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ABSTRACT 

Benchmarking of 3D Shape retrieval allows developers and 

researchers to compare the strengths of different algorithms on a 

standard dataset. Here we describe the procedures involved in 

developing a benchmark and issues involved. We then discuss 

some of the current 3D shape retrieval benchmarks efforts of our 

group and others. We also review the different performance 

evaluation measures that are developed and used by researchers in 

the community. After that we give an overview of the 3D shape 

retrieval contest (SHREC) tracks run under the EuroGraphics 

Workshop on 3D Object Retrieval and give details of  tracks that 

we organized for SHREC 2010. Finally we demonstrate some of 

the results based on the different SHREC contest tracks and the 

NIST shape benchmark. 
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1. INTRODUCTION  
3D objects are widespread and present in many diverse fields such 

as computer graphics, computer vision, computer aided design, 

cultural heritage, medical imaging, structural biology, and other 

fields. Large numbers of 3D models are created every day using 

3D modeling programs and 3D scanners and many are stored in 

publicly available databases. These 3D databases require methods 

for storage, indexing, searching, clustering, and retrieval to be 

used effectively. Hence, content based 3D shape retrieval has 

become an active area of research in the 3D community. 

Benchmarking allows researchers to evaluate the quality of results 

of different 3D shape retrieval approaches.  Under a benchmark, 

different shape matching algorithms are compared and evaluated 

in term of efficiency, accuracy, robustness and consistence. 

Results are then obtained and conclusions of the performance are 

drawn towards the shape matching algorithms. 

 

In section 2, the related work of previous benchmarks is briefly 

reviewed; in section 3, we discuss benchmarks and the 

construction of the benchmark; in section 4, we present the 

evaluation measures used; the NIST shape benchmark is discussed 

and analyzed in section 5; section 6 describes the SHREC contests 

and their results; and finally conclusions are drawn in section 7. 

2. RELATED WORK 
Contest    The SHape REtrieval Contest (SHREC) [4] is organized 

every year since 2006 by Network of Excellence AIM@SHAPE 

under the EuroGraphics Workshop on 3D Object Retrieval to 

evaluate the effectiveness of 3D shape retrieval algorithms. In 

2006, one track was organized to retrieve 3D mesh models on the 

Princeton Shape Benchmark [1]. In the SHREC 2007, several 

tracks were organized which focused on specialized problems: the 

watertight models track, the partial matching track, the CAD 

models track, the protein models track, the 3D face models track.  

In the SHREC 2008, following tracks are organized:  stability of 

watertight models, the track on the classification of watertight 

models and the generic models track, 3D face models. In the 

SHREC 2009, there were four tracks organized, and we organized 

two tracks, one based on Generic shape retrieval and the other 

based on partial shape matching. For the SHREC 2010, there were 

11 tracks organized initially, two of them were cancelled because 

of not enough participants and we organized three Shape Retrieval 

tracks:  Generic 3D Warehouse; Non-Rigid Shapes; and Range 

Scans.  

Benchmark    One of the main 3D Shape Retrieval benchmarks is 

the Princeton Shape Benchmark [1], which is a publicly available 

database of 3D polygonal models with a set of software tools that 

are widely used by researchers to report their shape matching 

results and compare them to the results of other algorithms. The 

Purdue engineering shape benchmark [2] is a public 3D shape 

database for evaluating shape retrieval algorithms mainly in the 

mechanical engineering domain. The McGill 3D shape benchmark 

[3] provides a 3D shape repository which includes models with 

articulating parts. Other current shape benchmarks were 

introduced and analyzed in [10]. We also have developed two 

Generic shape benchmarks [6], [7] and a Range scan benchmark 

[8] which we hope will provide valuable contributions to the 3D 

shape retrieval and evaluation community.  

 

3. BENCHMARKS 
In this section, the benchmark design principles and how to build 

the ground truth for benchmarks are discussed, respectively. 

3.1 Benchmark Design Principles 
A number of issues need to be addressed in order to create a 3D 

Shape benchmark dataset. The dataset must be available free of 

charge and without copyright issues, so the dataset can be located 
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on a website and can be used freely by everyone for publications.  

The issue is getting a large collection of 3D models that maybe 

freely used, which includes those in the public domain, and also 

ones that are freely licensed, like under the GNU Free Doc. 

license, or some of the Creative Commons licenses, which offers 

the Authors/Artists alternatives to the full copyright. There are 

two main steps to benchmark a shape database, the first of which 

is to get enough 3D shape models. All the 3D models in the new 

shape benchmark were acquired by the web crawler. The other 

step is to classify the 3D shape models into a ground truth 

database; we discuss it below in detail.  3D models down-loaded 

from websites are in arbitrary position, scale and orientation, and 

some of them have many types of mesh errors. Shapes should be 

invariant to rotation, translation and scaling, which require the 

process of pose normalization before many shape descriptors can 

be applied to extract shape features.  

 

3.2 Building a Ground Truth for Benchmark 
The purpose of benchmarking is to establish a known and 

validated ground truth to compare different shape matching 

algorithms and evaluate new methods by standard tools in a 

standard way. Building a ground truth database is an important 

step of establishing a benchmark. A good ground truth database 

should meet several criteria [12], like, having a reasonable 

number of models, being stable in order to evaluate different 

methods with relatively high confidence, and having certain 

generalization ability to evaluate new methods. To get a ground 

truth dataset, in text retrieval research, TREC [5] uses pooling 

assessment [12]. In image retrieval research, as there is no 

automatic way to determine the relevance of an image in the 

database for a given query image [18], the IAPR benchmark [11] 

was established by manually classifying images into categories. In 

image processing research, the Berkeley segmentation dataset and 

benchmark [14] assumes that the human segmented images 

provide valid ground truth boundaries, and all images are 

segmented and evaluated by a group of people. As there is no 

standard measure of difference or similarity between two shapes, 

in our shape benchmark [6], two researchers were assigned as 

assessor to manually classify objects into ground truth categories. 

When there are disagreements on which category some objects 

should belong, another researcher was assigned as the third 

assessors to make the final decision. This classification work is 

purely according to shape similarity, that is, geometric similarity 

and topology similarity. Each model was input to a 3D viewer, 

and the assessor rendered it in several viewpoints to make a final 

judgment towards shape similarity. 

 

4. EVALUATION MEASURES 
The procedure of 3D shape retrieval evaluation is straightforward. 

In response to a given set of users’ queries, an algorithm searches 

the benchmark database and returns an ordered list of responses 

called the ranked list(s), the evaluation of the algorithm then is 

transformed to the evaluation of the quality of the ranked list(s).  

Next, we will discuss the evaluation method that we have used. 

 

Different evaluation metrics measure different aspects of shape 

retrieval behavior. In order to make a thorough evaluation of a 3D 

shape retrieval algorithm with high confidence, we employ a 

number of common evaluation measures used in the information 

retrieval community [12]. 

4.1  Precision- Recall  
Precision- Recall Graph [12] is the most common metric to 

evaluate information retrieval system. Precision is the ratio of 

retrieved objects that are relevant to all retrieved objects in the 

ranked list. Recall is the ratio of relevant objects retrieved in the 

ranked list to all relevant objects.  

Let A be the set of all relevant objects, and B be the set of all 

retrieved objects then, 

B

BA
precision



                     A

BA
recall



          (1)                               

Basically, Recall evaluates how well a retrieval algorithm finds 

what we want and precision evaluates how well it weeds out what 

we don’t want. There is a tradeoff between Recall and Precision, 

one can increase Recall by retrieving more, but this can decrease 

Precision. 

4.2 R-precision 
The precision score when R relevant objects are retrieved (where 

R is the number of relevant objects) 

 

4.3 Average precision (AP)  
The measure [13] is a single-value that evaluates the performance 

over all relevant objects. It is not an average of the precision at 

standard recall levels, rather, it is the average of precision scores 

at each relevant object retrieved for example,  consider a query 

that has five relevant objects which are retrieved at ranks 

1,2,4,7,10. The actual precision obtained when each relevant 

object is retrieved is 1, 1, 0.75, 0.57, 0.50, respectively; the mean 

of them is 0.76.  

 

4.4 Mean Average precision (MAP) 
Find the average precision for each query and compute the mean 

of average precision [13] over all queries; it gives an overall 

evaluation of a retrieval algorithm. 

 

4.5 E-Measures 
The idea is to combine precision and recall into a single number to 

evaluation the whole system performance [12]. First we introduce 

the F-measure, which is the weighted harmonic mean of precision 

and recall. F-measure is defined as   

recallprecision

recallprecision
F

)1(   , where  is the weight.    (2)                  

Let    be 1, the weight of precision and recall is same, and we 

have 

 

recalprecisionl

recallprecision
F 2                         (3)                                                                        

and  



Then, go over all points on the precision-recall curve of each 

model and compute the F-measure, we get the overall evaluation 

of F for an algorithm. 

The E-Measure is defined as E = 1- F, 
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Note that the maximum value is 1.0, and higher values indicate 

better results. The fact is that a user of a search engine is more 

interested in the first page of query results than in later pages. So, 

here we consider only the first 32 retrieved objects for every 

query and calculate the E-Measure over those results. 

 

4.6 Discount Cumulative Gain (DCG) 
Based on the idea that the greater the ranked position of a relevant 

object the less valuable it is for the user, because the less likely it 

is that the user will examine the object due to time, effort, and 

cumulated information from objects already seen. 

In this evaluation, the relevance level of each object is used as a 

gained value measures for its ranked position m, the result and the 

gain is summed progressively from position 1 to n. Thus the 

ranked object lists (of some determined length) are turned to 

gained value lists by replacing object IDs with their relevance 

values. The binary relevance values 0, 1 are used (1 denoting 

relevant, 0 irrelevant) in our benchmark evaluation.  Replace the 

object ID with the relevance values, we have for example: 

 

  G'=< 1, 1, 1, 0, 0, 1, 1,0,1,0 . . . . > 

The cumulated gain at ranked position i is computed by summing 

from position 1 to i when i ranges from 1 to the length of the 

ranking list. Formally, let us denote position i in the gain vector G 

by G[i]. The cumulated gain vector CG is defined recursively as 

the vector CG where: 

 

otherwise G[i]  1]- CG[i  CG[i]

1 i if G[1]
    G[i]        (5)                                    

 

The comparison of matching algorithms is then equal to compare 

the cumulated gain, the greater the rank, the smaller share of the 

object value is added to the cumulated gain. A discounting 

function is needed which progressively reduces the object weight 

as its rank increases but not too steeply: 

otherwise ilog / G[i]  l]- [iDCG 

1 i if G[1]
    DCG[i]

2  (6)                                             

 

The actual CG and DCG vectors by a particular matching 

algorithm may also be compared to the theoretically best possible. 

And this is called normalized CG, normalized DCG. The latter 

vectors are constructed as follows. Let there be 5 relevant objects, 

and 5 irrelevant objects in each class, then, at the relevance levels 

0 and 1. Then the ideal  Gain vector is  obtain by filling the first 

vector positions with 1, and  the remaining positions by the values 

0. Then compute CG and DCG as well as the average CG and 

DCG vectors and curves as above. Note that the curves will turn 

horizontal when no more relevant objects (of any level) can be 

found. The vertical distance between an actual DCG/CG curve 

and the theoretically best possible curve shows the effort wasted 

on less-than-perfect objects due to a particular matching 

algorithm.  

4.7 Nearest Neighbor (NN), First-tier (Tier1) 

and Second-tier (Tier2) 
These evaluation measures [1] share the similar idea, that is, to 

check the ratio of models in the query’s class that also appear 

within the top K matches, where K can be 1, the size of the 

query’s class, or the double size of the query’s class. Specifically, 

for a class with |C| members, K= 1 for Nearest Neighbor, K = |C| 

− 1 for the first tier, and K = 2 *(|C| − 1) for the second tier. In the 

NIST shape Benchmark database [6], C is always 20. The final 

score is an average over all the objects in database. 

4.8  Computational Cost 
For a number of vision based applications, such as Autonomous 

Robots, the speed of identification by different algorithms is very 

important. Computational cost is then related to the time it takes 

to extract the 3D shape descriptor for an object and perform one 

query search on the database, and the storage size (byte) of the 

shape descriptor. 

 

5. THE NIST SHAPE BENCHMARK 
In this section, we discuss the generic shape benchmark [6] 

constructed by our group. It contains 800 complete 3D models, 

which are categorized into 40 classes. The classes are defined 

with respect to their semantic categories. In each class there are 20 

models. The NIST Shape Benchmark provides a new perspective 

in evaluating shape retrieval algorithms. It has several virtues: 

high reliability (in terms of error rate) to evaluate 3D shape 

retrieval algorithms, sufficient number of good quality models as 

the basis of the shape benchmark, equal size of classes to 

minimize the bias of evaluation. 

 

5.1 Results 
We present results of the ten algorithms that we tested on the 

generic benchmark. Table 1 compares different performance 

measures described in the previous section for different 

algorithms. Figure 1 Shows the overall Precision-recall curve for 

different algorithms on the new benchmark. In order to examine 

how different shape descriptors work on the database, we 

implement several kinds of algorithms to compare on the new 

benchmark. Moreover, comparison experiments are conducted on 

both the entire benchmark and a specific class of the benchmark. 

Several retrieval algorithms are evaluated from several aspects on 

this new benchmark by various measurements, and the reliability 

of the new shape benchmark.  



 

 
Figure 1: The overall Precision-recall curve for different 

algorithms on the NIST Shape Benchmark. 

 

5.2 Reliability of a Benchmark 
The reliability of a new proposed benchmark by testing the effect 

of class set size on retrieval error is an important issue. Voorhees 

and Buckley [17] proposed a method to estimate the reliability of 

retrieval experiments by computing the probability of making 

wrong decisions between two retrieval systems over two retrieval 

experiments. They also showed how the topic set sizes affect the 

reliability of retrieval experiments. We also conducted 

experiments to test the reliability of retrieval of the new generic 

3D shape benchmark [6]. 

 

6.  SHAPE RETRIEVAL CONTEST 
In 2010 we organized three tracks in the 3D Shape Retrieval 

contest. The three tracks were the Generic 3D Warehouse Track 

[7], the Range scans Track [8], and the Non-rigid shapes Track 

[9]. These tracks were organized under the SHREC'10-3D Shape 

Retrieval Contest 2010 (www.aimatshape.net/event/SHREC), and 

in the context of the EuroGraphics 2010 Workshop On 3D Object 

Retrieval, 2010. SHREC’10 was the fifth edition of the contest. In 

the following subsections we will summarize the tracks that we 

organized. 

 

6.1 Generic 3D Warehouse Contest 
The aim of this track was to evaluate the performance of various 

3D shape retrieval algorithms on a large Generic benchmark 

based on the Google 3D Warehouse. Three groups participated in 

the track and they submitted 7 set of results based on different 

methods and parameters. We also ran two standard algorithms on 

the dataset. The performance evaluation of this track is based on 

six different metrics described earlier. All the 3D models in the 

Generic 3D Warehouse track were acquired by a web crawler 

from the Google 3D Warehouse [19] which is an online collection 

of 3D models.  The database consists of 3168 3D objects 

categorized into 43 categories. The number of objects in each 

category varies between 11 and 177. Figure 2 shows example of 

each category. 

 

Figure 2: One example image from each class of the Generic 3D 

Warehouse Benchmark is shown. 

6.1.1 Results 
In this section, we present the performance evaluation results of 

the Generic 3D Warehouse track. Table 2 shows the retrieval 

statistics yielded by the methods of the participants and five 

previous methods. Figure 3 gives the precision-recall curves of all 

the methods. Observing these figures, we can state that Lian’s 

VLGD+MMR method yielded highest results in terms of all the 

measures but Nearest Neighbor. While, in terms of Nearest 

Neighbor, Ohbuchi’s MR-BF-DSIFT-E method performed best. 

 

Table 2: The retrieval statistics for all the methods and runs. 

 

 

Table 1: Retrieval performance of different algorithms on the 

NIST Shape Benchmark. 

 



 

Figure 3: Precision-recall curves of the best runs of each 

participant. 

 

6.2 Range Scan Retrieval Contest 
In this contest, the aim was at comparing algorithms that match a 

range scan to complete 3D models in a target database. The 

queries are range scans of real objects, and the objective is to 

retrieve complete 3D models that are of the same class. The query 

set is composed of 120 range images, which are acquired by 

capturing 3 range scans of 40 real objects from arbitrary view 

directions, as shown in Figure 4. The target database is the generic 

shape benchmark constructed by our group [6]. It contains 800 

complete 3D models, which are categorized into 40 classes 

 

Figure 4: Examples from the query set. 

 

6.2.1 Results 
Two participants of the SHREC’10 track Range Scan Retrieval 

submitted five sets of rank lists each. The results for the ten 

submissions are summarized in the precision-recall curves in 

Figure 5. Figure 6 shows the models retrieved by one of the 

methods in response to a range scan of a toy bike. 

 

Figure 5: Precision-recall curves. 

 

 

Figure 6: A sample shot from the web-based interface. The query 

is the range scan of a toy bike. 

 

6.3 Non-rigid 3D Shape Retrieval Contest 
The aim of this Contest was to evaluate and compare the 

effectiveness of different methods run on a non-rigid 3D shape 

benchmark consisting of 200 watertight triangular meshes. Three 

groups participated. The database used in this track consists of 

200 watertight 3D triangular meshes, which are selected from the 

McGill Articulated [3] Shape Benchmark database. 

 

6.3.1 Results 
We present the results of the three groups that submitted six 

results. Figure 7 displays the Precision-recall curves to show 

retrieval performance of all six methods evaluated on the whole 

database. We also show the results using a web interface which 

displays the retrieved models for all objects and methods, to 

analyze the results as shown in Figure 8. 



 

Figure 7: Precision-recall curves of all runs evaluated for the 

whole database. 

 

 

Figure 8. Retrieval example of one of the method using the web 

interface of the SHREC non-rigid track. 

 

7. CONCLUSION 
In this paper, we discussed some of the current 3D shape retrieval 

benchmarking efforts by our group and others and described the 

various steps involved in developing a benchmark. Then we 

reviewed the performance evaluation measures that are developed 

and used by researchers in the 3D shape retrieval community. We 

also gave an overview of the 3D shape retrieval contests (SHREC) 

run under the EuroGraphics Workshop on 3D Object Retrieval. 

Finally, we showed some of the results based on the NIST Shape 

benchmark and the different shape retrieval contest  tracks we 

organized for SHREC 2010. 
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