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Abstract 

Understanding clustering of complex fluids is of interest in material science because the formation of 
aggregates in the suspension leads to changes in the material properties. Recently, using a mixed closure 

relation and a thermodynamic self-consistency criterion, Bomont et al. have shown the temperature 

dependence, at a fixed density, of the cluster formation in systems with short-range attractions and long-
range repulsions which are modeled with the hard-core double Yukawa potential.

1
  In this communication, 

we provide evidence that the cluster formation is a common behavior in systems with competitive 

interactions. In particular, we demonstrate that, based on the same thermodynamic self-consistency 

criterion, equally accurate structural information is obtained irrespective of the chosen mixed closure 
relation. Additionally, we explore the dependence of the clustering on the density and potential 

parameters. Our findings are corroborated with Monte Carlo computer simulations.  

 

Introduction 

 

In prior work, the microstructure of equilibrium clustered structure of a fluid, characterized by hard-

core double Yukawa (HCDY) potential with short-range attraction and long-range repulsion, was 
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accurately predicted by enforcing thermodynamic self-consistency (TSC) while mixing the hyper-netted 

chain (HNC) and Martynov-Sarkisov closures.
1
 The study of such a fluid draws interest because it leads 

to a more in-depth understanding of globular protein solutions,
2,3

 colloidal dispersions,
4
 and food science.

5
 

However, as previously noted in a study of the square well (SW) potential, the range of parameters over 

which one can successfully achieve TSC depends on the choice of closure.
6
 In our study, we demonstrate 

that the reversed hybridized mean spherical approximation (rHMSA) closure provides an equally accurate 

route to predicting equilibrium clustered fluids, as judged by Monte Carlo (MC) simulations. 

A common criterion to obtain TSC is examining the isothermal compressibility,  , which, for 

pairwise additive potentials, can be calculated following the fluctuation      , and virial equation 

    routes
1,6-8
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       (1) 

where   is the particle number density,      is the direct correlation function,    is the thermal energy, 

and   is the pressure. Several studies have demonstrated that the TSC accompanied with various closures, 
including Rogers and Young and hybridized mean spherical approximation, can accurately predict 

structures of simple and/or complex fluids.
8,9

 

In particular, the rHMSA closure, mixing of HNC and soft-core mean spherical approximation 

(SMSA), was successfully demonstrated for the attractive square well potential
6
. This closure reads as 

follows,  
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               (4) 

where                are the repulsive and attractive contributions, respectively, of the interparticle 

potential,      is the bridge function,                 , and   is the adjustable parameter to 

satisfy the TSC condition. Using three different closure relations, Bergenholtz et al. confirmed that the 

calculated structures are equivalent irrespective of the closure selected,
6
 confirming that choosing an 

alternative closure in case of a solution convergence failure is valid. 

 

Methods 

The DY pair interaction potential is one of the simplest continuous potentials to include both 

attractive and repulsive components. Here, we study the HCDY potential given by: 

      

                                                  

   

         
     

  
   

         
     

  
     

  (5) 

  

where   , and    denotes the magnitude of attraction, and repulsion, respectively,    and    denotes the 

range of attraction, and repulsion, respectively,    is the center-to-center separation distance normalized 
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by  , the hard-core diameter. The reduced temperature is        , where         and the ratio 

between the factors is defined         hereafter.
1
 The HCDY is advantageous in that repulsion and/or 

attraction can easily be varied or screened by assigning different parameters, which is useful to study 

many cases including protein stability and colloidal dispersions.
2,10

 

Monte Carlo (MC) computer simulations were performed using a cubic box of length        with 

  being the number of particles and following the Metropolis algorithm.
11

 Simulations with   = 1000, 

2197 and 4096 particles were carried out to analyze size effects. To present snapshots from the MC 
simulations, we only used results from 2197 particles case. We have chosen random initial configurations 

and the system was equilibrated during       MC steps. The equilibration process was also monitored 

following the evolution of the total potential energy. Averages were performed during       MC steps. 

     was computed through the Fourier transform of the      and directly from its definition, i.e., 

                       , where        is the Fourier transform of the local density.
12

 The latter procedure 

was computed over 2560    -vectors with randomly chosen orientations. Both routes give us basically 

equivalent results. Moreover, structure functions are averaged over ten stochastic independent realizations 

to reduce the associate uncertainties.   

Results and discussion 

We first study the clustering evolution as a function of temperature using the same potential 

parameters of Bomont et al.
1
,  =0.1,   =10, and   =0.5, for direct comparison. Figure 1a shows the 

structure factor for   =11.1. 1.85, 0.85, 0.69, 0.62, and 0.46 at  =0.15, where          is the so-
called volume fraction. We here observe the following interesting features. Both closure relations and MC 

show that upon decreasing the temperature from   =11.1 there is an increase in the peak at low-q. This 

behavior in the      has been interpreted as a signature of cluster formation. The growth of high intensity 

at low q is also experimentally observed in protein solutions studied by SANS.
2,3

 However, according to 
the peak-position, the characteristic distance between clusters is about 4 particle diameters. This means 

that such clusters are composed of only a few numbers of particles. Moreover, in the whole temperature 

regime explored, the main peak is located around      , which means that the particle diameter is the 

most important length scale in the system. These features are indeed corroborated by the     , see Figure 

1b, whose contact value increases by lowering temperature, indicating that the pairing is the most 

favorable particle configuration. However, long-range order associated with the low-q behavior in the 

     is difficult to observe, since the     

 

decays rapidly to 1. Nonetheless, it should be noted that the 

peak associated with small clusters does not appear when the system is described by a hard-sphere 

interaction only
13

. Additionally, we observe that our closure relation and the one proposed by Bomont et 

al. (dashed line) give the same structural information and successfully reproduce the simulation data.  
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Figure 1 A direct comparison of the two closures used by Bomont et al.

1
 and in this study for  =0.15,  

 =0.10,    =10, and   =0.5 at various   . The data of Bomont et al. and ours are represented by broken 

(digitized from the original paper), solid lines (calculated), and open circles (MC), respectively. In the 

simulations box, the blue and red particles indicate unclustered and clustered particles, respectively.   = 

   and   =    hereafter. 

We are now able to study the density dependence of the cluster formation. Figure 2b shows both      

and      at a fixed temperature of   =0.46. Clearly, our closure relation accurately reproduces the full 

trend predicted in the MC simulation data, although slight differences at high densities are observed. Such 

differences can be attributed to the common phenomenon of closure relations underestimating structure of 
highly dense systems. However, in general, the following intriguing characteristics can be noticed. On 

one hand, we observe in the      that a decreasing in φ gives rise to a higher peak at low-q. Note that 

increasing the φ does not shift the location of either the cluster peak or the first neighbor correlation peak. 

This indicates that the cluster size and position are unrelated to  .  On the other hand, the decreasing of 
the cluster-peak height with density means that the concentrations effects try to stabilize the system 

against the cluster formation. Additionally,      shows a slight increase of the contact value with density 

and a peak located at     . However, these features cannot be related with the cluster formation seen in 

the     . Therefore, further analysis of the long-range behavior of the      to clarify the physical 

mechanism of the clustering is evidently needed.
14
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Figure 2 Structures of liquid of different volume fractions with the double-Yukawa parameters  =0.10,  

  =10, and   =0.5 at   =0.46. The      plot is progressively shifted by the respective factor for 

clarification. 

Finally, we have studied the dependence of the structure on the screening parameters. We basically 

vary    or    to test the range of validity of the rHMSA closure.  We observe that in both cases our 
approximation correctly reproduces the MC data. In particular, to test the effect of changing the range of 

repulsion,    is incrementally increased to 2 and 3 thereby decreasing the range of repulsion. Figure (3) 

shows that the peak height at low-q decreases in the direction of increasing z2. This change is believed to 

occur since the decreased range of repulsion hinders particles from aggregating with neighboring particles. 

The trend becomes more different when   =3. Also, decreasing   from 10 to 6 introduces more distinct 

cluster peaks while shifting the position of peak to lower q. Such peaks at low-q seems to grow when the 

attractive Yukawa tail is sufficiently wide and/or deep to initiate the formation of clusters.
10
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Figure 3 Structures with (a) decreasing range of repulsion with   =0.5, 2, and while  =0.05,  =0.10, and  

  =10 at   =0.46, and (b) increasing range of attraction with   =10, 8, and 6 while  =0.05,  =0.10, and  

  =0.5 at   =0.46. The      plots are shifted by the respective factor for clarification. 
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Conclusions 

We have shown that ensuring the condition of thermodynamic self-consistency is a robust method to 

accurately predicting fluid structures. We briefly probed structures at different conditions (temperature, 
density and potential parameters) using the hard-core double Yukawa fluid.  We found that as long as the 

convergence of the solution is achieved, the choice of combination of closures does not greatly affect the 

final structural information. Therefore enforcing the thermodynamic self-consistency is more crucial to 

correctly describe structure than attempting to improve each ingredient closure. Additionally, our findings 
revealed that the physical mechanisms that lead to cluster formation in systems with competitive 

interactions are far to be well understood. However, our approach combined with computer simulations 

will allow elucidating the cluster formation in complex fluids. 
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Figure 4 (a) Anticipated inverse isothermal compressibility when each route is used. The shaded region 

indicates where the compressibility of the mixed closure will be located, as confirmed by the blue line. 

The HCDY parameters are   =1,   =0,   =10, and   =0.5 with varying  . (b) Structure factor resulted 

from the attractive single-Yukawa with the given parameters using rHMSA (black solid), PY (red dash), 
and MC (black open circles). The three data sets are nearly indistinguishable. As q approaches 0, χ is 

recovered by the relationship       . The DY parameters are   =1,   =0,   =10, and   =0.5 with   

=0.15. 

Figure 4(a) describes that even though the     calculated using each route may not be physically 

achievable, rHMSA leads to physically reasonable    , which lies within the interpolated region between 
SMSA and HNC. Also, a good agreement between MC, rHMSA, and PY is observed in the structure and 

the radial distribution function. Therefore, we conclude that rHMSA works equally well for a continuous 

potential. The calculation was stopped at  =0.25 due to limitations of the numerical analysis to obtain 
convergence; however, as the inverse isothermal compressibility lines indicate, the system is physically 

able to yield TSC convergence.  


