values of s1 s,y and very small values of ia for the thresholds used, we can 
express our desired measurand, iw in terms of our measured quantity, iexp• by this equation: 

(8) 

The correction to ia is smaller than the counting-statistics uncertainty on iexp in all cases. For the 
lowest threshold results, where the effect is largest, Be= 1 and s1 s,y= 0.04, so that ia = 1.20iexp· For 
large values of s1s,1, this equation would blow up because if the Compton-scattered y-rays or elec
trons were highly detected in all decays (instead of rarely detected in only 14% of them), then it 
would take an enormous alpha inefficiency in order to observe any anti coincidences. Eventually, we 
would have to use a more complicated formula. However, this works fine for our case. 

Note that we have ignored any contribution to the LS signal from the Np recoils, which have an 
energy of about· 100 ke V. Due to ionization quenching, the recoil will not produce significant 
amounts of light during stopping (Birks 1964). Also, one goal of this work was to determine the 
magnitude of inefficiency, iw for a hypothetical pure-alpha emitter. Even in that hypothetical case, 
the recoil nuclei would recoil. 

ij 
I, 
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EXPERIMENTAL RESULTS 

The LTAC instrument contains a single-phototube LS detector surrounded by a Nal(Tl) well detec
tor. The instrument and method are described by Fitzgerald and Schultz (2008) and references 
therein. For this work, we measured four 241Am sources and 1 blank. The sources consisted of glass 
quasi-hemispheres of inner radius 1.47 ± 0.13 em and a filling height of0.50 ± 0.03 em. The liquid 
consisted of nominally 3 mL ofUltima Gold™ AWLS cocktail, 0.2 mL of241Am solution in 1 mol/ 
L HN03 and 0.02 g of HDEHP complexing agent. Each source contained ~5 kBq of 241Am. The 
blank was prepared in the same way, except 1 mol/L HN03 was substituted for the 241Am solution. 

The LTAC system was set to 30 I-tS shared extending-deadtime. The LS linear-amplifier gain was 
chosen to first center, the LS a peak in the linear spectrum. Then, the gain was increased by a factor 
of 4 for the LTAC measurements. The approximate energy calibration was determined using this 1-
point calibration and Birks' integrals. Anticoincidence data was a(::currrulated for 500 live seconds 
for each of 6 lower-level discriminator thresholds, T, within each measurement cycle. The LTAC 
system does not have a separate, live-timed Ny channel, beyond the anticoincident Ny,A channel. 
Instead, Ny was determined at the beginning and end of each measurement cycle by using an LS 
threshold ofT= 10 V, which is above the saturation peak of the LS amplifier (thus, N1s = 0). Also, 
a non-live-timed "monitor" Nal rate was measured during each .1\j,A"nipasurement. Since the inher
ent Nal deadtime was constant during the measurement cycle, the' ratios of these monitor rates were 
used to correct Ny for any ,drift .during the measurement cycle. No significant drift was observed. 

Because the LS inefficiencies were so low, the gross anticoincident Nal rates, Ny,A• that were used to 
determine iexp were near background levels. Therefore, we took steps to ensure that these Ny,A values 
were correct Recall that in the .anticoincidence method there is no problem of random coincidences 
(Baerg 1981). Likewise, we ensured that no coincident y-rays could be counted as anticoincidences 
by delaying the Nal logic pulses adequately (5 I-tS) and checking on an oscilloscope that the Nal 
pulses fell well within the LS-initiated deadtime. The iexp values did not depend on the LS back
ground, but did depend on the Ny,A background. For this reason, we measured the blank 6 times both 
before and after measuring the four 241Am sources. The between-measurement background standard 
deviation was consistent with the within-measurement counting statistics ( ./N), as shown in Table 1. 
Also, as expected, there was no correlation between the LS threshold and background Ny,A count rate. 
In separate experimental work using blanks of various volumes, we discovered that the sample-to
sample Ny,A background variation is negligible for the sources used here (unpublished data). 

The LS y-ray efficiency (s1 s,y) was determined using an EGSnrc (Kawrakow 2000) Monte Carlo 
simulation. We also measured the LS response to an 241Am point-source sealed in polyester tape, 
mounted above the blank LS source. This experimental efficiency was scaled to account for the dif
ferent geometry between that point-source and a 241 Am solution mixed in to the LS cocktail by using 
Monte Carlo simulations of both geometries. The pure Monte Carlo simulation gave, for a threshold 
ofT= 0.30 V (Ee !'::! 10 keV), s1 s,y = 0.044. The experimental value, using the Monte Carlo to scale 
to the correct geometry gave s1 s,y = 0.033. We adopted a value of s1 s,y = 0.04 ± 0.02. The large 
uncertainty is due mostly to the uncertainty in our energy calibration, and thus the LS threshold. 

3 Certain commercial equipment, instruments, and materials are identified in this paper to foster understanding. Such identi
fication does not imply recommendation or endorsement by NIST, nor does it imply that the materials and/or equipment are 
the best available for the purpose. 
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Table 2 shows the experimental inefficiencie~, iexp• and corrected inefficiencies, iw for each thresh: 
old T. For the lowest threshold that is probably near or above the thresholds on commercial LS 
counters, ia = (6 ± 5) x 10-5• This small inefficiency is negligible even in metrological studies. For 
the highest threshold studied that could be used when discriminating a low-energy ~ emitter from an 
alpha emitter, ia = (1.50 ± 0.11) x 10-3 could be significant. 

Table 1 Number of gross, live anticoincident Nal counts (Ny,A) in 500 live seconds for four 241 Am 

sources, measured at the lowest threshold ofT= 0.3 V. Also, the averageNy,Avalue for a blank, BO, 

averaged over 6 threshold settings, with the average v(Ny,A) within a single 500-s measurement. 
The standard deviation (SD) of the blankNy,A values for the 6 settings is shown in the final column 

and is consistent with the counting statistics within each 500-s measurement, as expected. 

Sample Ny,A jNy,A : SD.(n = 6) 

BO 111 11 8 
B3 134 12 
B4 . 111 11 
B1 136 12 
B2 124 11 
BO 111 11 10 

~ -;.. . 

Table 2 Experimental a-inefficiency results. For a given spectrum threshold, T, Birks' integrals 
were used to determine the equivalent alpha energy-loss threshold, Ea,r. and electron energy Ee,T. 
The experimental inefficiency at a given threshold is given by iexp• with an uncertainty dominated 
by anticoincident-y (Ny,A) counting statistics. The LS efficiency for Compton-scattered 60-keV y
rays is given by BLs,y and thd,~S effieiliency for conversion electrons, Auger electrons, and X-rays is 

given by Be. The experimental inefficiencies were corrected using Equation 8 to determine the a 
inefficiencies, ia. 

T Ea,T Ee,T 
(V) (keV) (keV) iexp B1s,y Be ia 

0.30 70± 12 10 (5.3 ± 4.1) X 10-S 0.04 ± 0.02 0.9 ± 0.1 (6 ± 5) X 10-S 
2.00 480 ± 30 54 (7.0 ± o.7) x w-4 0.005 '0.5 ± 0.5 (7.6 ± l.O) x w-4 

4.00 980 ±50 105 (1.50 ± 0.11) X 10-3 0 0.001 (1.50 ± 0.11) x w-3 

WALL EFFECT PARAMETER DETERMINATION 

Table 3 shows the results for the Benjamin equation length parameter o, determined from each ia 
value. The energy loss of the 241Am alphas as they traverse those o values was then calculated using 
the stopping power'to be E(o), shown in the final column of Table 3. If the deduced ia are caused by 
the wall effect and if the Benjamin equation characterizes that effect, then these energy losses, E(o), 
calculated from o and stopping powers, should be equivalent to the threshold energies, Ea,r. deter
mined from the spectrum threshold calibration. In fact, these 2 measures of the energy loss agree 
·within their uncertainties. The biggest relative difference is at the lowest threshold where the correc
tion for other efficiencies is significant and the counting statistics uncertainty is also large. 



338 R Fitzgerald & A M Forney 

Table 3 Results from a, inefficiency measurem~nts.,The Ea,rare from Table 2 .. The a, inefficiency' 
at a given threshold is given by ia. The ia values were used in Equation 5 to determine the length 
parameter, 8. Finally, the energy loss, Ea,T(8) of an alpha traveling distance 8 was calculated using 
the stopping power. The agreement of these calculated energies with the spectrum calibration indi
cates that the measured inefficiencies are consistent with the Benjamin equation. 

Ea,T (keV) ia 8 (~-tm) E(8) (keV) 

70 ± 12 (6 ± 5) X I0-5 0.5 ± 0.4 35 ± 27 
480 ± 30 (7.6 ± 1.0) X 10-4 5.7 ± 0.8 430 ± 60 
980 ±50 (1.50 ± 0.11) X 10-3 11.2 ± 1.0 880 ± 80 

DISCUSSION 
·, ·~- .. - ·-

Adapting the above results to a commercial counter requires adjustments ·for sample geometry and 
LS threshold. For a typical LS vial filled with 10 mL of liquid, r = 1.3 em and h = 2.0 em. Therefore, 
the above value of ia = (6 ± 5) x w-s for our NIST LTAC quasi-hemispherical vials would be i'u = 
(3 ± 3) x 1 o-s for a commercial counter with a similar threshold. This small inefficiency is consistent 
with most of the liten1ture cited above, but is significantly lower than Cassette's (2002) values of 
1.6 x 10-3 to 2.4 x 1 o-3• Recall that he calculated those values using the·full a, range of30 1-1m, rather 
than the range needed to pass an energy threshold. Also, he measur6d a consistent value of about 2 
x 1 o-3 by adding glass plafes inside the LS vial to exacerbate the losses, then extrapolating to zero 
loss. 

In conclusion, the present work and Cassette's work attempted to realize the same measurand, but 
we apparently did not. Perhaps Cassette's instrument had a higher threshold than our lowest setting, 
or he introduced other sources of inefficiency than just the wall effect when he added the glass plates 
to his vials. Perhaps we have otlier sduroes of efficiency that we did not recognize and account for. 
Future work could reconcile the discrepancy. 
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