Spin Torque with Point Contacts: Generating Nonlinear Waves with Magnetic Media in a Localized Way

<u>Tom Silva</u> and Mark Keller NIST Electromagnetics Division Boulder, Colorado

Mark Hoefer North Carolina State University Mathematics Department Raleigh, NC

Two Related Mini-Symposia at this meeting: (1) MS10 "Nonlinear Waves in Magnetic Systems – Part I, Monday 3:00 pm (2) MS19 "Nonlinear Waves in Magnetic Systems – Part II, Tuesday 10:15 am

Basics of spin dynamics and spin transport in metals.

Spin torque with point contacts: Phenomenology.

Spin torque with point contacts: Theoretical advances.

Open problems in theory of magnetization dynamics (spin torque and/or general issues).

Motivation

Fundamental advance: Using current to manipulate magnetization, not magnetic field.

Exploring the details of physics that relate current, spin, and magnetization.

Applications: Magnetic random access memory (MRAM), Spin-based logic (DARPA), Hard disk drive read sensors, Frequency-agile microwave oscillators.

□ Ability to excite **new kinds** of magnetic waves in ways that were never possible before.

SIAM Nonlinear Waves 2010

National Inst Standards and Techn

Larmor Equation

Magnetic field exerts torque on magnetization.

(definition of torque) $\frac{d\vec{L}}{dt} = \vec{T}$

 $\gamma \equiv \frac{\mu}{L}$ (gyromagnetic ratio)

arm

Standards and Tech

Gyromagnetic precession with energy loss: The Landau-Lifshitz equation

Landau & Lifshitz (1935):

 \vec{T}_p = precession torque = $\mu_0 \vec{M} \times \vec{H}$

 \vec{T}_d = damping torque

 $= \frac{\alpha \mu_0}{M_s} \vec{M} \times \left(\vec{M} \times \vec{H} \right)$

 α = dimensionless Landau-Lifshitz damping parameter

Lev Landau

$$\begin{aligned} \frac{d\vec{M}}{dt} &= -|\gamma|\vec{T} = -|\gamma|\left(\vec{T}_{p} + \vec{T}_{d}\right) \\ &= -|\gamma|\mu_{0}\vec{M}\times\vec{H} \\ &- \frac{\alpha|\gamma|\mu_{0}}{M_{s}}\vec{M}\times\left(\vec{M}\times\vec{H}\right) \end{aligned}$$

Spin-dependent conductivity in ferromagnetic metals

→Conductivities in ferromagnetic conductors are different for majority and minority spins.

→In an "ideal" ferromagnetic conductor, the conductivity for minority spins is zero.
SIAM Nonlinear Waves 2010

Concept: interfacial spin-dependent scattering

Normal metal

Ferromagnet

 \rightarrow "Majority" spins are preferentially transmitted.

→"Minority" spins are preferentially reflected.

Concept: ferromagnets as spin polarizers

Ferromagnet

Normal metal

 \rightarrow "Majority" spins are preferentially transmitted.

Ferromagnetic conductors are relatively permeable for majority spins. Conversely, they are impermeable for minority spins.

Concept: spin accumulation

SIAM Nonlinear Waves 2010

National Institute of Standards and Technology

Non-collinear spin transmission

What if the spin is neither in the majority band nor the minority band???

Is the spin reflected or is it transmitted?

Quantum mechanics of spin:

$$= A + B =$$

$$\begin{vmatrix} A = \cos\left(\frac{\theta}{2}\right) \\ B = \sin\left(\frac{\theta}{2}\right) \end{vmatrix}$$

An arbitrary spin state is a coherent superposition of "up" and "down" spins.

Quantum mechanical probabilities:

$$\Pr\left[\uparrow\right] = |A|^{2} = \frac{1}{2} \left(1 + \cos\left(\theta\right)\right)$$
$$\Pr\left[\downarrow\right] = |B|^{2} = \frac{1}{2} \left(1 - \cos\left(\theta\right)\right)$$

Spin Momentum Transfer: The Basics

Transverse torque via spin reorientation/ reflection θ Consider only reflection events... AND Consider only change in angular momentum transverse to magnetization axis. (Equivalent to assuming magnitude of *M* does not change.) new spin direction $-\hat{m}$ old spin direction $\hat{m}_{\rm fixed}$ $\Delta \vec{J} = \hbar \left[\hat{m}_{\text{fixed}} - \hat{m} \left(\hat{m} \cdot \hat{m}_{\text{fixed}} \right) \right]$ $=\hbar \left[\hat{m} \times \left(\hat{m}_{\text{fixed}} \times \hat{m} \right) \right]$ "transferred" angular momentum $\vec{A} \times \left(\vec{B} \times \vec{C} \right) = \vec{B} \left(\vec{A} \cdot \vec{C} \right) - \vec{C} \left(\vec{A} \cdot \vec{B} \right)$ using SIAM Nonlinear Waves 2010

First Evidence... Mechanical Point Contacts

Tsoi, Jansen, Bass, Chiang, Seck, M. and Tsoi, Wyder, PRL **81** (1998)

Tsoi, Jansen, Bass, J. and Chiang, Tsoi, Wyder, Nature **406** (2000)

SIAM Nonlinear Waves 2010

National Institute o Standards and Technology

Point Contact Complexity

Individual device behavior tends to be complicated function of field and current.

SIAM Nonlinear Waves 2010 Rippard, Pufall, and Russek, PRB 74 (2006).

Non-monotonic

Time Domain Data (Nanopillars)

Below threshold... Current reduced effective damping.

Above threshold... steady-state oscillations

Krivorotov, Emley, Sankey, Kiselev, Ralph, Buhrman, Science **307** (2005)

Low field experiments

Pufall, Rippard, Schneider, and Russek, PRB, **75** (2007).

also...

Mistral, Kampen, Hrkac, Kim, Devolder, Crozat, Chappert, Lagae, and Schrefl, PRL, 100 (2008).

SIAM Nonlinear Waves 2010

New kind of mode observed when weak magnetic fields applied perpendicular to plane.

- Large amplitude
- Non-sinusoidal (many harmonics)
- Low frequencies in the 100's of MHz ("radio frequency", or "rf")

Dual Lithographic Point Contacts

Mancoff, Rizzo, Engel, Tehrani, Nature, **437** (2005)

Dual Contact Data

Kaka, Pufall, Rippard, Silva, Russek, and Katine, *Nature* **437** (2005)

Pufall, Rippard, Russek, Kaka, Katine, PRL 97 (2006)

Neighboring contacts "talk" to each other via waves radiating between them in a common magnetic film that joins the contacts.

Slonczewski Linear Solution

Linear approximation to LL + Slonczewski spin torque in point contact:

$$i\frac{\partial \tilde{m}}{\partial t} = \left(\nabla^2 - (h-1) + i\left[j\Phi(x,y) - \alpha[h-1]\right]\right)\tilde{m}$$

normalized field

spin current distribution at contact

normalized current density

Calculated threshold for Hopf bifurcation:

$$j_{crit} = \left(\frac{1.86}{\rho_*^2} + \alpha \left[h - 1 + \frac{1.43}{\rho_*^2}\right]\right)$$

Slonczewski, J. Magn. Magn. Mater., **195** (1999)

normalized contact radius

Effective damping due to spin wave radiation **away** from contact into surrounding magnetic film.

NIST

SIAM Nonlinear Waves 2010

National Institute of Standards and Technology

Nonlinear Slonczewski Solution $i\frac{\partial \tilde{m}}{\partial t} = \left(\nabla^2 - (h-1) + i\left[j\Phi(x,y) - \alpha[h-1]\right]\right)\tilde{m} + \frac{a^2}{2}\left\{\left[-\left|\tilde{m}\right|^2\tilde{m}\right] + i\left[j\Phi(x,y) - \alpha[h-2]\right]\left|\tilde{m}\right|^2\tilde{m}\right\}$ + $\left[\tilde{m}\nabla^2\tilde{m}^*+2(1+i\alpha)\left|\nabla^2\tilde{m}\right|^2\right]\tilde{m}$ local dipole $(j_{max}, \hat{\omega}_{max})$ 32 nonlinearity Frequency (GHz) 8 52 nonlinear * * * * * exchange 30 nm 40 nm 50 nm 20 nm 1st Order **Fully Nonlinear** Experiment 0 4.9 16 11 Current (mA) Hoefer, Ablowitz, Ilan, Pufall, Silva, PRL, 95 (2005)

Spin torque nanocontact as spin wave source

Theoretical result

M. A. Hoefer, et al., Phys. Rev. Lett. 95, 267206 (2005)

Weakly Nonlinear Bullet for In-plane Fields

$$i\frac{\partial \tilde{m}}{\partial t} = \left(\nabla^2 - \omega_0 + i\left[j\Phi(x,y) - \Gamma\right]\right)\tilde{m} + \frac{a^2}{2}\left\{-N\left|\tilde{m}\right|^2\tilde{m} + ij\Phi(x,y)\left|\tilde{m}\right|^2\tilde{m}\right\}$$

Treated like NLSE, but with dissipative perturbation. Examine stability of mode energy

Slavin and Tiberkevich, PRL 95 (2005)

Standards and Tech

Theory for spin-wave-mediated locking

Spin wave mode overlap:

Finite locking range:

See Andrei Slavin 4:00 talk in Session MS10 today: "Devil's Staircase..."

Slavin, Tiberkevich, PRB 74 (2006)

National Institute of Standards and Technology

Topological Soliton ("Vortex") Mode

An explanation for low field, low frequency modes in point contacts

Mistral, van Kampen, Hrkac, Kim, Devolder, Crozat, Chappert, Lagae, and Schrefl, *PRL* **100** (2008)

See Gino Hrkac 3:30 talk in Session MS10 today: "Influence of Free and SAF Layer Modes on the RF Emission Line Width..."

Kampen, Hrkac, Schrefl, Kim, Devolder, and Chappert, J Phys. D 42 (2009)

Dissipative Droplet Soliton in point contacts

A new kind of mode: Stable solution to <u>full</u> Landau-Lifshitz equation.
Localized. Weak dependence of frequency on current.

• Requisite condition: Perpendicular anisotropy in "free" layer sufficient to overcome shape anisotropy, which pushes magnetization into the film plane

See Mark Hoefer 3:00 talk in Session MS10 today: Dissipative Droplet Solitons

Hoefer, Silva, and Keller, PRB, In press. (condmat http://arxiv.org/abs/1008.1898)

Open Theory Problems (1)

(1) The time killer: Nonlocal dipole field calculations

Thin film approximation with only local terms? When applicable?

Nonlocal correction terms? (Arias and Mills, PRB 75 (2007))

(2) How to efficiently solve the "self-consistent" problem? (Spin currents affect magnetization dynamics affect spin currents affect magnetization dynamics affect spin current...)

Stiles, M. D. and Xiao, J. and Zangwill, A., Phys. Rev. B, 2004, 69

Open Theory Problems (2)

1 hys. D. Appl. 1 hys. 45 (2010) 204004			5-A A
Table 1. Comparison of several numerical simulation codes.			
	Code	Calculation method	Program features
Free Software Package	OOMMF (M. Donahue and D. Porter in NIST)	FDM	Open source Runge-Kutta integration Uniform cell size http://math.nist.gov/oommf/
	MAGPAR (Werner Scholtz)	FEM	Unstructured graded meshes Restriction on current effects http://magnet.atp.tuwien.ac.at/scholz/magpar
	NMAG (H. Fangohr and T. Fischbacher)	FEM	Unstructured graded meshes Periodic boundary condition Arbitrary crystal anisotropy http://nmag.soton.ac.uk
Commercial Software Package	LLG Simulator (M. R. Scheinfein)	FDM	Gauss-Seidel integration Finite temperature (Langevin) Periodic boundary condition Uniform cell size http://llgmicro.home.mindspring.com/
	MicroMagus (D.V. Berkov and N. L. Gorn)	FDM	Periodic boundary condition Finite temperature (Langevin) Uniform cell size http://www.micromagus.de/

Many "packages" exist. Which one is right for the job?

No absolute accuracy with respect to dynamics problems, including spin torque. Need analytical results for comparison.

Thermal fluctuations: How to include? Huge range of time scales... Convergence issues... Correlations on short time scales and short length scales are not a solved analytical problem ...

Martínez, López-Díaz, Torres, García-Cervera, J. Phys. D **40** (2007)

National Institute of Standards and Technology

Conclusions

□ Spin torque: A revolutionary new way to control magnetism

Potential applications: non-volatile "universal" CMOS-compatible memory (On-going DARPA program), low-power "spin" logic (Initial stages of DARPA program), low-cost Si-compatible oscillators for telecom (Proposal stage at DARPA).

Experimental issues: device-to-device reproducibility.

□ Theory issues: Very difficult nonlinear PDEs, especially when keeping all terms. Modeling is costly... ways to improve speed? Self-consistent? How to correctly convert from PDEs to stochastic PDEs?

□ Promise of tractable problems. Example: Dissipative Droplet Soliton.

National Institute of Standards and Technology