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ABSTRACT
In this paper, we apply two fundamental approaches to-
ward evaluating a static, vision based, six-degree-of-freedom
(6DoF) pose determination system that measures the po-
sition and orientation of a part. The first approach uses
groundtruth carefully obtained from a laser tracker and the
second approach doesn’t use any external groundtruth. The
evaluation procedure focuses on characterizing both the sys-
tem’s accuracy and precision as well as the effect of object
viewpoints.

For the groundtruth method, we first use a laser tracker
for system calibration and then compare the calibrated out-
put with the surveyed pose. In the method without external
groundtruth, we evaluate the effect of viewpoint factors on
the system’s performance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes;
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

General Terms
Performance, Measurement, Standardization, Experimenta-
tion

Keywords
Laser Tracker, Ground Truth, 6DOF metrology, Performance
Evaluation

1. INTRODUCTION
As part of the ongoing effort to standardize characteri-

zation and evaluation of 6DoF (six-degree-of-freedom) pose
determination systems, we present a performance evaluation
of a static, vision-based 6DoF system that measures the po-
sition and orientation of a part, also referred to as an object
in this paper.
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In general, performance evaluation methods can be grouped
into two categories: with and without external groundtruth.
We adopt the typical definition of external groundtruth as
measurements obtained independently and simultaneously
by an accurate system having better precision by more than
one order of magnitude. Laser tracker, industrial robot arm,
and computer graphics simulation are some examples of ex-
ternal groundtruth used for evaluating vision-based 6DoF
systems [3, 14, 17].

Regardless of whether external groundtruth is employed
or not, the goal is to obtain a quantitative understanding
of the performance. “[The task of performance character-
ization] can be understood as an entirely statistical task.”
[16]

In this paper, we employ methods with and without ex-
ternal groundtruth to quantitatively determine the system’s
accuracy and precision and the effect of different viewpoints
on its precision. For the groundtruth method, we first use
a laser tracker for system calibration and then compare the
calibrated result to the surveyed pose. For the method with-
out using any external groundtruth, we estimate the system
precision under various object viewpoints.

2. RELATED WORK
Here we review some common methods applied to perfor-

mance characterization and evaluation of pose determina-
tion systems and algorithms [9, 3, 19, 18, 14, 13]. Other rel-
evant work includes evaluation and characterization of rang-
ing sensors such as LADAR (LAser Detection And Ranging)
[8, 23, 1] and stereo vision [11, 17, 22], as well as algorithms
including image registration [21, 5, 20, 10, 7], segmentation,
and classification [2, 4]. The majority of these articles con-
duct experimental studies to characterize the performance
under a set of controlled conditions.

In typical groundtruth methods, external groundtruth is
used to compute errors, which are then used to infer the
unknown parameters in the error population/distribution.
A statistic such as mean, standard deviation, min, and max,
is computed from an error sample.

The system under test can be thought of as an estimator
of the true quantity measured independently and simultane-
ously by the external groundtruth system. In statistics, an
estimator has two properties: bias and variance. The bias
measures the average accuracy while the variance measures
the precision or reliability of the estimator [15].

One way to determine the bias of a pose determination
system is to first transform data both from the groundtruth
and the system under test to a common coordinate frame.



Then, the bias is the averaged differences between the two
transformed data sets. However, in most cases, the trans-
formation between the two coordinate frames is not known
exactly and any error in the transformation will contribute
to the overall bias estimate. A robust calibration system
[12] is needed to estimate the transformation.

Approaches without external groundtruth typically com-
pute variance from the data. These variances are used to
characterize and infer the effect of system’s precision un-
der different conditions, or levels of the experimental factor.
In [17], a dynamic 6DoF system’s performance was char-
acterized by the standard deviation of the regression resid-
ual; although no external groundtruth was used, the motion
model of the object was known. [23] and [8] characterized a
LADAR system’s precision (as well as accuracy) under ex-
perimental factors including target distance, surface prop-
erty, and incident angle. Statistical inference could be used
to generalize and test hypotheses about the system perfor-
mance.

Another approach without external groundtruth relies on
an objective metric that correlates with the system’s per-
formance. Groundtruth is still involved but only during the
design and verification of the objective metric. Performance
evaluation can then be done using only that objective met-
ric alone. Examples of this approach include [22, 10, 7, 4].
In general, the objective metric is shown to vary monotoni-
cally with the amount of error, which is computed from the
external groundtruth.

Unlike the previous two approaches, [9] compares the ro-
bustness of two pose estimation techniques analytically us-
ing sensitivity analysis in terms of variance amplification. [2]
shows another example without the use of external ground-
truth. Its idea is based on the common agreement metric
applied to brain tissue classification: “if nine out of ten al-
gorithms classify voxel x in subject i as white matter then
one says there is a 90 % chance this voxel truly is white
matter.”

In this paper, we adopt the estimator approach that treats
the 6DoF system under test as an estimator to the true pose.
Performance of the 6DoF system can then be characterized
by the estimator’s bias and variance.

3. METHODS
In this section, we describe approaches with and without

external groundtruth for characterizing a commercial static,
vision-based, 6DoF pose determination system.

3.1 The Static 6Dof Vision-Based System
The vision system consists of a camera mounted on a robot

arm (see Figure 1). The camera used in this study has a focal
length of 6mm and a resolution of 782 by 582 pixels. There
are four coordinate frames involved:

1. Robot Frame: A coordinate frame located and defined
at the base of the robot arm.

2. Object Frame (O): The coordinate frame associated
with the object.

3. Camera Frame (C): The coordinate frame associated
with the camera, which is fixed on the robot arm.

4. Source Frame (SF ): A user-defined global coordinate
frame relative to the robot frame. This frame is usually

Figure 1: The vision system and the laser tracker
groundtruth system.

conveniently aligned with the object in order for the
robot to perform operations relating to the object.

The output from the vision-based system consists of ob-
ject and camera poses for every measurement. Specifically,
the outputs are three 4x4 homogeneous matrices:

(i) SF HO, transformation from the object frame to the
source frame. SF is the source frame and O is the
object. SF is stationary and O is also stationary.

(ii) SF HC , transformation from the camera frame to the
source frame. SF is the source frame and C is the
camera. In this case, SF is stationary and C is moving.

(iii) OHC , transformation from the camera frame to the
object frame. This is obtained by combining (i) and
(ii).

Although the measurement takes 1
30

of a second to acquire
an image, the subsequent processing time varies. The robot
arm always stop moving when taking the measurement.

3.2 The GroundTruth System
The groundtruth system used in our work is a calibrated

6DoF laser tracker having a precision (two sigma) of ± 5
micrometer per meter. The laser tracker has two physical
components: a portable active target that measures its own
orientation and a base unit that measures the position of
the active target. Together they provide the complete 6DoF
pose of the active target.

There are two coordinate frames in the groundtruth sys-
tem:

• Laser Tracker Frame (LT ): A coordinate frame located
at the base unit of the laser tracker.

• Active Target Frame (AT ): The coordinate frame as-
sociated with the active target.

In our setup, we attached the active target next to the
camera on the robot arm of the vision system. The output
from the groundtruth system is the pose (represented by a
4x4 homogeneous matrix) of the active target:



Figure 2: The dynamic camera pose is indepen-
dently determined by both the vision system and
the laser tracker.

(iv) LT HAT , transformation from the active target frame
to the laser tracker frame. AT is the active target and
LT is the laser tracker. Here AT moves with the robot
arm and LT is stationary.

3.3 Using External GroundTruth
We are interested in using the groundtruth to estimate the

bias of the vision system. A straight-forward way is to have
the groundtruth system directly measure the camera frame
of the vision system. This will provide the transformation
between the two systems and allow camera pose and object
pose, as measured by both systems, to be represented by a
common coordinate frame.

However, it is extremely difficult to physically locate the
camera frame. Even if we could physically locate the camera
frame, there is still the issue of survey error due to operator
skill and other human factors.

An equivalent approach is to numerically determine the
best transformation (see Figure 2) between the set of cor-
respondence data via optimization [13]. In order to carry
out this equivalent approach, the vision system data and
the laser tracker data (iv) are combined as

LT HC =LT HAT ×AT HC , (1)

where AT HC was numerically determine from the robot hand-
eye calibration process which included camera calibration
error. Note that this transformation is constant since the
active target and the camera are both rigidly mounted on
the robot.

Then we construct the best-fit homogeneous matrix

O
bHLT = argmin

H
‖H LT HC −OHC‖2 . (2)

This homogeneous matrix can be constructed by first cal-
culating the optimal rotation

R = VDUT

where the full Singular Value Decomposition (SVD) of the
3× 3 matrix

XbXT = UΣVT

and

D =

(
diag(1, 1, 1) if det(VUT ) = 1,

diag(1, 1,−1) if det(VUT ) = −1
.

Here X is the mean-adjusted data LT HC and bX is the mean-
adjusted data OHC . Once the rotation R is known then the
optimal translation can be calculated as

t = bt−Rt,

where t is the mean-adjusted position data of LT HC and bt is
the mean-adjusted position data of OHC . Thus the optimal
homogeneous matrix from (2) is

O
bHLT =

„
R t
0 1

«
.

Since we also can independently survey the location of the
object using the laser tracker and construct OHLT , we can
compare the results of the best-fit homogeneous matrix

O
bHLT

with the groundtruth OHLT . The difference between the
best-fit matrix and the surveyed groundtruth matrix include
the system bias error and the groundtruth measurement er-
ror.

3.4 Without using External GroundTruth
In a way, an implicit groundtruth is present in the static

scenario. This implicit groundtruth is embedded into the
experimental set up by having the object remain stationary.
We knew the object did not move, therefore, we don’t need a
real external groundtruth system to measure its pose, which
is just a constant by design.

3.4.1 Effect of object Viewpoints
We investigate the effect of different object viewpoints on

the variance of the vision system. [9] studied two pose de-
termination algorithms and showed, analytically and exper-
imentally, that viewpoint has an effect on pose stability. In
our study, instead of varying the object pose, experiments
were set up to vary the camera pose. The effect of vary-
ing the camera pose is the same as varying the object pose
because in both cases the camera produces the same object
image. In addition, we gained an implicit groundtruth from
the fact that the object remained stationary.

Four independent experiments are conducted. In each ex-
periment, the pose of a static object is to be compared under
three different measurement conditions (treatments): A, B,
C. The experiments are described below:

• Exp0: scale factor
A scale of 1.0 means that the entire object, regard-
less of its orientation, occupies the image as much as
possible. A scale of 0.5 means that at most 2 objects
can be seen simultaneously in the image, regardless of
their orientations. To compute the actual scale, we
first determine the minimum bounding sphere of the
object and then measure the distance from camera to
the object. Using the pin-hole camera model, we can
then determine the scale by

scale =
dia

2× dist× tan
`

fov
2

´ ,



where dia is the diameter of the minimum bounding
sphere, dist is the distance between the camera and
the object, and fov is the camera’s vertical field-of-
view angle.

– cond A: object seen at low-scale (computed scale
= 0.37)

– cond B: object seen at mid-scale (computed scale
= 0.55)

– cond C: object seen at full-scale (computed scale
= 1.03)

• Exp1: position factor

– cond A: object seen near the image border (actual
camera shift = 100 mm)

– cond B: object seen midway between center of
FoV (field-of-view) and the image border (actual
camera shift = 50 mm)

– cond C: object seen at the center of FoV (0 shift)

• Exp2: azimuth factor
Under this factor, the object is always centered in the
image as the camera rotates about its optical axis.

– cond A: object seen rotated 40 degrees

– cond B: object seen rotated 20 degrees

– cond C: object seen up-right

• Exp3: polar factor
Under this factor, the object is always centered in the
image as the camera rotates around the object.

– cond A: object seen rotated 25 degrees on its side

– cond B: object seen rotated 15 degrees on its side

– cond C: object seen up-right

Except experiment Exp0, the object scale is fixed at 0.55
throughout the experiments.

4. RESULTS
This section describes the dataset obtained and their pre-

liminary analysis.

4.1 Data without External Groundtruth
In each of the four viewpoint experiments, 10 runs per

treatment were carried out, resulting a total of 30 runs per
experiment. More runs could be used, but 10 were chosen to
establish an initial preliminary study. No groundtruth data
was collected in these viewpoint experiments.

We used the completely randomized design (CRD) paradigm
[15] in our viewpoint experiments and identified time and
robot repeatability as two nuisance factors that we have no
control over. However, we did not randomize the order of
runs (as to neutralize the possible timing and robot effect)
for two reasons:

1. The condition/treatment order can not be changed.
The commercial vision system always perform condi-
tions A, B, C, A, B, C, ... in that cyclic order. The
provided commercial software does not have an option
to change the run order.

2. The robot arm was found1 to have deterministic re-
peatability after warming up for 20 minutes. There-
fore, the robot’s performance (repeatability as speci-
fied by the manufacture) does not change with time.
However, it was noted that the robot’s repeatability
depends on the motion as well as the initial pose at
the time the motion command was issued. As a result,
we always move the robot from a fixed initial pose and
set the robot speed to low (as to minimize structural
vibration caused by robot motion).

4.2 Data with External Groundtruth
Additionally, four data sets were collected together with

the groundtruth. Groundtruth was obtained by matching
the vision data with the corresponding laser tracker data.
Since the clocks were synchronized and timestamps recorded,
we can match data by their timestamp. For each data set,
the camera height was measured to about 457 mm.

• For the first data set, we adjusted only the rotational
motion of the camera. Specifically, we rotated the cam-
era about the rotational axes Rx and Ry from ±15
degrees in increments of 5 degrees, and Rz from ±10
degrees in increments of 5 degrees. (Total of 7x7x5 =
245 data; 61 have all image features detected.)

• For the second data set, we adjusted only the trans-
lational motion of the camera. Specifically, we moved
the camera in the x and y directions from ±150 mm
in increments of 50 mm. (Total of 7x7 = 49 data; 37
have all image features detected)

• For the third data set, we adjusted both the rotational
and translational motion of the camera. Specifically,
we rotated the camera about the rotational axes Ry

and Rz from ±5 degrees in increments of 5 degrees,
and moved the camera in the x direction from ±150
mm in increments of 50 mm. (Total of 3x3x7 = 63
data; 54 have all image features detected)

• For the fourth data set, we adjusted both the rota-
tional and translational motion of the camera. Specifi-
cally, we rotated the camera about the rotational axes
Ry and Rz from ±5 degrees in increments of 5 degrees,
and moved the camera in the y direction from ±150
mm in increments of 50 mm. (Total of 3x3x7 = 63
data, 41 have all image feature detected)

4.3 External GroundTruth Result
Table 1 summarizes error between the optimal homoge-

neous matrix O
bHLT computed for each of the four data sets

with the survey from the laser tracker OHLT . The error
shown in this table is the combined effect of survey error
and the system bias. It should be noted that certain data
points were ignored in the calculation of the best homoge-

neous matrix O
bHLT . These points correspond to positions

where all the image features could not be located by the vi-
sion system. Outliers were also removed in the construction
of the optimal homogeneous matrix. These outliers were
constructed using a statistical tool that identifies points as
outliers if they lie outside of one and half times the interquar-
tile range.

1We used the IS09283 robot performance standard metric
and protocol describe in [6].



Table 1: Estimates of system bias
x (mm) y (mm) z (mm) Rx (deg) Ry (deg) Rz (deg)

DataSet1 8.696 2.868 47.191 0.0328 0.0038 0.2435
DataSet2 9.272 3.476 39.755 0.0767 0.0336 0.1544
DataSet3 8.946 6.760 37.092 0.0572 0.0069 0.0522
DataSet4 9.569 4.687 40.551 0.1160 0.0074 0.1967

Table 1 indicates a large combined error in positional mea-
surements. The Z-component has the largest error, and Y-
component has the least error. This is not surprising, given
that the image apperarance typically changes only slightly
as the height of the camera changes, and the pose detection
algorithm depends on only a single camera view.

Tables 2 to 6 summarize the error residual between the
groundtruth data and the corresponding transformed vision
data in the same coordinate. Before finding the best-fit
transformation, some outlier points were removed from the
groundtruth data. The points arose because the laser tracker
has a problem tracking jerks in the robot’s motion. Data for
a short time following a jerk are incorrect. Unfortunately,
this problem was only discovered after the data had been
collected, and the sampling did not wait long enough for
the system to settle after the camera reached its destination
before collecting data. The pairs of points corresponding to
these measurements were omitted from the best-fit calcula-
tions. However, the errors in the tables 2 to 6 are computed
from all the collected data points that the vision system was
able to detect all image features.

The requirements for most applications for which the 6DoF
system were developed depends on repeatability rather than
accuracy, but even here, the variation can be large. For ex-
ample, in data set 4 (summarized in Table 5 and Figure 6)
the system erroneously matches features. Note, however,
the data set actually produced the best results when the
bad matches are omitted.

Results from the four data sets are shown in Figure 3 to 6.
Points were selected as outliers if they lie outside one and
half times the inter-quartile range. It should be noted that
there are close fits for most of the points but there are few
points with a large error. These points correspond to po-
sitions where the vision system indicated a good match to
the data (all features were detected) but two or more of the
detected features matched to the wrong model feature.

Overall, the user would have to decide if the system was
repeatable enough for a particular application. The perfor-
mance data provide the necessary information to do so. The
mean and standard deviation of the error, together with the
maximum errors, can be compared with the tolerances of
the application. They can also be used in process control; if
a measured part location lies, for example, more than two
standard deviations from mean, it likely indicates either a
bad part or an erroneous match between the part and the
model. The vision system could attempt to reacquire the
part and if it failed again, the part could be rejected.

4.4 Result without GroundTruth
Tables 7 to 10 summarize the system variance (computed

as standard deviation) among the three conditions in each
of the four viewpoint experiments (see Section 3.4.1). Origi-
nally, the experiment was set up to answer the specific ques-
tion: “Do pose solutions from the vision system differ sig-
nificantly under different object viewpoint?” In statistics,

Table 2: Data Set 1 — Rotation
61 poses with all image features detected

x (mm) y (mm) z (mm) Rx (deg) Ry (deg) Rz (deg)

Mean 1.709 1.628 0.846 0.1824 0.0911 0.1896
Median 1.542 1.300 0.723 0.1621 0.0854 0.1504
Std Dev 1.109 1.437 0.537 0.1241 0.0582 0.1763

Min 0.043 0.001 0.008 0.0072 0.0020 0.0029
Max 4.391 5.113 2.551 0.5252 0.2273 0.9390

Table 3: Data Set 2 — Translation
37 poses with all image features detected

x (mm) y (mm) z (mm) Rx (deg) Ry (deg) Rz (deg)

Mean 1.736 5.848 1.100 0.1472 0.0332 0.5146
Median 1.535 4.397 0.866 0.1139 0.0234 0.3579
Std Dev 1.506 4.367 0.847 0.1316 0.0297 0.3870

Min 0.024 0.036 0.004 0.0023 0.0002 0.0402
Max 6.879 16.655 3.461 0.5660 0.1199 1.4359

Table 4: Data Set 3 — Rotation and Translation
54 poses with all image features detected

x (mm) y (mm) z (mm) Rx (deg) Ry (deg) Rz (deg)

Mean 2.454 8.559 0.730 0.1934 0.0764 0.7082
Median 1.678 5.354 0.676 0.1137 0.0753 0.4699
Std Dev 3.503 8.453 0.579 0.2799 0.0401 0.6907

Min 0.018 0.174 0.039 0.0003 0.0025 0.0106
Max 24.036 42.317 3.464 1.9085 0.1664 3.5107

Table 5: Data Set 4 — Rotation and Translation
41 poses with all image features detected

x (mm) y (mm) z (mm) Rx (deg) Ry (deg) Rz (deg)

Mean 20.815 8.260 46.677 21.9294 2.0078 3.8628
Median 1.226 2.464 0.559 0.0963 0.0872 0.2285
Std Dev 70.215 21.247 165.772 78.6847 8.4709 12.9773

Min 0.017 0.360 0.057 0.0015 0.0048 0.0162
Max 294.918 109.988 645.663 307.4627 51.4941 57.3316

Table 6: Combined Data
Combined Data (total of 193 poses)

x (mm) y (mm) z (mm) Rx (deg) Ry (deg) Rz (deg)

Mean 5.941 5.778 10.498 4.7513 0.4790 1.1699
Median 1.461 2.724 0.686 0.1217 0.0677 0.2657
Std Dev 32.864 11.232 77.567 36.8178 3.9272 6.0726

Min 0.017 0.001 0.004 0.0003 0.0002 0.0029
Max 294.918 109.988 645.663 307.4627 51.4941 57.3316



0 50 100
0

1

2

3

4

5

Index

m
m

0 50 100
0

1

2

3

4

5

6

Index

m
m

0 50 100
0

0.5

1

1.5

2

2.5

3

Index

m
m

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Index

D
e

g
re

e
s

0 50 100
0

0.05

0.1

0.15

0.2

0.25

Index

D
e

g
re

e
s

0 50 100
0

0.2

0.4

0.6

0.8

1

Index

D
e

g
re

e
s

Error in x in mm Error in y in mm Error in z in mm

Error in row in deg Error in pitch in deg Error in yaw

Figure 3: Data Set 1 — Rotation Only
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Figure 4: Data Set 2 — Translation Only
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Figure 5: Data Set 3 — Rotation and X Translation
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Figure 6: Data Set 4 — Rotation and Y Translation



Table 7: Exp0 — Scale Factor
Std Dev x (mm) y (mm) z (mm) Rx (deg) Ry (deg) Rz (deg)

CondA 0.038 0.025 0.070 0.0344 0.0643 0.0096
CondB 0.046 0.018 0.078 0.0409 0.0521 0.0051
CondC 0.052 0.137 1.043 1.8300 0.3541 0.0622

Table 8: Exp1 — Position Factor
Std Dev x (mm) y (mm) z (mm) Rx (deg) Ry (deg) Rz (deg)

CondA 0.057 0.021 0.040 0.1145 0.1445 0.0198
CondB 0.072 0.026 0.071 0.1680 0.1532 0.0164
CondC 0.087 0.017 0.073 0.1080 0.0585 0.0048

this type of question is commonly answered by testing the
homogeneity hypothesis [15].

In our experiment, we collected just 10 measurements per
each of the three conditions. Without a priori knowledge
about the underlying population distributions, small sam-
ples can not be justified for use in testing the homogeneity
hypothesis. Since we don’t know the underlying popula-
tions, one idea is to use non-parametric approaches, which
make few assumptions about the population distribution.
One non-parametric approach we considered the Kruskal-
Wallis test [15], which assumes the populations all have the
same shape. However, since our sample size was small this
assumption could not be verified.

Instead of testing the homogeneity hypothesis, another
approach to answer our original question is to use statistical
methods that directly compare distributions. Such methods
include χ2 goodness-of-fit test, Kolmogorov-Smirnov goodness-
of-fit test, and others. However, due to the small sample size
and the uncertainty about our samples being representative
of their populations, we did not pursue any of these meth-
ods. Nevertheless, the collected data provide some useful
insights:

• From the Exp0 (scale factor) data summarized in Ta-
ble 7, we observed that condition C has the largest
variance compared to the two other conditions. With
the exception of the X component, the variances are
at least 5 times larger in condition C. Since condition
C corresponds to the smallest image scale, it implies
that a sudden degradation in system precision can be
expected when the object in the image gets smaller
than a threshold.

• With the scale set at 0.55, Tables 8 to 10 show a com-
bined system precision that is better than 0.7o for ori-
entation and 0.3 mm for position. The combined con-
ditions encompass a viewpoint coverage of up to 100
mm shift in X position, 40 degrees in azimuth angle,
and 25 degrees in polar angle.

• We noted that the physical dimension is a function of
camera lens. By changing the camera lens, the vision
system can be adapt to larger or smaller object. It is
reasonable to think that both the accuracy and preci-
sion of the system will improve if a higher resolution
camera is used.

5. CONCLUSION

Table 9: Exp2 — Azimuth Factor
Std Dev x (mm) y (mm) z (mm) Rx (deg) Ry (deg) Rz (deg)

CondA 0.010 0.029 0.032 0.0163 0.0485 0.0206
CondB 0.022 0.038 0.035 0.0245 0.0864 0.0123
CondC 0.024 0.026 0.069 0.0458 0.1092 0.0235

Table 10: Exp3 — Polar Factor
Std Dev x (mm) y (mm) z (mm) Rx (deg) Ry (deg) Rz (deg)

CondA 0.097 0.051 0.294 0.2112 0.2189 0.0143
CondB 0.040 0.019 0.116 0.1191 0.6834 0.0756
CondC 0.017 0.032 0.037 0.1730 0.0387 0.0048

We described and applied two common approaches for
evaluating and characterizing the performance of 6DOF per-
ception systems. External groundtruth is necessary to eval-
uate system accuracy in terms of its bias. System preci-
sion, in terms of its repeatability, can be evaluated with or
without an external groundtruth. In both cases, the result
characterizes the system under the condition in which it was
operated.

For evaluating 6DoF systems, the use of an external ground-
truth system is essential when the pose is dynamic or static.
The mean and standard deviation of the errors, together
with the maximum errors, can be compared with the tol-
erance of the user’s requirements in their application. The
user’s requirements will decide if the system is repeatable
enough for a particular application. However, if the external
groundtruth is not available, then system uncertainty using
the variance in the data may be an alternative approach for
estimating the system precision.

In the case of no external groundtruth, our approach was
to test whether the homogeneity hypothesis could be used
to answer the question: “Do pose solutions from the vision
system differ significantly under different object viewpoint?”
Unfortunately, given the insufficiency of data we collected,
the lack of a priori knowledge about the underlying pop-
ulation distributions, and the doubt about samples being
representative, we were unable to justify using and applying
the homogeneity hypothesis.

What performance factors to study depends on the in-
tended application of the system. In our case, we used object
viewpoint as an example. The users of 6DoF pose systems
may be interested in other factors such as environmental
lighting, object type, object pose, object motion, operator
skill, etc.

Our long-term goal is to assist in developing a standard
for performance evaluation of dynamic 6DoF measurement
systems. This standard will specify quantitative, repro-
ducible test methods to evaluate the robustness, accuracy,
repeatability and other performance characteristics of dy-
namic 6DoF systems. The standard will also assist in the
development of new applications of automation by enabling
end-users to directly compare 6DoF systems as well as re-
ducing the time spent on system evaluation, adoption and
integration.
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