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likelihood-type estimators. The estimation problem of the truncation parameter and its uncertainty are
reviewed. Upper confidence bounds for the limit of detection are derived and some simulation results are
given.
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1. Setting of the problem: Critical level, decision limit, and limit of
detection

This work was motivated by the problem of Limit of Detection
(LOD) determination in trace explosive particle detectors. To solve the
problem in the classical setting of continuous variables (and only this
case is considered here), a homogeneous linear regression model
relating themass x to the values of instrument response Y(x) is usually
employed [1]. In this set-up the limit of detection is defined as the
mass value xc with a given quantile of Y(xc)-distribution.

This setting is extended to allow heterogeneous and/or censored
samples. Namely, the following model for the readings Y(x) as a
function of mass x was suggested by the data obtained in the
Surface and Microanalysis Science Division at the National Institute of
Standards and Technology (NIST):

Y xð Þ = 0; W xð Þ b h;
W xð Þ W xð Þ≥ h:

�
ð1Þ

Here, W(x)=a+bx+noise, is the response with the mean a+bx
and the variance σ 2, which (for sufficiently small positive x) follows a
linear regression model with Gaussian errors. An unknown non-
negative threshold parameter h is such that positive readings are
possible if and only if the underlying normally distributed amplitude
W(x) is above this terminus h.

When x=0, i.e., in the sample of blanks, the error variance may be
different, say, σ0

2. The intercept a interpretable as the background
noise is the mean of the blank sample, only uncensored part of which
is observed.

Thus our model has five unknown parameters a,b,h σ0, and σ,
such that

Pr Y xð Þ = 0ð Þ = Φ
h−a−bx

σ

� �
; x N 0;

Pr Y 0ð Þ = 0ð Þ = Φ
h−a
σ0

� �
:

HereΦ is the distribution function of standard normal distribution.
(The notation list is provided in Appendix A.) While all these
parameters are of interest, to estimate the limit of detection, a more
convenient parametrization is through b,h σ0, σ, and z⋆=(h−a)/σ0,
so that Φ(z⋆)=Pr(Y(0)=0). Possibility of censored samples and
heterogeneous errors as well as the following definitions are in
agreement with the existing methodology [2].

The first task is to set an alarm threshold critical level (LC) such that
the probability of false positive readings is a given number α (say,
α=0.05), i.e.,

Pr Y 0ð Þ≤ LCð Þ = 1−α: ð2Þ

So LC is the (1−α)-th quantile of the Y(0)-distribution
corresponding to the blank sample, but only provided that it exceeds
h, which means that Pr(Y(0)=0)b1−α.
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Let z1−α denote the percentile of standard normal distribution,
P(Z N z1−α)=α. Since h=a+z⋆σ0,

LC = max a + z1−ασ0; hð Þ = a + max z1−α; z⋆ð Þσ0:

Practical importance of the critical level is that it can be used as a
benchmark when designing a LOD experiment after observing the
blank sample. Indeed it is desirable to have future observations
exceeding LC. However, as was noted by the referee, sometimes the
instrument parameters are set so as to balance false positive and false
negatives vis a vis the LOD.

The mass value xc, at which only a small percentage 100β% of the
amplitude readings is below LC, by definition represents the Limit of
Detection (LOD) (also known as the Method Detection Limit),

Pr Y xcð Þ N LCð Þ = 1− β:

Thus the probability of false negative readings when x ≥ xc cannot
exceed the given number β. Since

Φ
LC−a−bxc

σ

� �
= β;

xc satisfies the formula,

a + bxc = LC + z1−βσ = a + max z1−α; z⋆ð Þσ0 + z1−βσ:

Therefore, if yc = LC + z1−βσ is the so-called decision limit, the
LOD can be determined from any of the following identities,

xc =
yc−a
b

=
LC + z1−βσ−a

b
=

max z1−α; z⋆ð Þσ0 + z1−βσ
b

:

It is clear that LOD involves four parameters z⋆,σ0,σ, and b, as
well as two error probabilities α and β. These two probabilities are
chosen by the instrument developer to keep the rates of false positives
and false negatives small. The error probability α enters the definition
of LC as in Eq. (2) corresponding to the blank sample only. However,
the LOD depends on both α and β. Fig. 1 illustrates graphically the LC,
the LOD and the decision limit.

In Section 2 we discuss the estimation of LC which involves that
of a,h and σ0. Explicit, simplified maximum likelihood-type estima-
tors are suggested there. Section 3 deals with the LOD estimation,
and upper confidence bounds are discussed in Section 4. These
mathematical results were used as a basis for e-metrology tool at a
public server, www.limitsofdetection.com/lod_astm.htm as discussed
in Section 5. Some simulation results are provided in Section 6. All
mathematical derivations are collected in Appendix A, in particular
the estimation problem of the truncation parameter h and its
uncertainty is reviewed there.

2. Blank sample: LC estimation

Let the available data be xi,yi=(y1
(i),…,yni

(i)), i=0,1,…,N, ni denot-
ing the sample sizes (in ion mobility spectrometry applications,
usually n0=30,ni≡15 for i ≥1.) Here x0 b x1b ⋯ b xN are the different
mass values, so that yi is the corresponding vector of ni responses. In
most cases x0=0, but there are situations in which x0 is a small
positive mass.

Assuming that x0=0 and that the number of all positive responses
in the blank sample, m0, is positive, the maximum likelihood es-
timator of the background level a on the basis of the blank sample
maximizes

Φν0 h−a
σ0

� �
∏

j:y 0ð Þ
j N 0

1
σ0

ϕ
y 0ð Þ
j −a

σ0

 !
; h≤ min

j:y 0ð Þ
j N 0

y 0ð Þ
j : ð3Þ

Hereϕ is the density of standard normal distribution, and ν0 denotes
the number of zero readings in the sample of blanks, ν0=n0−m0.

The maximum likelihood estimator of the terminus h on the basis
of the blank sample is

ĥ = min
j:y 0ð Þ

j N 0
y 0ð Þ
j : ð4Þ

With h replaced by this estimate, the problem becomes that of finding
the values of a and σ0 on the basis of a left censored normal sample in
which m0 observations are fully measured while ν0 data points are
censored at ĥ.

This is a classical statistical problemwhich appears in biostatistics,
and life-time data analysis. See for example [3] where the numerical
solution of likelihood equations is performed via tabulation of an

auxiliary function of ∑m0
j = 1 y 0ð Þ

j − ĥ
� �2

= y 0ð Þ− ĥ
� �2

and of m0/n0.

Chemistry applications are discussed in [4]. Environmental applica-
tions are in [5,7].

A more advanced method implemented in R-software is also
available in [6] where maximum likelihood estimators are developed
for the log-normal setting. As there is no explicit form solution, the
parameter estimates require a numerical optimization procedurewith
potential convergence problems. Our simpler approximate solution
has a closed form given below.

x

y

a

h

LC

yc

xc

Fig. 1. The graphical interpretation of LC, xc and yc. The data points below h are
unobservable.
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To estimate z⋆ we use the fact that Φ(z⋆)≈ν0/n0 and employ a
Bayesian method with noninformative Jeffrey's prior by approximat-
ing Φ(z⋆) via (ν0+0.5)/(n0+1) [8]. The reason for this approxima-
tion commonly used in categorical data analysis is that it is applicable
when ν0=0 or when ν0=n0. This suggestion leads to the statistic,

ẑ⋆ = Φ−1 ν0 + 0:5
n0 + 1

� �
;

This formula along with Eq. (18) in Appendix A gives the explicit
estimator of σ0,

σ̂0 =
ẑ⋆ y0− ĥ
� �

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

ẑ2⋆
4

 !
y0− ĥ
� �2

+ s20

vuut : ð5Þ

Here, y0 = ∑j:y 0ð Þ
j N 0 y

0ð Þ
j =m0, is the mean of all positive responses in

the blank sample, s20 = m−1
0 ∑j:y 0ð Þ

j N 0 y 0ð Þ
j −y0

� �2
. An associated esti-

mate of the intercept a follows from the definition of z⋆,

â = ĥ− ẑ⋆ σ̂0: ð6Þ

Since ĥ overestimates h, an almost unbiased estimator of h

h̃ = 2ĥ− min
j:y 0ð Þ

j N ĥ
y 0ð Þ
j ; ð7Þ

can be employed [11].

The estimator h̃ leads to a better estimate of σ0,

σ̃0 =
ẑ⋆ y0−h̃
� �

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

ẑ2⋆
4

� �
y0− h̃
� �2

+ s20

s
; ð8Þ

and of the background level a,

ã = h̃− ẑ⋆σ̃0: ð9Þ

The corresponding estimator of LC−a has the form,

L̃C−a = max z1−ασ̃0; h̃−ã
� �

= max z1−α; ẑ⋆
� 	

σ̃0:

Ifm0 ≥2, the upper confidence bound, σ0, on σ0 can be taken to be

σ0 = σ̂0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0−1ð Þ= χ2

γ m0−1ð Þ
q

. Here χγ
2(ν) is the γ-th percentile of

the χ2(ν)-distribution. Then a + z1−ασ0 is an upper confidence
bound on the (1−α)-th percentile of the censored normal Y(0)-
sample. One of the ways to determine it directly, is to apply available
methods for confidence estimation of lognormal distribution param-
eters as described in [9, Sec 5.2.2c]. See also [10].

If x0 N 0, then estimating σ0 is not feasible, but we can put

z⋆ = h−a−bx0ð Þ= σ;

so that LC−a = bx0 + z⋆σ , and

xc =
LC−a + z1−βσ

b
= x0 +

z⋆ + z1−β

� �
σ

b
:

Observe that ẑ⋆ = Φ−1 ν0 + 0:5ð Þ= n0 + 1ð Þð Þ still can be used
as an estimator of z⋆. Thus, in all situations, the LOD determina-
tion reduces to estimation of parameters b and σ. This problem is
considered in Section 3.

3. LOD estimator and its uncertainty

If x0=0, we can treat the centered data from non-blank samples,
ỹ ið Þ
j = y ið Þ

j − ã; i = 1;…;N; as satisfying the homogeneous linear
model with zero intercept, ỹ ið Þ

j = bxi + �ij, and constant variance
Var(�ij)≡σ 2, i=1,…,N, j=1,…,ni.

Since b cannot be estimated on a sample of blanks alone, esti-
mation of LOD demands at least one sample with positive readings
for a positive mass. If the i-th sample has mi(mi≤ni) positive
responses, it is required that m1≥2, i.e., there must be at least two
positive readings for the smallest positive mass x1 (otherwise this
sample is discarded and a sample for a larger mass is drawn.)

The estimators of b and σ can be determined in a straightforward
way if the positive mass samples have only a small percentage of
zeros. Namely, let

d =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i mi x
2
i

q ; ð10Þ

b̂ = d2 ∑
i
mi xi yi; ð11Þ

and

σ̂2 =
1
ν
∑
i;j

ỹ ið Þ
j − b̂xi

� �2
: ð12Þ

Here yi = ∑j ỹ
ið Þ
j =mi is themean of all positive responses in the i-th

sample, and ν=∑ i=1
N mi−1.

The approximate distributions of the estimators b and σ are
supposed to be:

b̂∼b + dσZ;

where

σ̂ 2∼σ 2 χ
2 νð Þ
ν

;

with independent standard normal Z and χ2-distributed random
variable χ2(ν) (ν denotes the degrees of freedom.) Then an upper
(1−γ/2)-confidence bound on σ can be found, σ 2 = νσ̂ 2

= χ2
0:5γ νð Þ.

Thus, P σ 2
b σ 2

� �
= 1−γ:

A natural point estimate of the LOD is

L̂OD =
max z1−α; ẑ⋆

� 	
σ̃0 + z1−βσ̂

b̂
: ð13Þ

To adjust for its bias, one can use the estimator

L̃OD = L̂OD 1− σ̂ 2

b̂2d2

" #
þ

[12].
To find the approximate uncertainty, i.e., the square root of the

mean squared error approximable by b−2
h
Var max zα; ẑ⋆

� 	
σ̃0

� 	
+

Var zβσ̂
� 	

+ Var b̂
� �

LOD2
i
, the propagation of error formula gives,

Ṽar L̂OD
� �

=
1

b̂2
max z1−α; ẑ⋆

� 	
 �2 σ̃ 2
0

m0
+ z21−β

σ̂ 2

ν
+ d2σ̂ 2L̃OD

2
" #

: ð14Þ
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4. Confidence and tolerance bounds on LOD

An upper (1−γ) confidence limit H for the LOD satisfies the
condition,

Pr LOD≤Hð Þ≥ 1−γ:

It makes sense to seek this confidence bound to be of the form

H =
max z1−α; z⋆ð Þσ0 + z1−βσ

b
; ð15Þ

where z⋆ is an upper bound on z⋆ and b = b̂−cσ̂; c N 0, is inter-
pretable as a lower confidence bound for b. To specify H, we must
choose the constant c.

Let T(ν) be a random variable with t-distribution, ν degrees of
freedom, and let t1−γ/2(ν) be the (1−γ/2)-percentile of this dis-
tribution, Pr(T(ν)≤ t1−γ/2(ν))=1−γ/2. Then with c=dt1−γ/2(ν)
one has

Pr b≥ b
� �

= Pr b̂−b≤ cσ̂
� �

= Pr dZ ≤ c

ffiffiffiffiffiffiffiffiffiffiffiffi
χ2 νð Þ
ν

s0
@

1
A= Pr T νð Þ≤ c

d

� �
= 1−γ= 2:

If z⋆;σ0 and σ are such that

Pr max z1−α; z⋆ð Þσ0 + z1−βσ ≥max z1−α; z⋆ð Þσ0 + z1−βσ
� �

≥1−γ= 2;

the Bonferroni inequality [12] shows that indeed H is an upper (1−γ)
confidence bound on LOD.

Of course this method can work only if b N 0, i.e., if

b̂

σ̂
N c = dt1−γ=2 νð Þ = t1−γ=2 νð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i mix
2
i

q : ð16Þ

When the estimators are based on just one sample, (N=1), a heu-
ristic interpretation of Eq. (16) is that the estimated variation co-

efficient σ̂ = b̂x
� �

of Y(x) is small enough.The upper tolerance bound

U for LOD gives a region which with probability 1−γ guarantees
that the future Y(LOD) observation will be inside it with a large
probability 1−P,

Pr Pr Y LODð Þ≤ a + bUð Þ≥ 1−Pð Þ≥ 1−γ;

or

Pr bU−bxc ≥ z1−Pσð Þ≥ 1−γ:

In other words, in the case of the tolerance bound U for LOD, we
expect that U ≥ xc+z1− Pσ/b, while for the confidence bound H a
less stringent condition, H ≥ xc, must hold.

The Bonferroni inequality shows that with b, as defined earlier,
a conservative choice for U is

U =
max z1−α; z⋆ð Þσ0 + z1−β + z1−P

� �
σ

b
: ð17Þ

This upper limit has the form of the Lieberman–Miller tolerance
bound [12].

As an alternative approach for deriving these bounds, notice that
for the given value of the decision limit yc, the ratio a + b̂xc−

�
ycÞ= dxc σ̂

� 	
has an approximate t-distribution with ν degrees of

freedom. Assuming that Eq. (16) holds, set this ratio equal to t1−γ/2

(ν) to get

Pr xc ≤
yc−a

b̂−t1−γ=2 νð Þdσ̂

0
@

1
A≥ 1−γ= 2:

By replacing yc−a by its upper (1−γ/2)-confidence bound
max z1−α; z⋆ð Þσ0 + z1−βσ , a (1−γ) confidence bound for LOD
obtains,

max z1−α; z⋆ð Þσ0 + z1−βσ

b̂−dt1−γ=2 νð Þσ̂;

and this bound coincides with Eq. (15).

5. Implementation

The methodology presented in the previous sections was used
as a basis for e-metrology tool at NIST and also at a public server,
www.limitsofdetection.com/lod_astm.htm. It was intended to facili-
tate the calculation of the limit of detection based on definitions
and assumptions which were used to formulate the proposed ASTM
standard method WK 19817. The goal is to provide the users, man-
ufacturers and testers of detectors with a practical tool to determine
LOD for an analyte of choice (notably, explosives or drugs-of-abuse).
An analysis of process blanks, as described in Section 2, is performed
to determine the background level a, Eq. (6), and variation σ0, Eq. (5),
leading to LC. Then reference swipes can be prepared and analyzed
starting at low analyte levels and working up to a level that elicits
responses above LC which allows LOD determination.

The output includes the linear least squares estimator of the
slope b, Eq. (11), the estimator of the standard error σ, Eq. (12), LOD
estimator, Eq. (13), uncertainty of this estimator, Eq. (14), and the
upper confidence limit on LOD, Eq. (15).

6. Simulation results

In this section we present the results from two simulation studies.
The first study compares the performance of the simplified likelihood-
type estimators (5) and (6) (which we refer to as sMLE) against the
traditional MLE based approach in the normal and log-normal
distribution settings. The second study is a validation of the upper
bound on the LOD, H shown in Eq. (11).

The goal of comparing the sMLE against the MLE in the normal and
log-normal settings is to see how our approach compares to the
current “state of art”. Also we wanted to illustrate that under a simple
construction which does not require any type of numerical opti-
mization, one is able to get comparable results. Specifically, because
the MLE and LMLE do not have a closed form solution for LOD, an
iterative method is needed to estimate the model parameters. Our
explicit estimator is intuitively appealing without risking a conver-
gence failure.

In the first study we focus on the sample of blanks, i.e. when x=0,
so that W(0)∼N(a,σ0), with population parameters σ0=30, a=40
and h∈ [20,50]. Note that the values of the parameters used in this
study reflect quantities which have been observed in practice. Using
these parameters the data are sampled from Eq. (1) with x=0.

In order to assess the performance of the sMLE and MLE
approaches we use the Mean Squared Error (MSE) of their respective
estimates of the parameters a and σ0. The MSE for each parameter is
calculated as follows: for a given h, we draw N=1000 random
samples of size M=15 or 30 from Eq. (1). For each sample drawn a
and σ0 are estimated using the sMLE and MLE procedures. Finally
the MSEs are calculated by taking the average of the sum of squares
difference between the estimated and population parameters.
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The results in the normal setting are shown in Fig. 2. In this
figure the x-axis corresponds to the log of the threshold parameter h,
and the y-axis the log of the MSE. The plot on the left displays the
results for the intercept term a and the plot on the right the standard
deviation σ0. In both plots the solid, long-dashed and short-dashed
lines correspond to the log(MSE) at different values of log(h) using
the MLE, MLE based on the assumption of log-normality [6] and sMLE
approaches respectively for a sample size of M=15. Similarly the
bold lines display the results for a sample size of M=30. Note, the
parameters estimated using MLE and MLE based on log-normality
were calculated using the R package sand [6]. The sMLE functionality
has also been implemented in R. Code for MLE and sMLE as well as
the simulation studies is available upon request.

As expected for larger M we observe lower MSEs. The poor per-
formance of the log-normal based MLE is also to be expected. Of
particular interest is the comparable performance of the MLE and
sMLE procedures.

Fig. 3 shows the results in the log-normal setting, i.e., when
W(0)∼LN(a,σ0), where LN denotes the log-normal distribution. The
layout in this figure is the same as in Fig. 2 except that now the
solid, long-dashed and short-dashed lines correspond to the MLE

based on the log-normal, the sMLE under the assumption of normality
and the sMLE under the assumption of log-normality for a sample size
of M=15. Again the bold lines correspond to a sample size of 30.

The performance of the two approaches is fairly close when log-
normality is taken into consideration. Note, we do not show the
results for sMLE under the assumption of normality as the log MSEs in
this setting are an order of magnitude larger (in the 300s).

In the second study we look to verify the bound H on the LOD.
The same population parameters are used in this analysis as in the
first study with a few changes/additions; first we let x∈ {0,1,2,3},
next we define the slope b=100 and non-blank standard deviation
σ=30, finally we set the significance level to be γ=0.05. For each
h we draw 1000 random samples of size M from W(x)∼N(a+
bx,σ(x)), where σ(0)=σ0 and σ(x)=σ for all xN0. The observed
data are then sampled from Eq. (1). In order the assess the accuracy
of the upper bound we calculate H from each random sampling and
count the number of times the LODNH. The results from this study
are shown in Fig. 4.

Both plots in Fig. 4 show the density estimate of H based on 1000
simulations of size 15 (solid line) and 30 (dashed line) sampled
from Eq. (1). With the exception of a few outlying values of H the
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Fig. 2. The results of the MLE and sMLE based procedures for normal data. The x-axis corresponds to the log of the threshold parameter h, and the y-axis the log of the MSE. The
left plot shows the results for the intercept a and the plot on the right the standard deviation parameter σ0. In both plots the solid, long-dashed and short-dashed lines correspond
to the MSEs using the MLE, MLE based on the assumption of log-normality and sMLE approaches respectively for a sample size ofM=15. Similarly the bold lines display the results
for a sample size of M=30.
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Fig. 3. The results for the MLE and sMLE based procedures for log-normal data. The layout of this figure is the same as in Fig. 2 except that now the solid, long-dashed and short-
dashed lines correspond to the MLE based on the log-normal, the sMLE under the assumption of normality and the sMLE under the assumption of log-normality for a sample size of
M=15. Again the bold lines correspond to a sample size of 30.
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densities appear to be fairly Gaussian. Furthermore for larger
(smaller) M the estimated densities appear more (less) dispersed.
The bold vertical line is the actual LOD. The left and right plots show,
respectively the results given a threshold of h=30 and 50. Note that
larger values of h also contribute to the dispersion of the estimated
density. The legend in top right of each plot shows the percent of
the time the LOD was greater than the H. As expected in all cases
Pr LOD≤Hð Þ≥ 0:95.
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Appendix A

A.1. Notation summary

Weprovide here the list of main characteristics studied in themain
body of this paper. A.2. Estimators of the slope and intercept

By differentiating Eq. (3) in a and σ0, one obtains simultaneous
equations for the maximum likelihood estimators â and σ̂0,

ν0φ
ĥ−â
σ̂0

 !

Φ
ĥ−â
σ̂0

 ! =
1
σ̂0

∑
m0

j=1
y 0ð Þ
j − â

� �
;

ν0 ĥ− â
� �

φ
ĥ− â
σ̂0

 !

Φ
ĥ− â
σ0

 ! =
1
σ̂0

∑
m0

j=1
y 0ð Þ
j − â

� �2−m0 σ̂0:

It follows that

ĥ−â
� �

∑
m0

j=1
y 0ð Þ
j − â

� �
= ∑

m0

j=1
y 0ð Þ
j − â

� �2−m0 σ̂
2
0 ;
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Fig. 4. Results from the simulation study of the upper bound H of the LOD. Both plots show the density estimate of H based simulations of size 15 (solid line) and 30 (dashed line)
sampled from Eq. (1). The bold vertical line is the actual LOD. The left and right plots show, respectively the results given a threshold of h=30 and 50. The legend in top right of each
plot displays the percent of the time the LOD greater than the estimated H.

Table 1
Parameters and their estimators (including upper confidence bounds).

Parameter Estimator Definition

a â; ã Intercept of response W

b b̂; b Slope of response W
σ 0

2 σ̂2
0 ;σ̃

2
0 , σ

2
0 Error variance, blank sample

σ 2 σ̂2
;σ 2 Error variance, non-blank sample

h ĥ; h̃ Truncation parameter
z⋆=(h−a)/σ0 z⋆ Percentile of Y(0) distribution

LOD = xc L̂OD;L̃OD, Limit of detection
=(max(z1−α,z⋆)σ0+z1−βσ)/b H,U
LC=max(a+z1−ασ0,h) L̃C Critical level
yc = LC + z1−βσ Decision limit

Table 2
Error probabilities.

Error probability Meaning

α Defines LC (false positive)
β Defines LOD (false negative)
γ Defines confidence limit H for LOD
P Defines tolerance limit U for LOD

Table 3
Other notation.

Notation Meaning

Y(x) Observable positive response at mass x
W(x) Unobservable Gaussian response at mass x
N Total number of samples (including blanks)
n0 Sample size of blanks
m0 Number of positive readings in the blank sample
ν0=n0−m0 Number of zero readings in the blank sample
y0 The sample mean of positive responses in the blank sample
s0
2 The sample variance of positive responses in the blank sample
ni, i ≥ 1 Size of i-th non-blank sample
mi, i ≥ 1 Number of positive readings in i-th non-blank sample
ν = ∑N

i = 1mi−1 Degrees of freedom

d = 1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i mix2i

q
Defines confidence limit H for LOD

ϕ Standard normal density
Φ Normal cumulative distribution function
zα Normal percentile of order α,Φ(zα)=α

193A.L. Rukhin, D.V. Samarov / Chemometrics and Intelligent Laboratory Systems 105 (2011) 188–194



Author's personal copy

so that

σ̂ 2
0 =

1
m0

∑
m0

j=1
y 0ð Þ
j − â

� �2− y 0ð Þ−â
� �

ĥ−â
� �

= s20 + y 0ð Þ−â
� �

y 0ð Þ−ĥ
� �

:

ð18Þ

This formula is used in Section 2 to obtain the standard deviation
estimate σ̃0 in Eq. (5).

A.3. Truncation parameter estimators

We present here approximate formulas for the distribution of ĥ.
This estimator admits the representation,

ĥ = a + σ0 min
j:Z 0ð Þ

j N h−að Þ=σ0

Z 0ð Þ
j

= h + σ0 min
j:Z 0ð Þ

j N h−að Þ=σ0

Z 0ð Þ
j −h−a

σ0

� 

= h + σ0V ;

where for t=(h−a)/σ0,

V = min
j:Z 0ð Þ

j N t
Z 0ð Þ
j −t

� �
;

and Zj
(0)

, j=1,…,n=n0, are independent standard normal random
variables. Let Z(1)

(0) ≤ Z(2)
(0) ≤ ⋯ ≤ Z(n)

(0) denote the corresponding order
statistics. Then for v ≥ 0,

Pr min
j:Z 0ð Þ

jð Þ N t
Z 0ð Þ

jð Þ N t + v

 !
= ∑

n−1

j=0
Pr Z 0ð Þ

jð Þ b t; Z 0ð Þ
j+1ð Þ N t + v

� �

= ∑
n−1

j=0

n

j

 !
Φ tð Þ½ � j 1−Φ v + tð Þ½ �n−j = 1−Φ v + tð Þ + Φ tð Þ½ �n− Φ tð Þ½ �n:

Thus,

Pr V N vð Þ = 1−Φ v + tð Þ + Φ tð Þ½ �n− Φ tð Þ½ �n:

According to the asymptotic theory of extreme order statistics [13]
if bn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log n

p
, t≈ 0.5 log(4π log n)/bn−bn, then

Pr bnV N vð Þ≈ 1−e−e−v

; v N 0:

In other words, for large n,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
V is distributed like max(0,G)

with G having a Gumbel distribution.

It follows that

E ĥ−h
� �2

≈ σ2
0

2log n
E max 0;G2

� �
=

1:1267σ2
0

2 log n
:

The standard deviation of h̃ can be estimated by the spacing,

min
j:y 0ð Þ

j N ĥ
y 0ð Þ
j −ĥ = ĥ− h̃:

As in [11, sec 3], an approximate upper (1−δ) confidence bound
on h is

h = 1− δ
1−δ

� �
ĥ +

δ
1−δ

h̃:
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