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Hyper-Ramsey spectroscopy of optical clock transitions
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We present nonstandard optical Ramsey schemes that use pulses individually tailored in duration, phase,
and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts
and their uncertainties can be radically suppressed (by two to four orders of magnitude) in comparison with
the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom
interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically
induced spectroscopy could significantly benefit from this method. In the latter case, these frequency shifts can
be suppressed considerably below a fractional level of 10−17. Moreover, our approach opens the door for
high-precision optical clocks based on direct frequency comb spectroscopy.
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Presently, laser spectroscopy and fundamental metrology
are among the most important and actively developed direc-
tions in modern physics. Frequency and time are the most
precisely measured physical quantities, which, apart from
practical applications (in navigation and information systems),
play critical roles in tests of fundamental physical theories
(such as QED, QCD, unification theories, and cosmology) [1].
Now, laser metrology is confronting the challenging task
of creating an optical clock with fractional inaccuracy and
instability at the level of 10−17 to 10−18. Indeed, considerable
progress has already been achieved along this path for both
ion-trap- [2] and atomic-lattice-based [3,4] clocks.

Work in this direction has stimulated the development
of novel spectroscopic methods (e.g., spectroscopy using
quantum logic [5] and magnetically induced spectroscopy [6]).
For some of the promising clock systems, one of the key
unsolved problems is the frequency shift of the clock transition
due to the excitation pulses themselves. For magnetically
induced spectroscopy, these shifts (quadratic Zeeman and
ac-Stark shifts) could ultimately limit the achievable perfor-
mance. Moreover, for ultranarrow transitions (e.g., electric
octupole [7] and two-photon transitions [8,9]) the ac-Stark
shift can be large enough in some cases that it rules out high-
accuracy clock performance. A similar limitation exists for
clocks based on direct frequency comb spectroscopy [10,11]
because ac-Stark shifts are induced by large numbers of
off-resonant laser modes.
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In this Rapid Communication, we propose a general
solution to this important problem, which is based on the
development and generalization of the Ramsey method [12].
We have found that in contrast with the single-pulse (Rabi)
technique, multipulse Ramsey spectroscopy offers several
ways (e.g., pulse durations, frequencies, and phases) to sig-
nificantly manipulate (due to interference effects) the induced
frequency shifts of the spectroscopy signals. In particular,
for special excitation schemes (which we refer to as “hyper-
Ramsey”) the resulting ac-Stark shift depends on the laser
intensity in an essentially nonlinear way. Such unusual and
unexpected behavior allows us to dramatically suppress these
shifts and their uncertainties (most critical for clocks) by two
to four orders of magnitude with strongly relaxed control
requirements for the experimental parameters. Additionally,
we have found that these schemes can have a greatly reduced
sensitivity to the pulse areas, which makes the procedure
robust and accessible experimentally. Thus, this method can
be readily implemented (as needed) in a variety of existing and
proposed clock systems [2–11,13]. Our approach could lead to
significant progress for atomic clocks: it will improve several
key existing optical clock systems and could enable new
systems that were not previously thought to be competitive.

Some variants of the Ramsey technique were proposed
in [13,14] to cancel the overall field shift. However, the shift
uncertainties (caused by the fluctuations of field parameters)
were not significantly reduced as it is possible with the
hyper-Ramsey method described here.

The hyper-Ramsey spectroscopy schemes (Fig. 1) are based
on time-separated pulses that can have different durations,
frequencies, and phases. The action of a single light pulse
(with frequency ωp, duration τ , and Rabi frequency �0) on
two-level atoms with ground and excited states, |g〉 = ( 0

1

)
and |e〉 = ( 1

0

)
(separated by the unperturbed energy h̄ω0), is
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FIG. 1. Ramsey pulses with Rabi frequency �0 of different
duration [τ1 and τ2; panel (a)] and with a phase step in the second pulse
[τ2 = 3τ1; panel (b)]. During the pulses, we step the laser frequency
ω by �step [panel (c) and text]. Also shown is a two-level atom with
splitting ω0, detuning δ of the laser with frequency ω during dark
time T , and excitation-related shift �sh during pulses.
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where � =
√

�2
0 + δ2

p is the generalized Rabi frequency. The

detuning during the pulse δp = ωp − ω0 − �sh contains the
excitation-related shift �sh (see Fig. 1, level scheme) due to
the influence of other (far-off-resonant) transitions. Within
the frequency interval corresponding to the narrow clock
resonance, the variation of �sh on ωp is negligible; that is, �sh

can be considered as a constant (for fixed �0). Furthermore,
we show later how the clock can be operated with constant ωp

and thus constant �sh.
During the dark period between the pulses, excitation-

related shifts (which produce the total actual shift �sh) are
absent (e.g., the ac-Stark shift from the laser) or can be turned
off (like the Zeeman shift). If during the dark period T the
laser frequency is ω, then the free evolution is described by
the matrix with detuning δ = ω − ω0:

V̂ (T δ) =
(

eiT δ/2 0

0 e−iT δ/2

)
. (2)

In the general case, the laser frequency during the pulse does
not have to be the same as the frequency during the dark time,
that is, ωp �= ω [14]. At times it can be useful to approximately
offset the induced shift, �sh, by stepping the laser frequency
only during the pulses by a fixed �step, that is, ωp = ω + �step

[see Fig. 1(c)]. Thus, in the general case, the detuning during
the pulses can be written as δp = δ − �, where � = �sh −
�step is the effective frequency shift (during the pulse).

If at t = 0 atoms are in the lower level |g〉, then after the
action of two pulses of duration τ1 and τ2 separated by dark

period T [see Fig. 1(a)], the population ne of atoms in the
excited state is determined by

ne = |〈e|Ŵ (τ2,�0,δ − �)V̂ (T δ)Ŵ (τ1,�0,δ − �)|g〉|2. (3)

Equation (3) describes Ramsey fringes (as a function of
variable detuning δ, but with fixed �). The presence of the
additional shift � in the course of the pulse action leads
to a shift δω0 of the position (top or bottom) of the central
Ramsey fringe with respect to the unperturbed frequency ω0.
To investigate the dependence of δω0 on �, we present the
signal ne as a Taylor expansion in terms of the dimensionless
parameter (T δ):

ne = a(0) + a(1)(T δ) + a(2)(T δ)2 + · · · . (4)

The coefficients a(j ) are expanded in powers of �/�0:

a(0) = A(0)
0 + A(0)

2 (�/�0)2 + A(0)
4 (�/�0)4 + · · · ,

a(1) = A(1)
1 (�/�0) + A(1)

3 (�/�0)3 + · · · , (5)

a(2) = A(2)
0 + A(2)

2 (�/�0)2 + A(2)
4 (�/�0)4 + · · · .

The occurrence of terms with only odd or even powers is
the direct consequence of the symmetry of Eq. (3), which
does not change under the simultaneous substitutions δ → −δ

and � → −� and which holds for any sequence of pulses
described by the matrices Ŵ and V̂ .

Even if the actual level shift �sh is comparable to or larger
than �0, we can always apply a frequency step �step (e.g., with
an acousto-optic modulator) during excitation to achieve the
condition |�/�0| � 1 for an effective shift �. Then �step can
be evaluated experimentally by variation of the dark period
T . If �step �= �sh, the observed transition frequency will be
dependent on T [14]. With a control of the shift to 1% under
typical conditions, we can achieve |�/�0| < 0.01 to 0.1.

Under the condition |�/�0| � 1 we use the parabolic
approximation in Eq. (4) (on |T δ| � 1) to find the leading
approximation of δω0:

δω0 ≈ − 1

T

a(1)

2a(2)
. (6)

With Eq. (5), the dominant dependence of δω0 on �/�0 can be
identified. For the usual Ramsey scheme with τ1�0 = τ2�0 =
π/2, we find the expected linear dependence:

δω0 ≈ − 1

T

A(1)
1

2A(2)
0

(
�

�0

)
= 1

T

2�0T

2 + �0T

�

�0
. (7)

Explicit analytical calculations for the first term A(1)
1 in the

expansion of a(1) of Eq. (5) show that

A(1)
1 ∝ sin[�0(τ1 + τ2)/2]. (8)

Thus, we find that A(1)
1 = 0 for

�0(τ1 + τ2) = 2πn (n = 1,2,3, . . .). (9)

From Eqs. (5) and (6), we see that for A(1)
1 = 0 and A(2)

0 �= 0,
the dominating dependence of δω0 on |�/�0| � 1 is now
cubic:

δω0 ≈ − 1

T

A(1)
3

2A(2)
0

(
�

�0

)3

. (10)
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Equation (10) has two important consequences. First, under the
condition |�/�0| � 1, the resulting shift of the central hyper-
Ramsey fringe is much smaller than for the usual Ramsey
scheme [Eq. (7)]. Second, it has a higher-order dependence,
which is the reason for referring to this method as the “hyper-
Ramsey” method.

Apart from the condition in Eq. (9), which essentially
minimizes the shift δω0, for applications in spectroscopy
and optical clocks it is also desirable to maximize the
amplitude of the central resonance. This is accomplished by the
maximization of the coefficient A(2)

0 in Eq. (5), which defines
the curvature of the central resonance top if |�/�0| � 1.
Under the condition of Eq. (9), we findA(2)

0 = 0.25 sin2(�0τ1).
Then, the coefficient A(2)

0 reaches its maximum at

�0τ1 = π (2m + 1)/2 (m = 0,1,2, . . .). (11)

Equations (9) and (11) lead to the following relationship for
the values τ1 and τ2:

τ2/τ1 = (4n − 2m − 1)/(2m + 1). (12)

In the simplest case, n = 1 [i.e., when �0(τ1 + τ2) = 2π ], we
find that either τ2/τ1 = 3 or τ2/τ1 = 1/3. The signal contrast is
close to the maximum value of 1 [see Fig. 2(a)]. The coefficient
of the cubic term of Eq. (10) in the case of T � (τ1 + τ2) then
amounts to A(1)

3 /2A(2)
0 ≈ −π .

The elimination of the shift � from the observed resonance
shift δω0 is illustrated in Fig. 3 through comparison with the
regular Ramsey method using Eq. (3). For the hyper-Ramsey
case, we find the residual frequency shift in two ways: by
locating the extremum of the central fringe and by generating
a discriminator slope at zero detuning δ by stepping the phase
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FIG. 2. Hyper-Ramsey fringes ne(δ) under the conditions �0τ1 =
π/2, τ2/τ1 = 3, �0T = 20, � = 0 according to (a) Eq. (3) and (b)
Eq. (13).

FIG. 3. (Color online) Numerically calculated shift of the central
resonance T δω0 vs �/�0 for standard Ramsey spectroscopy (�0τ1 =
�0τ2 = π/2; �0T = 20; full line) and the hyper-Ramsey method
[�0(τ1 + τ2) = 2π ; τ2/τ1 = 3; �0T = 20]. Dashed line: position of
extremum; dotted line: estimate of center from signal comparison
with ±π/2 phase steps [15].

of one of the pulses by ±π/2 in an alternating way [15] and
equalizing these signals. The latter approach is of greater
relevance for clocks, because it directly generates an error
signal with high sensitivity. However, probing the interference
at the half-width points introduces a weak linear (on �/�0)
contribution for δω0 in the hyper-Ramsey signal.

In some cases, such as for lattice-based and single-ion
clocks, we cannot perfectly fulfill condition Eq. (9) even with
good intensity control, for example, due to vibrational state-
dependent Rabi frequencies. In Fig. 4, we plot the resultant
δω0 vs �/�0 dependence for nonoptimal values of the sum
τ1 + τ2. Here we see how a deviation from �0(τ1 + τ2) = 2π

reintroduces the linear dependence on �/�0, though still
with a strongly reduced amplitude compared to that for usual
Ramsey spectroscopy.

However, this inherent problem can be easily overcome by
introducing a phase jump of π at the beginning of the second
pulse of the hyper-Ramsey sequence [Fig. 1(b)]. The phase
is stepped back after 2/3 of the second pulse, such that the
second Ramsey pulse can be seen as being composed of a
pulse with −�0 (echo pulse) directly followed by one with
�0. With modern electronic oscillators, namely direct digital
synthesizers, it is easily possible to maintain phase coherence
over both frequency steps and phase jumps. Note, the second
pulse for the excitation in Fig. 1(b) has a technical similarity
to the composite pulses used in NMR spectroscopy [16].

The expression for the population ne can be extended to
include the phase step in Fig. 1(b), and we then find

ne =|〈e|Ŵ (τ,�0,δp)Ŵ (2τ,−�0,δp)V̂ (T δ)Ŵ (τ,�0,δp)|g〉|2,
(13)

where τ is the duration of the short pulse. In this case,A(1)
1 = 0,

that is, the cubic dependence of Eq. (10) applies for arbitrary
values �0 and τ . Under conditions �0τ = π/2 and T � 4τ ,
we then find that A(1)

3 /2A(2)
0 ≈ −4. The curves in Fig. 4
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FIG. 4. (Color online) Influence of excitation pulse area on shift
suppression (in calculations we used the approach [15] to find the
center from signal comparison with ±π/2 phase steps for the second
Ramsey pulse). Lines (solid and dotted) show numerically calculated
maximum and minimum shifts T δω0 of the central fringe vs �/�0 for
the hyper-Ramsey excitation in Fig. 1(a) for a range of the pulse area
parameter, �0τ1 = qπ/2 (τ2/τ1 = 3; �0T = 20) of 0.9 � q � 1.1.
These lines show how the hyper-Ramsey suppression effect is
compromised by nonoptimized pulse areas. The symbols (squares
and circles) show results for the hyper-Ramsey scheme in Fig. 1(b)
(i.e., with additional π phase jumps) also for �0τ = qπ/2 (�0T =
20) and 0.9 � q � 1.1. In this case, the suppression is largely
insensitive to total pulse area, making this technique more feasible
experimentally.

were calculated from Eq. (13) using �0τ ≈ π/2 to maximize
(∼1) the signal contrast [see Fig. 2(b)]. They show the large
advantage of adding the phase step to the hyper-Ramsey
sequence in terms of suppressing the dependence on pulse
area.

Let us consider a numerical example using magnetically
induced spectroscopy of 174Yb [6,17]. Since the advantage of
the hyper-Ramsey method over usual Ramsey spectroscopy is

obvious (by two to four orders for |�/�0| < 0.1–0.01), here
we compare hyper-Ramsey to Rabi spectroscopy. If we assume
typical experimental conditions of T = 40 ms, τ = 10 ms
(�0/2π = 25 Hz) at a magnetic field of 2 mT, an ac-Stark shift
of 70 Hz (during pulses) will result. If we further assume that
we can control the intensity to 1%, we should be able to zero
the effective detuning with an uncertainty of �/2π ≈ 0.7 Hz.
The resulting suppression inherent in the technique then leaves
a shift (and resultant uncertainty) of 0.35 mHz (the fractional
level is below 10−18 for a 518-THz clock transition) for the
central fringe, which is a factor of 120 less than the uncertainty
for the corresponding Rabi case (with 1% control on a 4.2-Hz
shift for an 80-ms π pulse).

Thus, the hyper-Ramsey method is a technique that
offers a spectroscopic signal that is virtually free from
excitation-induced frequency shifts and their fluctuations.
It is robust against perturbations and noise, because the
influence of the shifts on the signal is essentially eliminated.
This method allows a variety of systems to enjoy other
advantages of Ramsey spectroscopy: increased resolution for
a given interrogation time and improved stability [18,19].
The hyper-Ramsey method has broad applications for optical
clocks, especially those based on ultranarrow transitions and
two-photon transitions, and lattice clocks based on bosonic
isotopes with controlled collision shifts [3,20]. Moreover, our
approach opens a prospect for high-precision optical clocks
based on direct frequency comb spectroscopy. High-resolution
matter-wave sensors [21] are also expected to benefit from the
suppression of phase shifts in the interference patterns due to
the excitation pulses.
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