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The precise measurement of transition frequencies of trapped atomic samples is susceptible to

inaccuracy arising from the inhomogeneous differential shift of the relevant energy levels in the presence

of the trapping fields. We demonstrate near-complete cancellation of the differential ac Stark shift (‘‘light

shift’’) of a two-photon magnetic-field-insensitive microwave hyperfine (clock) transition in 87Rb atoms

trapped in an optical lattice. Up to 95(2)% of the differential light shift is cancelled while maintaining

magnetic-field insensitivity. This technique should have applications in quantum information and

frequency metrology.
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Optical trapping of atoms is an indispensable tool for the
coherent quantum control of atomic spins, with a range of
applications including frequency metrology [1], coherent
light storage [2], and quantum information processing in
general [3]. However, in many cases coherent quantum
control is limited by the presence of differential light shifts
(DLS), whereby the relevant transition frequency will vary
as a function of the local intensity. The inhomogeneity of
the DLS constitutes a major limitation on spin-coherence
times, particularly in ensemble samples where an inhomo-
geneous (and fluctuating) DLS will result in a dephasing of
spin coherence. Recent work [4–7] has shown that in some
cases the detrimental DLS in ground-state hyperfine levels
of alkali-metal atoms can be compensated through the use
of local differential Zeeman shifts. This approach has been
used to increase spin-coherence times [4,7] and could
impact quantum memories and computation, as well as
atom-based metrology. In these demonstrations, the DLS
cancellation has been obtained at the expense of Zeeman
sensitivity to magnetic fields. In this Letter, we experimen-
tally explore the possibility of obtaining simultaneous DLS
and magnetic-field insensitivity. This idea has also been
investigated theoretically in a recent proposal [8], which
suggests that simultaneous cancellation of DLS and
Zeeman shifts is possible for certain spin transitions.

The shift �� of the transition frequency of an optically
trapped atomic sample from its free-space, field-free value
is determined by a combination of the electronic interac-
tion with light and the electronic and nuclear Zeeman
interaction with an external magnetic field, modified by
the hyperfine interaction that couples the electronic and
nuclear degrees of freedom. The resulting sensitivities
@�=@B and @�=@I are functions of the magnetic field B ¼
BeB and the intensity I and polarization ~� of the trapping
light. For ground-state hyperfine transitions of alkali-metal
atoms in the absence of light, @�=@B is given by the
Breit-Rabi formula [9]. At low field, magnetic-field-

insensitive transitions (@�=@B ¼ 0) occur for the well-
known (single-photon) ‘‘clock’’ transitions jF;mF ¼ 0i $
jF0; mF0 ¼ 0i at B ¼ 0, as well as for multiple-photon
transitions jF;mFi $ jF0; mF0 ¼ �mFi at certain nonzero
‘‘magic’’ B ¼ Bm (see, e.g., [10]). Here, F denotes the
atomic total angular momentum quantum number, and mF

its projection on the quantization axis.
In the presence of light, the energy shifts �U giving rise

to @�=@I can be expressed as a sum of a scalar (�Us) and a
vector (�Uv) component [11]. �Us is rotationally invari-
ant, depending only on F and F0. �Uv depends on mF and
mF0 and to lowest order can be formally expressed as a
differential Zeeman shift produced by a light-induced ef-
fective magnetic fieldBeff � ðE0=2Þ2ð�v

F=2F�FÞði ~�� � ~�Þ
[12]. Here E0 and ~� are the amplitude and (possibly com-
plex) polarization unit vector of the electric field, such that
ði ~�� � ~�Þ represents the direction and relative magnitude of
any circular polarization that may be present, �F is the
magnetic moment and �v

F is the (possibly B-dependent)
vector polarizability. In the limit where Beff � B, as is the
case in our current experiment where Beff=B � 0:01, B
defines the quantization axis and only the component of
Beff along B contributes to the shift, so that
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where �s
F is the scalar component of the atomic polar-

izability, and A ¼ ði ~�� � ~�Þ � eB represents the degree of
circularity of the polarization projected along B.
For alkali ground-state hyperfine transitions, there is no

magic condition where (�s
F0 � �s

F) vanishes, implying that

the scalar DLS cannot be cancelled with linearly polarized
light, where A ¼ 0 [13]. The technique from [4–7]
uses the vector light shift on a magnetic-field-sensitive
transition to cancel the scalar DLS, requiring some com-
ponent of circular polarization such that A � 0.
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It might appear impossible to use this technique to
simultaneously cancel differential Zeeman and light shifts,
as canceling the latter requires a nonzero vector DLS.
Since the vector light shift acts as an effective magnetic
field Beff , we seemingly require a Zeeman sensitivity to B.
The key insight is that (to lowest order) light couples only
to the electronic degree of freedom, whereas the Zeeman
interaction includes a contribution from the nuclear mag-
netic moment. Therefore, the effective magnetic moments
for the two interactions differ by roughly the nuclear
magnetic moment, so at B ¼ Bm, where the differential
Zeeman shift cancels, the vector DLS does not vanish. The
vector DLS can still be used to counteract the scalar DLS.

We can derive approximate expressions for �Us and
�Uv to determine if cancellation is possible. For alkali-
metal atoms (with total angular momentum F and F0 ¼
Fþ 1 for the two hyperfine ground states), the Zeeman

interaction ĤZ ¼ ��BðgJĴþ gIÎÞ �B, combined with the

hyperfine interaction ĤHF ¼ AHFĴ � Î, leads to slightly
different total magnetic moments for the F and F0 hyper-
fine states, and to field insensitive transitions at Bm (for
mFþ1 ¼ �mF). Within the electric dipole approximation,
however, the light interacts only with the electron angular

momentum: Ĥv ¼ ��BgJĴ �Beff , and the magnitude of

the total magnetic moment is the same for F and F0. Ĥv

differs from ĤZ by the residual term �BgIÎ � Beff , where
gI is the nuclear Landé factor. At B ¼ Bm, the vector DLS
between states jF0;�mFi and jF;mFi is �Uv ¼
�2mF�NgIBeff [14]. In terms of the total vector light shift
Uv of an individual hyperfine level, the differential vector
light shift is �Uv ’ �2gI

�N

�B
Uv. The differential scalar

shift relative to Uv can be estimated as �Us ’
ð3�HF=�FÞUv [6]. For 87Rb, �2gI

�N

�B
¼ 0:0020 and

3�HF=�F ¼ 0:0029, indicating �Uv=�Us is on the order
of unity, and cancellation is possible. A more detailed
calculation, including hyperfine corrections to the elec-
tronic wave functions, is needed to accurately determine
the degree of cancellation. An accurate calculation for
several alkali-metal atoms predicts that full cancellation
for two-photon transitions is not possible, but in 87Rb the
DLS sensitivity can still be decreased by a factor of 20 [8].

In the experiment described here, we study DLS of the
jF ¼ 1; mF ¼ �1i $ jF0 ¼ 2; mF0 ¼ þ1i transition of
87Rb [see Fig. 1(a)] near Bm ¼ 0:322 891 7ð3Þ mT [10],
by performing high-precision microwave (�w) spectros-
copy of ultracold atoms trapped in an optical lattice.
Measuring the transition frequency as a function of light
intensity provides the sensitivity @�=@I. While it is gener-
ally relatively easy tomeasure the depth of an optical lattice
(see [15]), it is more difficult to accurately measure the total
light intensity at the position of the atoms. The main reason
is the intensity imbalance between the counterpropagating
lattice beams due to optical losses and beam areamismatch.
To accurately quantify the expected reduction of the DLS,
we therefore compare the two-photon �w transition with
the single-photon�w transition between the jF ¼ 1; mF ¼

0i and jF ¼ 2; mF ¼ 0i states. This transition has a zero
vector light shift at B ¼ 0.
Our atomic sample is prepared by loading a 87Rb Bose-

Einstein condensate (BEC) into a 3D optical lattice. We
produce BECs of typically 105 atoms, spin polarized in the
jF ¼ 1; mF ¼ �1i state. The final stage of the evaporative
cooling is performed in a hybrid trap, created by a focused
dipole laser beam at 1550 nm and a quadrupole magnetic
field slightly offset vertically with respect to the center of
the dipole beam, which provides longitudinal confinement
and also compensates gravity (similar to [16]).
Subsequently, the atoms are adiabatically (� 200 ms)
loaded into the optical lattice, with a typical depth of about
30ER, undergoing the Mott insulator transition [17]. The
recoil energy ER ¼ @

2k2=2mRb, where k ¼ 2�=� is the
lattice wave vector, and mRb is the rubidium mass.
To avoid collisional shifts of the clock transition due to

state-dependent on-site interaction (which are of the same
order of magnitude as the DLS), it is important to prepare
only singly occupied sites. We measured the site occu-
pancy distribution by performing Rabi spectroscopy on
the two-photon transition [18]. To control the number of
atoms in the BEC (before loading the lattice), we apply a
nonadiabatic �w frequency sweep, removing a controlled
fraction of the atoms by transferring them into the un-
trapped state jF ¼ 2; mF ¼ �2i. We obtain single occu-
pancy when the BEC atom number is <4� 104.
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FIG. 1 (color). Schematic of the 87Rb �w transitions studied
here: (a) the two-photon transition jF ¼ 1; mF ¼ �1i $ jF0 ¼
2; mF0 ¼ þ1i, used to demonstrate the DLS reduction, and
(b) the jF ¼ 1; mF ¼ 0i $ jF0 ¼ 2; mF0 ¼ 0i clock transition,
used for comparison. Atoms are trapped in an optical lattice
formed at the intersection of four laser beams (k1 to k4),
obtained by a folded, retroreflected single laser beam (c). The
intensity pattern used for DLS measurements is shown in (d),
along with sections through the unit cell for three different mF

states, and was experimentally optimized in order to maximize
the amount of circular polarization on the right (R) sites. Atoms
are trapped only in the R sites (see text).
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The setup of our optical lattice has been described in
detail elsewhere [19,20]. It consists of a 2D lattice in the
horizontal (x̂-ŷ) plane and an independent, linearly polar-
ized vertical lattice (along ẑ). The 2D lattice is obtained
from a single, retroreflected laser beam [Fig. 1(c)], and is
adiabatically transformed during the experiment from a
�=2-period lattice with purely linear polarization (used
during the loading stage) into the configuration shown in
Fig. 1(d) (used for spectroscopy), where the right (R) sites
have an adjustable circular polarization component. B was
aligned along the resulting Beff (ideally in the x̂-ŷ plane),
minimizing the DLS sensitivity on the R sites. Based on
[19], we developed a procedure to trap atoms only in the R
sites: after loading the lattice, we spectroscopically address
the atoms on the left (L) sites and transfer them to the F ¼
2 manifold, before removing them with a resonant 20 �s
light pulse, which does not affect the F ¼ 1 atoms in R.

To measure the transition frequencies, we use the de-
tuned Ramsey method, consisting of two �=2 pulses,
separated by a variable hold time �, with a typical detuning
close to 1 kHz (large compared to the DLS, but otherwise
arbitrary). We probe the two-photon transition using �w
and rf fields, each detuned by 90 kHz from the intermediate
jF ¼ 2; mF ¼ 0i state [see Fig. 1(a)], resulting in a two-
photon Rabi frequency of about 1 kHz. The single-photon
transition [Fig. 1(b)] is driven using a single �w field with
a Rabi frequency of 9 kHz. After the Ramsey interrogation,
state detection is performed by transferring the atoms
between jF ¼ 1; mF ¼ �1i and jF ¼ 2; mF ¼ 0i with a
�w � pulse, switching off the lattice in � 600 �s and
absorption imaging the cloud after 18 ms of time of flight
and Stern-Gerlach separation.

Figure 2 shows the DLS for both transitions near
� ¼ 806 nm, as a function of the lattice intensity,

expressed as the lattice depth in the corresponding �=2
configuration. For circularly polarized 2D lattice light at
the R sites, we observe a significantly reduced sensitivity to
the lattice intensity of the two-photon transition at Bm,
compared to the single-photon transition near B ¼ 0. The
scalar DLS is the same in both cases, and the ratio of the
two- and single-photon transition sensitivities quantifies
the reduction of the DLS.
The circularity of the lattice light alongBwas optimized

by minimizing @�=@I. From an independent measurement
of the optical losses, we estimate that the lattice light has a
projected circularity A ’ 0:99. Moreover, by reversing
the direction of B, we confirmed an increased DLS sensi-
tivity of the two-photon transition, as in this case the scalar
and vector components add together.
To preserve a well-defined quantization axis for the

single-photon transition, we maintained a small (20 �T)
magnetic field at which the residual vector DLS is calcu-
lated to be<0:6 Hz. In a lattice the dependence of �� on I
is not strictly linear, due to a zero-point energy offset [21],
but we estimate that for our parameter range the deviation
from linearity is smaller than the measurement uncertain-
ties. The zero-point energy contributes to a slight shift in
the extracted slopes, of<4% compared to a traveling wave
of equal intensity, but this effect does not contribute to the
ratio of the single- and two-photon slopes.
Figure 3 shows the wavelength dependence of the @�=@I

ratio between 802 and 815 nm. We observe a local mini-
mum near 806 nm, corresponding to a � 95ð2Þ% DLS
reduction, in agreement with theory (Fig. 3). Away from
806 nm, the theory and experiment have the same general
trend. The range of wavelengths accessible for this study
was limited by two factors: at shorter � the measurement
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FIG. 2 (color). DLS dependence on intensity, expressed as the
lattice depth in the corresponding �=2 configuration. We observe
a significant reduction of the total DLS of the two-photon clock
transition (circles), compared to the single-photon clock transi-
tion (squares). The full lines represent linear fits to the data.
Their extrapolations to zero intensity agree within 5%, and
represent the (uncompensated) DLS from the vertical lattice,
which was kept at a constant depth of � 30 ER. The 1	
uncertainty of each data point is � 1 Hz.
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FIG. 3 (color). Ratio between the DLS sensitivities (@�=@I)
for the two- and single-photon transitions as a function of the
lattice wavelength, with a minimum value of 4.5% at 806 nm.
The magnetic field was kept near [0.323(3) mT] for the two-
photon transition, whereas a small, 20 �T, bias was used for the
single-photon transition. The solid line represents a calculation
with no adjustable parameters, following [8]. Error bars repre-
sent the 1	 uncertainty, dominated by statistical errors.
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precision is limited by an enhanced rate of photon scatter-
ing from the lattice beams, while at longer � the DLS
becomes comparable to our measurement uncertainty.

We also investigated the possibility of achieving
@�=@I ¼ 0 by slightly shifting the magnetic field away
from Bm. By measuring the light shift sensitivity of the
two-photon transition as a function of the magnetic field at
� ¼ 806 nm, we observe the linear dependence shown in
Fig. 4. The DLS cancels completely at 0.343(3) mT
(� 20 �T away from Bm), in agreement with theory [8].
At this field, the residual magnetic-field sensitivity is
� 1:7 Hz=�T, about 2 orders of magnitude larger than
what is typically used in atomic fountain clocks [22].

We used the detuned Ramsey method, presented above,
to compare the sensitivities of the two clock transitions to
lattice inhomogeneities. We observed an increase in the
coherence time between the two levels of the two-photon
transition compared to the single-photon transition. At
� ¼ 0 the Ramsey contrast is 98(2)%; at � ¼ 200 ms the
single-photon contrast has decayed to zero, whereas the
two-photon contrast is 10%. This value is likely limited by
the inhomogeneous, uncompensated DLS of the vertical
lattice, used to support the atoms against gravity.

In summary, we demonstrated a scheme to significantly
reduce the light shift sensitivity of an atomic �w
ground-state transition while retaining insensitivity to
magnetic-field fluctuations, using a subtle effect which
originates in the small difference between the total and
electronic magnetic moments. While simultaneous full
cancellation of both differential light and magnetic-field
shifts cannot be achieved for 87Rb, tuning experimental
parameters between the differential light and Zeeman shift
insensitive points may allow for minimizing the effect of
the external field inhomogeneities and fluctuations on the
coherence time of trapped atomic samples. The reduced
sensitivity, demonstrated here in a 3D lattice, would be

even more effective for applications using dipole traps and
optical lattices in 1D and 2D geometries [4,7,23].
Our experiments confirm theoretical calculations of

DLS [8]. These calculations also predict perfect DLS
cancellation at the magnetic-field-insensitive point for
four-photon transitions in other alkali-metal atoms (87Rb
and 133Cs). In these cases, the difference between the
vector and scalar DLS is large enough that cancellation
may be possible for arbitrary lattice geometries.
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