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Neural Network-Based Systems
for Handprint OCR Applications

Michael D. Garris, Charles L. Wilson, Senior Member, IEEE, and James L. Blue

Abstract—OQOver the last five years or so, neural network (NIN)-
based approaches have been steadily gaining performance and
popularity for a wide range of optical character recognition
(OCR) problems, from isolated digit recognition to handprint
recognition. In this paper, we present an NN classification scheme
based on an enhanced multilayer perceptron (MLP) and de-
scribe an end-to-end system for form-based handprint OCR
applications designed by the National Ipstitute of Standards
and Technology (NIST) Visual Image Processing Group. The
enhancements to the MLP are based on i) neuron activations
functions that reduce the occurrences of singular Jacobians; ii}
successive regularization to constrain the volume of the weight
space; and iii) Boltzmann pruning to constrain the dimension
of the weight space. Performance characterization studies of
NN systems evaluated at the first OQCR systems conference and
the NIST form-based handprint recognition system are also
summarized.

Index Terms— Boltzmann weight pruning, handprint, multi-
layer perceptron, neural networks, optical character recognition,
public domain.

I. INTRODUCTION

PTICAL character recognition (OCR) research using

electronic and electro-mechanical methods dates back to
the 1950’s. This work was initially directed toward machine
print and was restricted to fixed-format applications. In the
late 1980°s, decreasing costs for collection and transmission
of electronic images and increasing computer power generated
renewed interest in OCR for the unrestricted machine print
problem and for handprint on forms. The key modules that
make up an end-to-end system for handprint OCR applications
are preprocessing (form identification, field and line isola-
tion), character segmentation, segment reconstruction, char-
acter recognition, and word and phrase construction without
human intervention or human correction. For many of these
modules, methods based on two primary approaches have been
taken: rule-based and image-based recognition.

The rule-based approaches [1]-[4] have applied existing
image analysis techniques in a straightforward manner. The
image-based approaches originated from the application of
classical pattern recognition techniques but are now dominated
by neural network (NN) approaches. The most useful charac-
teristics of NN’s are their ability to leamn from examples, their
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ability to operate in paraliel, and their ability to perform well
using data that are noisy or incomplete.

In 1989, the Image Recognition Group, National Institute of
Standards and Technology (NIST) began developing methods
for testing large-scale OCR systems for handprint on forms
for Census and Internal Revenue Service (IRS) applications.
In May, 1992 [5] and February, 1994 [6], NIST conducted two
OCR Systems Conferences that were designed to provide base-
line information on OCR technology and specific application-
related information on Census industry and occupation data
from the 1990 Census (these conferences will be referred
to collectively as the NIST OCR Systems Conferences, and
separately as the First OCR Systems Conference and the
Second OCR Systems Conference.) All of these efforts were
designed to provide a common framework for the evaluation of
research results in machine and handprinted OCR that would
allow commercial feasibility to be tested.

The results of the First OCR Systems Conference [5]
demonstrated the applicability of a wide vadety of pattern
recognition methods for solving the isolated character recogni-
tion problem. NN methods were the most common in the high
accuracy systems. The most accurate of these systems perform
comparably to humans on recognition of isolated characters;
most Systems provide estimates of recognition confidence
which, with proper rejection, allow results to be produced that
are more accurate than can be produced by humans on the part
of the data that remains after rejection.

In the First OCR Systems Conference, strictly rule-based
methods were uniformly less accurate than methods based on
machine leamming or Bayesian statistical models. The general
procedure used in the most successful recognition systems was
to develop large, rich feature sets and use a large number of
examples to train a recognition device. If the training and test
sets used are sufficiently similar, these methods produce results
comparable to the best previously published recognition rates.
The remaining research challenge in this area is dealing with
the last few percentage points of error. These cases are also
hard for humans, and usually include both ambiguous and rare
forms of characters.

In this paper, we present a detailed exposition of our NN-
based approach to a practical OCR problem. In particular, our
focus is on a specific handprint recognition problem which
meets three constraints. First, the data is on forms, which
implies that the data of interest is found in predetermined
locations. Second, the image quality is sufficient to provide
legible images, which implies that the forms have adequate
space to enter the required information and that scanning
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resolution is sufficient to resolve the text. Third, the material
to be read from the form has specific, known content, which
restricts the lexicon of expected answers. The success or
failure of form-based OCR is strongly influenced by the degree
to which the application adheres to these constraints. Good
form design is essential to economical OCR-based data input
and is application-specific. High-quality scanning and good
image quality are necessary to lower processing cost and
allow the use of electronic images without extensive cleanup
processing. Prior knowledge of field content is important both
for recognition correction and for the detection of human errors
in placing information on forms.

We describe the design of an NN classifier for handprint
classification problems. This NN is an improved MLP with
the enhancements coming from weli-conditioned Jacobians,
successive regularization, and Boltzmann pruning techniques.
The enhanced MLP improves the error-reject performance on
handprint classification problems by factors of two to four,
while at the same time reducing the complexity (number
of nonzero weights) of the network by about 40% to 60%.
The effectiveness of the NN classifier is further illustrated
by integrating il into an end-to-end system for form-based
handprint recognition applications developed by the Visual Im-
age Processing Group at NIST. The performance of the NIST
system is characterized using carefully designed evaluation
experiments.

The organization of the paper is as follows: A brief review
of existing NN algorithms and systems for feature extrac-
tion, classification and recognition in the context of OCR
applications is in Section II. The enhanced MLP classifier is
described in Section III. Section IV presents the NIST form-
based handprint recognition system followed by a discussion
of performance characterization results in Seclion V. Finally,
summary and conclusions are in Section VL

II. PRIOR NN-BASED APPROACHES

A. Feature Extraction

The feature extraction stage is an important component
of any recognition system, It is also very much dependent
on the task, input, and recognition algorithm used. In OCR
applications, the types of features extracted depend on whether
gray-scale, binary, or vector representations are used. If sta-
tistical pattern recognizers are used, then the standard features
tend to be based on contours of characters, with features
such as Fourier descriptors, moment invariants, and other
boundary features. If structural recognizers are used, features
that represent the structure of the character are preferred.

With NN’s, the feature extraction stage has gone through
some evolutionary developments. Earlier NN approaches used
local feature maps [7), [8). Methods developed later side-
stepped the issue of feature extraction, and used the segmented
character or digit image as the input [9). This works well for
the case of isolated digits or characters, but when touching
characters or digits are present, the input image (corresponding
to a zip code, handprinted, or cursive word [10]) is difficult to
accurately segment into isolated characters.
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One of the important considerations in the feature extraction
stage is invariance with respect to shape transformations
such as translation, rotation, and dilation. Some features are
designed to be insensitive to these transformations, while in
other cases transformations of the exiracted features achieve
invariance to some of the shape transformations. Another
consideration ts whether the original patterns (digits or char-
acters) can be reconstructed. Global descriptions such as
Fourier descriptors, moments, and coefficients of circular
autoregressive models can reconstruct the original patterns,
the quality of reconstruction being dependent on the number
of coefficients or parameters retained.

A recent survey of most of the feature-extraction techniques
used in statistical pattern recognition and rule-based systems
for OCR can be found in [11]. The rule-based approach to
OCR has traditionally relied on classification or matching
of specific features such as those mentioned In [11]. NN
approaches have rather used windows of raw’pixels or global
transforms such as principal component analysis [12] or the
projection on to a Gabor basis set. Features derived from
principal components have been used in the NIST form-based
recognition system [12], [13]. Projections on the Gabor basis
set have been used in the NIST [14] as well as the KODAK
system [15]. In [15], the utility of global transforms such as
Gabor, Fourier, and cosine has been evaluated as a source of
features for a standard NN recognizer of isolated handprinted
characters. Experimental results indicate that when windows
of raw image pixels are replaced by projections on the Gabor
basis set, significant reductions in errors have been abserved.
An NN recognizer using Gabor basis set projections was
evaluated in the First OCR Systern Conference and was one of
a tightly bunched group of leaders. This feature set was also
used in the KODAK system reported in Section II-D.

Deformable spline models whose shapes are determined by
the positions of eight control points have been suggested as
features [16] for handprinted digit recognition in zip codes.
Shapes are deformed when the control points wander. An
energy function that penalizes shape deformations due to
displacement of the control points is minimized. The fitted
models are then used for recognition by deciding on the
model of the digit that could have generated the data. One
of the vexing problems of fitting deformable templates is
initialization of the parameters characterizing the surface. In
[17], an NN is used to learn the associations between images
and the instantiation parameters of deformable templates that
characterize these images. A three-layer NN was trained using
the backpropagation (BP) technique and the CEDAR CD-
ROM data base [18]. The trained NN was used to provide
better initial conditions for the new images.

B. Neural Nerwork Classification

Since the late 1980’s, applications of NN's to recognition
of handprinted digits, characters, and cursive handwriting has
become a very active area. Earlier attempts concentrated on
recognition of handprinted, isolated digits and characters, with
more tecent efforts looking at integrated segmentation and
recognition (ISR) methods.
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One of the earlier papers that explored the applicability of
NN's, along with classical recognition methods such as Parzen
window and k-nearest-neighbor techniques, is reported in [7].
The problem considered is that of recognizing handwritten zip
code digits. After preprocessing steps, such as skew correction
and skeletonization, about 49 convolutional masks are used for
feature extraction, focusing on lines and line ends. Examples of
typical features include horizontal strokes, right-hand ends of
horizontal strokes, etc. These 49 feature outputs are combined
(subsets are combined using logical AND or OR) to produce
18 feature maps. These feature maps are input to a Parzen
window, a k-nearest-neighbor classifier, and a two-stage NN.
Although initial results did not show improved performance
using the NN, a finely-tuned preprocessor and a large training
set enabled the NN to exceed the performance of the statistical
pattern recognition techniques mentioned above. In a follow-
up work [19], a multilayer network with BP training has been
used for the handwriiten digit recognition problem. Using
a combination of alternating hidden and averaging/sampling
layers and local convolution feature detectors in the hidden
layers, improved classification rates are reported. One of the
issues in situations involving multiple layers is the need to
keep the number of free parameters to a minimum. Using
the concept of weight sharing [20], which in effect imposes
shift invariance on the feature maps, the number of free
parameters is reduced. The effects of weight pruning using
principal component analysis (PCA), optimal brain damage
(OBD) [8], and weight decay are reported in [19] for a
modest data set consisting of handwritten digits. The effects
of smoothing followed by regularization, as well as using
higher-order networks, have also been studied. All of these
enhancements yield improved performance.

Instead of the local feature maps used in [7] and [21], a
helistic approach that uses PCA to generate representations
for handwritten digit images is reported in [13]. This can
be viewed as an “eigen-digits” approach to digit recognition.
A multilayer network with BP training has also been inde-
pendently reported in [9], for recognizing handprinted digits
scanned from bank checks and letters interactively entered
through a stylus digitizer. This work argues in favor of a
large representative training set. Another departure from (7]
and [21] is the use of presegmented, size-normalized gray-
scale character or digit images, instead of local feature maps.
The weight sharing principle is used to reduce the number of
free parameters. The absence of specific feature maps appears
to have enabled easy generalization to integrated segmentation
and recognition schemes, as discussed later on.

An application of autoassociative MLP to the recognition
of handwritten characters taken from a subset of the NIST
19 data set is reported in [22]. In this work, a network
is designed for each character, using only instantiations of
that character for training. Each NN can thus be viewed as
generating a discriminant function. Since it is preferable for an
object recognition system o be insensitive to transformations
such as translation and rotation, error measures derived from
tangent distances [23] are suggested for learning. One can
view this approach as letting the NN learn (or unlearn) skew.
Since in most applications, one can deskew and normalize
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using simple image-processing operations, the advantage of
requiring the NN to account for translation and rotation at the
cost of increasing the complexity of the NN may be minimal.
One can obtain better payoffs by integrating segmentation and
recognition, as discussed below.

By feeding candidate segments produced by vertical cuts
10 a recognizer and scoring the output of the recognizer, the
best possible segmentation of an input digit string is obtained
in [24]. Knowledge of the number of the digits expected is
used as an input; since the recognizer used is a convolutional
NN, the best segmentation can be obtained by segmenting the
feature map.

C. Integrated Segmentation/Recognition

For the recognition of touching characters, a method that
performs ISR using a BP algorithm is described in [25]. In
a subsequent extension of this work [26], an NN with two
hidden layers, the second of which is connected to a block of
exponentials before being connected to the output layer, is used
for simultanecus segmentation and recognition of handwritten
digits from the NIST data base. The interconnections between
the hidden layers, the second hidden layer, and the exponential
block are local three-dimensional (3-D) interconnections. The
output levels are derived from ratios of the sums of the
responses of the exponential blocks. The synaptic weight
updating rules are derived from minimizing the total sum
of squared error measure. A combination of hand-segmented
and original (not hand-segmented) field data sets is used for
training two NN’s. The major drawback may be the need 10
normalize the digits, albeit crudely. The system is able 10
handle normalizations up to a factor of two or more; severe
changes in scale seem to reduce the accuracy by 3-5%.

The NN’s for ISR described above have primarily used mul-
tilayer feed-forward networks trained using the BP technique.
It has been argued in the NN literature that networks that
permit feedback from activation levels at the output could
yield improvements in classification as well as generalization.
One form of a network that allows such a feedback is the
recurrent NN {27]. In [28], the use of a recurrent NN for
ISR of digits in the NIST database has been experimented
with. Comparisons with other NN-based ISR techniques using
the same NIST dataset seem to indicate that the recurrent NN
method compares favorably to other NN-based ISR techniques.

D. Some NN-Based Handprint OCR Systems

The NIST OCR System Conferences evaluated a number of
OCR systems developed by university researchers and compa-
nies in the United States and abroad. A general discussion of
the evaluations is presented in Secticn V, Due to proprietary
considerations, only a high level understanding of system
configurations and module functionalities has been possible.
For the sake of completeness, we present brief descriptions
of three of the systems evaluated at the NIST OCR System
Conferences. These are the systems designed at ERIM [29],
[30], MCC [31], [32] and KODAK [33]. All of these systems
have been improved since the 1994 evaluation. Descriptions
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of ERIM and MCC systems as they existed in 1994 may be
found in [6)].

ERIM: The ERIM approach uses an effective combination
of techniques such as feature-based matching, NN’s for learn-
ing fealure attributes, and unsupervised clustering schemes
for generating character prototypes. The feature maiching
approach is based on Ullman’s minimal mapping theory [34].
After preprocessing steps such as noise removal, slant correc-
tion, and scaling to a fixed height, feature extraction driven by
morphological operations is performed on multi-letter images.
By identifying vaileys in the core stroke image, possible
segmenlation points (PSP’s) are identified and features are
extracted between pairs of PSP’s. The features used are the
core area (where the center stroke information falls) and the
discrete features extracted from six feature images (stroke
above and below the core, holes and concavities, lower and
upper limbs in the core). Finding the discrete features amounts
to extracting connected components for holes, concavities,
and lower and upper strokes; for lower and upper limbs,
the extracted connected components are broken into local
maxima and minima. To generate the matches between char-
acter samples and character models, a random graph structure
is used in which vertices represent characier features and
edges represent the spatial relationships between feature pairs.
Features extracted as described above are represented using
the auributes of position and shape. The shape attribute is
extracted using a NN training scheme.

For each PSP pair, a correspondence matching algorithm
formulated as an assignment problem is invoked. For each
string in the given lexicon, an optimal match between the word
image features and the model of the string is determined using
a dynamic programming (DP) technigue. Since handprinting
can produce many variations, several character templates for
each of the 26 lowercase printed, 26 uppercase printed, and 26
lowercase cursive characters are generated from the training
set using an unsupervised clustering procedure. A total of 457
character model prototypes derived from 996 word Images is
used.

One of the important features of the ERIM work is the
ability to generate confidence measures along with the matched
word. The word confidence measure and the ranking is derived
from the probability that a word model for the given string
generated the set of features extracted from the word image.
The distributions for the position and shape attributes of
the extracted features are derived as part of the feature
extraction process. Using assumptions about the conditional
independence of the probability distribution of features, one
can generate the probability of a word from probabilities of
its component features.

In {30), ERIM presented the design details of a phrase
recognition system, where a phrase can include multiple
words, abbreviations, etc. Such applications arise in matching
a data base record such as business, street name, etc. The
key components of this system are a word segmentor, a
word recognizer, a lexicon generator, and a dynamic phrase
recognizer. As the intent is to handle both printed and cursive
words, several techniques are used in the system. In the case
of the word segmentor module, machine-printed words can be
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separated by using simple projection-based techniques. Since
projection-based techniques do not work for cursive words,
both over- and undersegmentation of the line image is done
to mark possible locations of word breaks. Undersegmenta-
tion is done using breaks at large gaps between successive
components, while oversegmentation is done at locations such
as capital letters, punctuation, etc., to produce multiple hy-
potheses to be evaluated by the word recognizer. To keep the
system'’s capabilities as general as possible, evaluation of word
hypotheses is done using four kinds of word recognizers. Two
of the word recognizers use hidden Markov models trained
on printed and cursive words, respectively. The third is a
word recognizer designed using the feature correspondence
matching approach described earlier. The fourth recognizer is
based on segmentation followed by evaluation using a dynamic
programiming technique. Since all of these modules return their
top few choices and the associated confidence measures, a
voting scheme and reject curve are used for deciding on the
top choice and its new confidence measure. 4

The recognized words are structured into phrases using a
lexicon-directed dynamic programming approach. For the case
of matching of street names, the phrase lexicon is generated
using aliases, abbreviations, suffixes, and prefixes of street
names. The results of experiments with 1200 handwritten
mail-pieces containing street address information indicated
acceptable performance,

MCC: The MCC approach is based on an ISR technique
using NN’s [35], [32]. The network uses a sliding window
and attempts to recognize a character only if the window is
centered on it. If the window center is between two characters,
a NOT-CENTERED condition is declared. The training set is
prepared by a human who clicks at the horizontal center of
each digit in sequence using a mouse button, and associates a
digit label with each such center. The target output is generated
during training as follows: When the cenier position of the
window is within two pixels of the center of a character,
the target value of the character’s output node is set at the
maximum with the target values of the NOT-CENTERED
mode and all other characters set at the minimum. When the
center position of a window is within two pixels of the halfway
point between two character centers, the reverse situation
holds. The NN is a two-hidden-layer MLP network, with
local shared connections in the first hidden layer, and local
connections in the second hidden layer. It has been observed
that the weight-sharing techniques used to reduce memory
requirements often yielded poor results.

This approach has been extended to handle handprint digits
and characters [32]. An added featre to the approach de-
scribed above is the introduction of a saceadic scan, This is
accomplished by training an MLP net to estimate the distance
to the next character on the right so that at run-time, the
system can navigate along a character field by effectively
jumping over the spaces between characters. This effectively
reduces the number of forward passes required compared to the
exhaustive scanning scheme [35). In addition to the saccade
system, when the recognition of handwritten characters is
considered, postprocessing techniques that use dictionaries
result in significant reductions in the field emor rate.
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KODAK: Tt has been observed [33] that the MCC system
using saccades worked well on nicely spaced characters, but if
the localization was on intercharacter space, then the saccade
could move to the previous character and classify it the second
time. The reason given for this is the discontinuities in weight
valucs in the first processing layer lead to significant changes
in input that get fed to the NN when even small shifts
are present in the input image. The saccade network in the
MCC system has the burdensome task of making saccades as
well as classification of characters using a single complicated
network. The KODAK system appears to be an improvement
over the MCC system using the following modifications: i)
projections of Gabor-basis sets are used as inputs instead of
raw input image windows, and ii) the task of positioning and
classification are done by two separate NN’s,

The positioning network accepts as inputs size-normalized
subfields of disconnected groups of characters, with a spacing
of six pixels and with two black rows appended at the top
and bottom. The resulting image is processed by a feature
extraction layer that basically performs projection onto Gabor
basis sets. The input layer is followed by three hidden layers
and an output layer with 12 outputs. As the input window
slides to each pixel position in the input field, the output layer
produces 12 activations corresponding to the chosen pixel
position in 12 consecutive windows. Using a weighted average
of these activations and some post processing, a waveform
with peaks characterizing the positions of characters is pro-
duced. Based on extensive iesting with the NIST data base,
KODAK reports that 91% of all characters were positioned
to within a pixel. Comparisons with the performance of the
MCC saccade system show the superior performance of the
positioning network.

The classifier network is similar to the positioning network,
but has only two hidden layers, and an output layer with ten
outpuis for digits. To account for the errors in positioning
the characters, the classifier network was trained and tested
on five copies of input fields corresponding to shifts of up
to and including two pixels on either side of the center
pixel. Comparison to the saccade systemn shows improved
performance.

An interesting part of this work [33] is the system-level
comparison of performance with the SACCADE, NESTOR,
AEG, and IBM systems. Using a small test data set (240 fields
with 1492 characters) from IRS forms, the authors conclude
that the KODAK system performed better than the others.

Other applications of NN’s include medifications to the
Neocognitron {36} and a booster technique for improving the
accuracy of NN approaches [37].

III. NIST’s New MLP NEURAL NETWORK

In previous work on character and fingerprint classification
[38], probabilistic neural networks (PNN) were found to be
superior to MLP networks in classification accuracy. This com-
parison was conducted using global Karhunen—Loéve (KL)
transforms as the feature set. In later work, [39], combinations
of PNN and MLP networks were found to be equal to PNN
in accuracy and to have superior error-reject performance.
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Fig. 1. Digil classifications generated by a PNN classifier using the first two
KL components in a region centered on (0.0).

These results were achieved by using 45 PNN networks to
make binary decisions between digit pairs and combining the
45 outputs with a single MLP. This procedure is much more
expensive than conventional MLP training of a single network
and uses much more memory.

Analysis of the results of the binary decision network [39]
for isolated digit recognition showed that the feature space
used in the recognition process had a topological structure
whose local intrinsic dimension [40] was 10.5, although the
global KL transform dimension was approximately 100. For
binary decision machines, typical feature set sizes required
for good accuracy were 20 to 28, significantly fewer than
the number of features required by the global problem for
MLP’s, 48 to 52. The number of features, 20 to 28, needed
to make binary decision machines discriminate between digits
was larger than the intrinsic dimensionality, 10.5. Similar tests
showed a comparable structure in the fingerprint feature data.
The low local dimensionality explains some of the difficulty
of these problems; the MLP is being used to approximate a
complex fractal object, the set of decision surfaces, which has a
typical local dimension of 10.5, embedded in a space of much
larger dimension. Since the domain of each prototype in the
PNN network is local, the PNN can more easily approximale
surfaces with this topology. Fig. 1 shows a typical PNN
decision surface and Fig. 2 shows a typical MLP decision
surface. See [38, Fig. 8] for additional examples of this type
of local structure in PNN-based recognition.

The local nature of PNN decision surfaces also explains
why MLP’s have better error-reject performance. It was shown
in [41] that the error-reject curve decreases most rapidly
when binary choices are made between classes. The decision
surfaces in Fig. 1 are such that, as the radius of a test region
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Fig. 2. Digi classifications generated by a MLP classifier using the first two
KL components in a region centered on {0.0).

expands, multiple class regions are intersected, flattening the
error-reject curve. Simpler class decision surfaces result in
better error-reject performance. Thus, the shape of the error-
reject curve can be used to assess the complexity of decision
surfaces.

In this section, we show that three modifications to the
conjugate gradient (SCG) method discussed in [42] will allow
a three-layer MLP to approximate the required decision surface
with zero-reject error similar to PNN and k-nearest-neighbor
(KNN) methods. The emror-reject performance is better than
the best binary decision method discussed in [39]. This in-
dicates that the resulting decision surfaces are both the most
accurate and the simplest approximations to the character and
fingerprint classification problem yet found.

A. MLP Problems Addressed

There are several difficulties that hamper the training, or
limit the usefulness, of MLP's. We summarize some of them
briefly.

1) Given a three-layer MLP with N; input neurodes, N
hidden neurodes, and N, output neurodes, training is
done by minimizing the error or objective function, E.
There are generally many local minima of E, and each
of them occurs Ny! times because of symmetry (all
the permutations of the hidden layer nodes). Finding
the global minimum is unlikely. (Though since E is
suboptimal, the global minimum is unlikely to be the
best one.)

2) If the nodes of the network are sigmoidal, the Jacobian
of E with respect to weights tends to be ili-conditioned
[43]), causing problems with the convergence of the
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optimization process. Some of the weights can change
by large amounts without changing E much.

3) Near a local minimum of E, the local dimension is likely
to be much smaller than N;. A fully connected MLP is
too large, but only locally. This also causes problems
with the convergence of the optimization process. Since
different regions of the network are active for different
input samples, we can’t just reduce ¥V; or IVy.

4) The data are ofien inherently low precision. In our OCR
example, the 7480 training samples are binary images
of digits; averages over the training set can take on at
most 7480 distinct values, and thus are known only to
log, 7480 bits, about 13.

5) The training data are sparse in the input space, which
for discussion may have dimension as high as 128. In
our OCR example, we have approximately 23 training
samples, so that 213 « 2!2%, Our input space is woefully
undersampled. ’

6) The training data, and therefore the bpundaries of the
classes in the /V;-dimensional input space, are more
cloudlike than ball-like.

B. Modifications to Network Optimization

There are two time scales associated with the dynamics of
neural network training. The shorter time scale is associated
with the calculation of feedback signals within an iteration
(the “inner iterations”} and the longer time scale is associated
with the sequence of optimization iterations (the “outer”
iterations). The dynamics can be used to analyze the sequence
of dynamic systems generated as the optimization iteration
proceeds.

Omn the short time scale, in any single iteration the structure
of the network is fixed. The dynamics involves the application
of the feature vectors as driving inputs. Since the feature
vectors provide a forcing function, this is not an equilibrium
system, but a problem where the training data drives the
network to different stationary states, with error-correcting
feedback to alter the weights to bring the network to a
minimum in the recognition error.

On the longer time scale is the optimization iteration
process. At each time step of the outer iteration the
connectivity of the network is changed by Boltzmann pruning.
On this time scale structural stability is the dominant dynamic
process. The goal of the outer iteration process is to approach
a steady state where the effect of network changes minimizes
the feedback error over the training set and thus an overall
steady state is achieved.

The link between the study of time-dependent network
performance and nonlinear network optimization is provided
by the analysis of structural stability. We looked directly at
the qualitative properties expected in systems of this kind
[44]-[46] and altered the training procedure to take the ex-
pected dynamic behavior into account. This analysis used the
dynamical systems approach to provide us with qualitative
information about the phase porirait of the system during
training rather than a statistical representation of the weight
space of the MLP network.
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We effectively reduce the dimension of the problem using
the center manifold approach [47]. This approach is similar
to the Lyapunov-Schmidt technique [48] which reduces the
dimension of the system from = to the dimension of the center
manifold, which in numerical calculations is equal to the num-
ber of calculable nonzero eigenvalues of the Jacobian. Since
the number of weights in the typical network is approximately
10% and the number of bits in the feature data is approximately
13, direct numerical methods for calculation of the eigenvalues
from the linearized dynamics are very poorly conditioned. The
center manifold method has the advantage over the Lyapunov
method in that the reduced problem still is a dynamical system
with the same dynamic properties as the original system. The
reduction in dimension is implemented using the Boltzmann
machine in coordination with the SCG learning algorithm.

The reduced problem after application of the center mani-
fold method is still an SCG system. This approach can reduce
the error independent of the content of the particular sample
distribution and the size of training data. The result is a saving
in training time and improvement in performance without
analysis of those network components which make minimal
contributions to the leaming process.

Based on insights obtained from system dynarnics, three
constraints were integrated into the SCG optimization. Each of
these modifications alters the dynamics of the training process
in a way that simplifies the form of the decision surfaces,
which as stated earlier, have a global dimension of about 100
with a local dimension of about 10.5. Understanding the topol-
ogy of this space is useful for developing improved training
methods based on dynamics. All of these modifications take
place in the inner loop of the SCG optimization.

1) Weight Regularization: The first constraint is weight
regularization, which has been shown to act as a smoother
when the NN training process is treated as an approximation
problem [49). Regularization decreases the volume of weight
space used in the optimization process by adding an error term
which is proportional to the sum of the squares of the weights.
The effect is to create a parabolic term in the error function that
is centered on the origin, reducing the average magnitude of
the weights. A scheduled sequence of regularization values is
used that starts with high regularization and decreases until no
further change in the form of the error-reject curve is detected.
At present this sequence is manually terminated but automatic
termination using a validation set is possible. Constraining the
network weights reduces the number of bits in the weights and
therefore the amount of information contained in the network,
allowing a simplification in the network structure.

For our OCR problem, as stated earlier, the local feature
dimension of features is about 10.5, and the large networks
used here have 96 KL features. That is, the training examples
sample well a feature subspace of dimension 10.5. Full sam-
pling, at least one point in every hyper-quadrant of the feature
space would require 2% samples. The undersampling increases
roughly as the power of the difference in the global and the
local dimension. For the OCR problem, this is 96 — 10.5 so
that the undersampling increases at least as fast as the volume
calculated from the feature space radius. The large difference
in local and global dimensionality indicates that adding a
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practical number of training examples (that might expand the
feature sel volume somewhat but would not alter the local or
global dimensionality of the feature set) is unlikely to produce
a significant improvement in network performance. Rather
than feebly attempting to fill the ever-expanding volume with
new training examples, we apply regularization to constrain
the weight space.

2) Sine Acrivation: The second insight we can obtain from
dynamics is that, as we expand the Jacobian within the opti-
mization, any very small nonlinear terms will be unimportant
compared to the noise in real training data. For the data
used here, the KL transform normalizes the input signals to
a uniform dynamic range; the NN is not needed to perform
this task. The calculation of the KL rransform involves,
for the OCR problem, calculation of a mean image valve
for every location in the image. Since the values used to
calculate the mean are binary, the mean for an V-example
training set can only take on /V values and is only known to
log, N bits. Even with perfect training data, the KL features
have this finite precision. Ambiguous characters, or characters
that are well formed but which have noisy edge pixels,
add additional uncertainty, giving uncertainty throughout the
dynamic calculation. Small changes in outputs in network
dynamics caused by training data noise are indistingpish-
able from small changes caused by real but small dynamic
terms.

The usual form for the activation function for NN's is
a sigmoidal or logistic function. This function has small
derivatives of all orders for large positive or negative values of
the input signal, since all derivatives of the activation function
approach zero exponentially. Therefore, the Jacobian of the in-
ner iteration is singular within computational error [43]. When
the Jacobian has large numbers of near-zero eigenvalues, the
optimization is dominated by center manifold dynamics {44],
[47]. Changing the activation function to a sinusoidal function
creates a significant change in the dynamics of the training
since the activation function has significant derivatives for all
possible input signals. Using sinusoidal activation functions
improves network training dynamics and results in better
error-reject performance and simpler nerworks. The resulting
sinusoidal-based networks train in a comparable amount of
time and are similar in size to those trained using sigmoidal
activation functions.

3) Boltznann Weight Pruning: The third insight provided
by dynamic stability considerations involves the dynamics of
small weights near the origin in weight space. In weight space,
the stability analysis of these variables involves small real
eigenvalues which will be dominated by weight oscillations.
The dynamics of these weights are associated with dynamic
processes that have small real parts and are therefore near
the center manifold. For the OCR problem, for example,
the dynamics near the center manifold result partly from an
attempt by the optimization process to make fine character
distinctions on large signals well above the noise level and
partly from small weights interacting with the noise. Since
these two effects are indistingnishable and create very complex
dynamics, it is better to set the near-zero weights to zero,
forcing these dynamic processes out of the training.
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The design and implementation of most NN architectores
are based on an analysis of the size and content of the
network training data. In character classification applications,
the training sets are large and the local and global ranks of
the feature data are very different. The complex structure of
the training data requires large networks, in the order of 10%
weights and 10% nodes. If the training process is treated as
a dynamic system with the weights as independent variables,
the Jacobian would have at least 10% terms.

Boltzmann methods have been used as a statistical method
for combinatorial optimization and for the design of learning
algorithms [50], [51]. This method can be used in conjunction
with a supervised learmning method to dynamically reduce
the size of these large networks [52], whereas other meth-
ods requiring the direct analysis of the weights and/or their
topology are numerically intractable. The strategy used in this
research is to remove the weights using Boltzmann criteria
during the training process. Information content is used as a
measure of network complexity for evaluation of the resulting
network.

In the earhier work [52], the SCG method is used as a
starting network for the Boltzmann weight pruning algorithm.
The initial network is fully connected. The pruning is carried
out by selecting a normalized temperature, T', and removing
weights based on a probability of removal

P, = exp( — w}/T). (0

The values of F; are compared to a set of uniformly
distributed random numbers on the interval [0,1]. If the
probabitity P; is greater than its random number, w; is set to
zero. The process is carried out for each iteration of the SCG
optimization process and is dynamic. If a weight is removed
it may subsequently be restored by the SCG algorithm; the
restored weight may survive if it has sufficient magnitude in
subsequent iterations.

Boltzmann pruning has two effects on the training process.
First, it takes small dynamic components that have small real
eigenvalues near the center manifold and places them on the
center manifold. This simplifies training dynamics by reducing
weight space dimension, and removes initial local minima,
thus avoiding the problems associated with dependence on
random starting weights in a traditional SCG optimization.
Second, Boltzmann pruning keeps the information content of
the weights bounded al values which are equal to or less than
the information content of the training set. When KL features
are derived from binary images, the significance of the feature
is no greater than the number of significant bits in the mean
image value. Boltzmann pruning forces this constraint on the
weights.

When Boltzmann proning was used in [52], detailed anneal-
ing schedules were used to insure convergence of the training
process. When regularization is combined with pruning, an
annealing schedule is not needed and pruning can proceed
concurrently with the regularization process, starting at the
beginning of the training process. The cost of pruning is only
a small exira computation associated with the weight removal,
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C. Training the New MLP

When the new MLP leaming algorithm is invoked, it
performs a sequence of steps. Each step does either training,
or testing:

1) Training: A set of patterns is used to train (optimize)
the weights of the network. Each pattern consists of a feature
vector, along with either a class or a target vector. A feature
vector is a tuple of floating-point numbers, which typically has
been extracted from some natura] object such as a handwritten
character. A class denotes the actal class to which the object
belongs, for example the character of which a handwritten
mark is an instance. The network can be trained to become a
classifier: it trains using a set of feature vectors extracted from
objects of known classes. Or, more generally, the network can
be trained to learn, again from example input-output pairs, a
function whose output is a vector of floating-point numbers,
rather than a class; if this is done, the network is a sort
of interpolator or function-fitter. A training Step finishes by
writing the final values of the network weights 4s a file. It also
produces a summary file showing various information about
the step, and optionally produces a longer file that shows the
results the final (trained) network produced for each individual
pattern.

2) Testing: A set of patterns is sent through a network, after
the network weights are read from a file. The output values,
i.e. the hypothetical classes (for a classifier network) or the
produced output vectors (for a fitter network), are compared
with target classes or vectors, and the resulting error rate
is computed. The program can produce a table showing the
cormrect classification rate as a function of the rejection rate.

A good strategy for training the MLP on a new classification
problem is to first work with a single training/testing session,
surveying different combinations of parameter settings until
a reasonable amount of training 1s achieved within the first
50 iterations, for example. This typically involves using a
relatively high value for regularization and varying the number
of hidden nodes in the network. For handprint character
classification, the number of hidden neurodes should be equal
to or greater than the number of input KL features.

Within this process of surveying parameters, it is also
important to determine a value of temperature that causes a
reasonable amount of Bolzmann weight pruning. Different
levels of temperature are surveyed, typically incrementing or
decrementing by powers of ten, until approximately 10% of
the total number of weights are being pruned. The higher
the temperature, the more severe the pruning. For handprint
character recognition, a temperature of 10™4 works well.

Once reasonable training and pruning are achieved, these
parameters should remain fixed, and successive sessions of
training/testing are performed according to a schedule of
decreasing regularization. For handprint character classifica-
tion it works well to specify about 50 ilerations for each
training session, and to use a regularization factor schedule
starting at 2.0 and decreasing to 1.0, 0.5, 0.2, 0.1, 0.01, and
0.001 for each successive training session. This process of
multiple training/testing sessions initiates MLP training within
a reasonable solution space, and enables the machine leaming
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to refine its solution so that convergence is achieved while
maintaining a high level of generalization by controlling the
dynamics of constructing well-behaved decision surfaces. The
intermediate testing sessions allow one to evaluate the progress
made on an independent testing set, so that a judgment can be
made as to whether incremental gains in training have reached
diminishing retums.

D. Comments

The insights gained from system dynamics combine to
yield a training method which is smoothed on the exterior
large, weight, region by regularization. At the same time the
weights are pruned in the inierior, small weight, region by
Boltzmann pruning. The combination of these two methods
greatly restricts the active region of weight space. Weight
removal simplifies the problem by reducing the number of
degrees of freedom. Restricting the range of weight values to
a spherical shell near to but excluding the origin matches the
significance of the network to the significance of the training
data. In the region between constraints, dynamic stability
is enhanced by choosing activation functions with nonzero
derivatives throughout the space.

It would be interesting to do experiments which would
allow the various modifications to the optimization strategies
to be tested separately. In general, this has proved to be
impossible because the methods only achieve convergence
for the large networks used here when both pruning and
regularization are used concurrently. The interaction between
amount of regularization and the pruning temperature are such
that changing the effective temperature over a range between
T = 1072 to T = 107> changes the number of network
weights by a factor of 2.76, from 8653 to 3134, but does
not significantly alter the reject error performance. Changing
the minimum regularization factor from 2.0 to 0.01 typically
reduces the zero reject error by a factor of two over the entire
temperature range. These resulis are discussed in more detail
in reference [53].

Changing the form of the activation function from sinusoidal
to sigmoidal improved the reject error performance of the
network by a factor of two at zero reject to a factor of four
at the 15% reject level. Again the reader is referred to (53]
for more details.

After this extended discussion, one may wonder if this
type of recognition problem is unique to OCR problems. The
authors would argue that it is not. The characters used in this
work are normalized to 32 x 32 binary images containing
1024 pixels. Characters form a very small subset of all 2'%%
possible images. The point of regularization is to confine the
training dynamics to a region of weight space where the
images are near the subset of images which are meaningful
characters. At the other extreme, we argue that the subser
of character images is not dense in feature space and that
many noisy images (that are near character images but are not
easily recognizable characters) are found in large training sets.
The complex dynamics associated with the noisy images are
pruned away by the Boltzmann process. These properties are
not unique to character recognition. The difficulty of matching
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images to incomplete feature sets should not be surprising
since patterns generated or identified by an image algebra [54]
are a small subset of the patterns which could be generated
with arbitrary generators and links in any image algebra.

IV. NIST FORM-BASED HANDPRINT RECOGNITION SYSTEM

The new MLP described in Section ITI has been integrated
into an end-to-end test-bed system at NIST. The NIST Form-
Based Handprint Recognition System (referred to hereafter as
the NIST system) has been designed to follow the general
guidelines presented in [55]. This system was designed to
process the HSF forms distributed in NIST Special Database
19 {SD19) [56], and it is capable of processing every one of
the 3669 forms in the data base.

A. The Application

Successful application of OCR technology requires more
than system integration [55]. State-of-the-art solutions still
require customization and tuning to the problem at hand. This
being true, an operational system is largely defined by the
details of the application.

The NIST system is a public domain software test-bed
designed to read the handprinted characters written on Hand-
writing Sample Forms (HSF). An example image of a com-
pleted HSF form is shown in Fig. 3. This form was de-
signed to collect a large sample of handwriting to support
handprint recognition research. A CD-ROM named NIST
Special Database 19 (SD19}, containing 3669 completed forms
scanned in binary at 11.8 pixels per millimeter (300 pixels/in),
is publicly available [56]. This data set also contains over
800000 segmented and labeled character images from these
forms.

The NIST system is designed to read all but the top line
of fields on the form. The system processes the 28-digit fields
and the randomly ordered lowercase and uppercase alphabet
fields along with the handprinted paragraph of the Preamble
to the U.S. Constitution at the bottom of the form.

B. System Components

Fig. 4 contains a diagram that illustrates the organization of
the components of the NIST system. Generally speaking, each
of these components has many possible algorithmic solutions.
Therefore, the NIST system is designed in a modular fashion
50 that different methods can be evaluated and compared
within the context of an end-to-end system,

A considerable amount of processing must take place in
order to reliably isolate the handprint on a form. The front
end of the system (from Load Form Image to Segment Text
Line(s)) is comprised of a sequence of complex algorithms
based primarily on image processing and statistical techniques.
Once isolated, segmented character images are normalized.
This is typically viewed as a preprocessing task for the
NN classifier. The NIST system applies the KL transform
to convert character images into feature vectors of floating
point numbers. These feature vectors are classified using
the new NIST MLP. The last step, spell-correction of the
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Fig. 3. Example HSF form from NIST Special Database 19.

classified characters from the Preamble paragraph, falls under
postprocessing.

1) Barch Initialization: The NIST syslem is a noninterac-
tive batch processing system designed to process one or more
images of completed HSF forms with each invocation. This
first step loads all the precomputed items required to process a
particular type of form (in this case HSF forms). These items
include basis functions used for feature extraction and NN
weights for classification. There are four types of fields on the
HSF form: numeric, lowercase, uppercase, and the Preamble
paragraph. Each type of field requires a separate set of basis
functions and NN weights.

2) Load Form Image: For each form in the batch, the NIST
system reads a CCITT Group 4 compressed binary raster
mmage from a file on disk, decompresses the image in software,
and passes the bitmap along with its attributes on to subsequent
components.,

3) Register Form Image: The form must be registered or
aligned so that the fields in the image correspond to a proto-
typical template of field coordinates. The NIST system uses
a generalized method of form registration that automatically
estimales the amount of rotation and translation in the image
without any detailed knowledge of the form [57]. By using
this general registration technique, new form types can be
trained automatically. A prototypical form is scanned, its
rotational distortion is automatically measured and removed,
and the positions of dominant lines are stored for future
registrations,
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NIST Form-Based Recognition System

Batch Initialization

Next Form in Baich

Load Form Image

Register Form Image

Next Field on Form
Remove Form Box

Isolate Line{s} of Handprint
Segment Text Line(s)

Normalize Characters
Extract Feature Vectors

Classify Characters

Spell-Correct Text Line(s)
(if dictionary available)

Store Results

Fig. 4. Organization of functional componenis within the NIST system.

4) Remove Form Box: After registration, coordinates of
each field are used to extract field subimages. Given a field
subimage, the black pixels corresponding to the handwriting
must be separated from the black pixels corresponding to the
form. This is a difficult task as a black pixel can represent
handwriting, the form, or the overlap of both. As ali the
fields on the HSF form are represented by boxes, the NIST
system uses a general algorithm that locates the box within
the field subimage, and intelligently removes the sides so as
to preserve overlapping characters [58].

5) Isolate Line(s) of Handprint: Line isolation is difficult
for multiple-line responses such as the handprinted paragraph
of the Preamble at the bottom of the HSF form. There are no
lines provided in this paragraph box to guide the writer, nor are
there any instructions as to how many words should be written
on a line. As a result, Lhe baselines of the writing significantly
fluctuate, which makes tracking the lines of handprint difficult.

The NIST system uses a bottorn-up approach to isolating
the lines of handprint within a paragraph. The technique
starts by decomposing the paragraph into a set of connected
components. Each component is represented by a point at its
geometric center. To reconstruct the handprinted lines of text,
a nearest neighbor search is performed lefi-to-right and top-
to-bottom through the two-dimensional (2-D) pattern of points
[59). Having located piecewise-linear trajectories of the text,
the tops and bottoms of linked components are interpolated
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and smeothed forming line bands. These bands form a spatial
map, and all the components in the image are sorted into their
respective lines in correct reading order according to their
overlap and/or proximity to these bands [60].

6) Segment Text Lines: The segmentation method used in
the NIST system is image-based and does not use the over-
segmentation or integrated recognition techniques. Connected
components are used as first-order approximations to single
and complete characters. Building on the utility of connected
components, the segmentation method uses a simple adaptive
model of writing style [61]). Using this model, fragmented
characters are reconstructed, multiple characters are split, and
noise components are identified and discarded. Visual features
are measured (the width of the pen stroke and the heights of
the characters) and used by fuzzy rules, making the method
robust. The segmentor performs best when applied to single-
line responses, and even beiter when the fields are numeric.

7) Normalize Characters: The recognition technique used
by the NIST system falls under the category of feature-based
NN pattern classification. The segmented character images
vary greatly in size, slant, and shape. The segmented character
images are size-normalized by scaling the image either up
or down so thal the character tightly fits within a 20 x 32
pixel region. The stroke width is also normalized using simple
morphology. Image normalization is performed to deal with
the size and slant of writing, leaving to the recognition process
primarily the task of differentiating characters by vanation in
shape. Upon normalization, each character is centered in a
32 x 32 pixel image.

8) Extract Feature Vectors: At this point, each character is
represented by 1024 binary pixel values. The KL transform
is applied to these binary pixel vectors in order to reduce di-
mensionality, suppress noise, and produce optimally compact
features (in terms of varance) for classification [12].

A training set of normatized characier images is used to
compute a covariance matrix which is diagonalized using
standard linear algebra routines, producing eigenvalues and
corresponding eigenvectors. This computation is expensive,
but is done once off-line, and the top n ranked eigenvectors
are stored as basis functions and used subsequently for feature
extraction. Feature vectors of length 128 are used in the NIST
system; each coefficient in the vector is the dot product of an
eigenvector with the (1024-pixel vector of the character being
classified less the global mean vector).

9) Classify Characters: Once segmented characters are
represented by feature vectors, a host of pattern classification
techniques can be applied. We have used the training method
described in Section III that produces MLP networks with
performance equal to or better than PNN for character
recognition [53]. This is achieved with a single three-layer
network by making fundamental changes in the network
optimization strategy as discussed in Section III. A network of
size 128 x 128 x 10 was used to classify digits, and networks
of size 128 x 128 x 26 were used to classify alphabetic
characters. On handprinted digit classification problems, these
modifications improve error-reject performance by factors
between two and four and reduce network size (with pruned
weights set to zero) by 40-60%.
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To classify a character, the appropriate eigenvectors (or
basis functions) and MLP weight matrices must be loaded into
memory. As mentioned earlier, this 1s accomplished during
batch initialization. Using the eigenvectors, the normalized
image is transformed into a feature vector. The fearure vector
is then presented to the MLP network. The result is an assigned
classification along with a confidence value.

10) Spell-Correct Text Line(s): The only field on the HSF
form that has any linguistic information is the Preamble field.
The Preamble contains 38 distinct words all of which are
included in a dictionary. Words are parsed from each line
of raw classifications by applying the dictionary as described
in [59]. This process identifies words within the character
streamn while simultaneously compensating for errors due to
wrong segmentations and classifications. The limited size of
the dictionary helps offset the burden placed on this process.

11) Store Results: For the numeric and randomly ordered
alphabet fields, the NIST system outputs for each segmented
character an assigned class and its associated confidence
as determined by the MLP classifier. When processing the
Preamble paragraph, the system produces a sequence of spell-
corrected words as output.

V. EVALUATION OF NEURAL NETWORK-BASED OCR SYSTEMS

This section presents NN-based results from the First OCR
Systems Conference and from the NIST Form-Based Hand-
print Recognition System,

It is important to understand that the accuracy of the trained
NN OCR system will be strongly dependent on both Lhe
size and the quality of the training data. Many common
test examples used to demonstrate the properties of patiern
recognition systems contain on the order of 10 examples.
These examples show the basic characteristics of the system
but provide only an approximate idea of the system accuracy.
As an example, the first version of an OCR systern was built
at NIST using 1024 characters for training and lesting. This
system has an accuracy of 94%. As the sample size was
increased the accuracy initially dropped as more difficult cases
were included. As the test and training sampie reached 10000
characters the accoracy began to slowly improve. The poorest
accuracy achieved was with sample sizes near 10* and was
85%. The sample sizes discussed in this paper are well below
the 10° character sample size which we have estimated is
necessary to saturate the learmning process of the NIST systemn
[12].

A. NN Results from First OCR Systems Conference

The task of this conference was to recognize isolated
handprinted characters reporting both an assigned class and
a confidence value. The test was comprised of images from
58 646 digits, 11941 uppercase letters, and 12 000 lowercase
characters. For the purposes of discussion, we will focus on
results from only the digits [62].

Table I lists 11 of the 40 different systems used in the
conference for recognizing digits. The table is divided into
three part: systems using both NN-based feature extraction
and classification, systems using non-NN types of feature
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TABLE 1
METHODS OF FEATURE EXTRACTION AND CLASSIFICATION
UseDp iy FIRST OCR SySTEMS CONFERENCE
System | Features Classification
Neural Net
ATT 2 recepior flelds MLP
Hughes_ 1 | neocognitron
Nestor neocognitron MLP
Symbus raw self-Org. NN
Hybrid
ERIM.1 | merphological MLF
Kodak 2 Gabor MLP
NYNEX model MLP
NIST 4 K-L PNN
Non Neural Net
Think_1 template distance maps
UBOL rule based KNN
Elsagb_1 shape func. KNN
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Fig. 5. Rejection versus error rates for NN-based systems.

cxtraction in conjunction with a NN-based classifier, and
systems that are strictly non-NN.

Fig. 5 plots the error reject curves from digit recognition
results for the first eight NN-based systems listed in the table.
Fig. 6 contains results from the three non-NN systems listed
in Table I.

There is no significant difference between the results of
the three non-NN systems. The results from the NN systems
however vary greatly. One can conclude from these graphs that
the statistical techniques are somewhat constrained to the same
solution space, while it is possible to utilize NN’s to obtain
superior results. On the other hand, the variation in NN results
demonstrates that one cannot expect to simply apply any NN
paradigm and get satisfactory results. Careful consideration
must be given to the method of feature extraction, the NN
architecture, and the learning paradigm to be applied. It is
interesting to note that all of the best performing systems used

IEEE TRANSACTIONS ON IMAGE PROCESSING, YOL. 7. NO. 8, AUGUST 1998

10 l T T T T ]
*Think 1’ ©— ]
"UBOL’ + - |
’Elsagb_1> 8- |
%
error 1
01 | 1 1 1 N

0 5 10 15 2 - 25 30
% reject i

Fig. 6. Rejection versus emror rates for non-NN systems.

MLP-based NN’s. These observations are consistent with the
experiments conducted by NIST when developing the new
MLP training algorithm described in Section III.

For example, in an independent study [53], a common set
of training and testing feature vectors were used to compare
PNN to two different MLP-base digit classifiers. Both MLP's
were trained using the techniques discussed in Section III.
The MLP’s differed in the type of activation transfer function
they each used. The first MLP was trained using traditional
sigmoidal transfer functions, while the second MLP was
trained using sinusoidal functions. In the study, KL features
from 7480 training and 23 140 testing image of digits were
used. These error reject curves are plotted in Fig. 7. By
applying sinusoidal transfer functions, the performance of the
MLP is enhanced to where it performs better than PNN.

B. NIST System's Accuracies and Error Rates

This sections evaluates the performance of the NIST Form-
Based Handprint Recognition System. An end-to-end system
for handprint OCR has correlated modules. The results pre-
sented at the two Census Systems Conferences demonstrate
the difficulty of deducing end-to-end system performance from
component characteristics even when the same organization
designed and constructed the components. This is the case
because interactions between components are complex, highly
nonlinear, nonlocal, noncommutative, and nonadditive [55].

In order to compile statistics on accuracy and error rates,
the NIST system was run across the forms in SD19 and
recognition results were stored to files. Recognition system
classifications were stored in hypothesis files, and their asso-
ciated confidence values were stored in confidence files. These
files were then processed uvsing the NIST Scoring Package
[63], and performance statistics were compiled at the character,
field, and word levels.

The results presented in this section comprise one of the
largest published experiments of its kind, and it is reproducible
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TABLE 1l
HSFSYS2 ACCURACIES AND ERROR RaTES FOR DIGIT FIELDS ACROSS SDI19. PART (A)
REPORTS CHARACTER-LEVEL STATISTICS AND (B) REPORTS FIELD-LEVEL STATISTICS

(A) Characters

hsf 0 | hsf.1 hsf 2 | hsf3| hsfd | hsf 67 hsf.7| hsiB | Total

Correct || 96.6% | 96.5% | 96.1% | 97.2% | 93.7% | 97.3% | 96.3% | 96.9% | 96.3%

62772 | 62731 | 62486 | 75804 | 60933 | 63144 | 62615 | 8817 || 459302

Substituted || 2.8% | 2.9% | 3.0% | 2.4% | 5.5% | 2.1% 1 3.0% | 2.5% | 3.1%

1816 1871 1972 | 1801 3575 | 1367 1920 229 || 14641

Inserted || 0.7% | 0.7% | 0.7% | 0.7% | 0.8% | 0.5% | 0.6% | 0.3% | 0.1%

454 487 425 571 489 318 422 25 3191

Deleted 0.6% | 0.6% | 0.8% | 04% | 08% | 06% | 0.7% | 0.6% 0.6%

412 393 542 305 492 359 465 54 3027

Total || 65000 | 65000 | 65000 | 78000 | 65000 | 64870 | 65000 9100 || 478970
(B) Fields

Correct || B6.3% | 86.7% | 86.2% | 88.6% | 77.5% | 89.6% | 86.5% | 88.2% | 86.0%

12084 | 12130 | 12068 | 14881 | 10855 | 12517 ! 12105 1728 | 88377

Total || 14000 | 14000 | 14000 | 16800 | 14000 [ 13972 | 14000 1060 || 102732

TSegmented character images from the writers in this partition were used to train the neural
network classifiers.

10 T T t T 1
PNN -

*Sig MLP* + -

Sin. MLP’ &

L

0.1 B3
15 20 25 30
% reject

Fig. 7. Error reject graph for PNN, sigmoidal MLP, and sinusoidal MLP for
classification of digits.

by purchasing the SD19 data base from NIST. In all, sample
handwriting from 3669 writers was tested and a total of
109200 words and 667 758 characters were recognized and
scored. Training samples were extracted from specific writer
partitions and used to train the new MLP-based character
classifiers off-line. From the 667 758 characters, 109719 were
used in training. In the case of digits, the writers in hsf.6
(61,094 characters) were used in the training set, and in the
case of upper and lowercase, writers in both hsf-4 and hsf.6
(totaling 24 420 uppercase characters and 24 205 lowercase
characters) were used.

Table IT lists the digit recognition results of running the new
NIST system on all the forms in SD19. The system achieves
a digit recognition accuracy of 96.3% and it recognizes 86%
of the digit fields entirely correctly. The system is capable of

registering every form in SD19, with only ten fields rejected
due to poor image quality. The system recognizes uppercase
characters with an accuracy of about 90%, lowercase charac-
ters at 80%, and the words in the Preamble paragraph at 64%.

Notice that the accuracies and error rates reported in Table T1
were compiled from the system processing the entire set of
forms in SD19. This is our only handprint character database,
so characters from a few of the database’s partitions were
required to train the MLP classifier off-line. Specifically, the
partitions hsf_4 and hsf_6 were used for training as described
earlier,

Comparing the system’s results on hsf_6 to other partitions,
it is interesting to see that the inclusion of hsf_6 in the classifier
training does have a small influence. With digits, the system
is 97.3% correct on hsf 6 whereas the results on hsf3 are
almost as good at 97.2%, and the other partitions (with the
exception of hsf.4) range between 96% and 97%. The writers
in hsf.4 are from a different population and are known to
be statistically more difficult to recognize [64]. These small
differences (particularly for the digits) demonstrate that the
MLP character classifier is doing a reasonably goed job at
generalizing on writers it has not seen during its off-line
training.

1) Rejection versus Error Rate: Using a machine for OCR
in many ways complements the performance of humans.
Machines are very efficient in doing tasks that are primarily
repetitive and reflexive, whereas humans quickly fatigue under
these conditions. Humans, on the other hand, are very adept
at performing tasks requiring higher-level reasoning, and as a
result they provide more robust but much slower solutions to
complex problems. Accounting for these differences, success-
ful recognition systems allow the machine to perform the bulk
of the work, and on an exception basis, humans are used to
resolve ambiguities and potential errors. This is accomplished
through rejection mechanisms that automatically route low-
confidence machine decisions to humans for verification.

This section compares the rejection ability of the new NIST
recognition system to to its older counterpart described in
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Fig. 8. Rejection versus error rates for digit, upper, and lowercase recogni-
tion between HSFSYS1 and HSFSYS2.

[13]. The older system is named HSFSYS1 and uses an
optimized PNN to classify characters. The new NIST system
is named HSFSYS2, and it not only uses the new MLP neural
network for classification, but it employs a new writer-adaptive
segmentor based on connected components [61].

The graph in Fig. 8 plots error versus rejection rates with
error plotted on a logarithmic scale. Results are shown for
both HSFSYS1 and the new system HSFSYS2, and the results
are broken out by digit, upper, and lowercase recognition.
In general, as the number of rejected character classifica-
tions increases, the error rate on the remaining accepted (or
nonrejected) classifications decreases, and accuracy improves.
Also, the impact of rejection on accuracy tapers off as more
and more characters are rejected. In the figure, the bottom
two curves represent the performance of the new and old
systems on recognizing characters in the numeric fields on
the HSF forms. With no rejection, HSFSYS2 has an error rate
near 4%, and HSFSYS1 has an error rate over 7.5%. As the
number of rejected digit classifications is increased, the error
rate proceeds to drop, but HSFSYS2 falls at a significantly
faster rate than does HSFSYS1. The difference in the slope
of the two digit curves confirms the robustness of the MLP
classifier nsed in HSFSYS2 over the PNN classifier used in
HSFSYS1. The digit error rate of HSFSYS2 continues to drop
to nearly 1.2% at 15% rejection. One concludes from these
results, that in terms of recognizing numeric fields, the new
NIST recognition system has half the emror-rate of the original
system for a moderate rejection level.

The differences between the two systems is less dramatic
with uppercase and lowercase recognition. The middle two
curves in Fig. 8 comespond to the results of recognizing the
uppercase alphabet fields on the HSF forms. The HSFSYS2
curve does fall off slightly faster than does HSESYS!’s, but
the distance between the curves is not as large as that of the
digit curves. With no rejection, HSFSYS?2 has an error rate of
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almost 13% and HSFSYS1 just over 19%. The two lowercase
curves are even closer to each other, and they maintain pretty
much the same relative distance across the range of rejections
plotted. This emphasizes that lowercase recognition is still the
most difficult for the NIST systems. The small increase in
separation between these two curves as rejection increases can
be attributed to a combination of two factors. First, the decision
surfaces trained within the MLP classifier for lowercase are
much more complex than those of uppercase, and the decision
surfaces for uppercase are more complex than those of digits
[53). Second, the challenges remaining in the system that
are affecting accuracy lie primarily in components other than
the classifier. Otherwise, the relative slopes in the upper and
lowercase curves would more closely resemble those of the
digit classifications.

*

VI. SUMMARY AND CONCLU§f61Né

In this paper, we have discussed NN handprint character
recognition in considerable detail. The NIST public domain
system has been presented and, since the source code is avail-
able, even more detailed analysis of algorithm performance is
possible.

Analysis of NIST, ERIM, MCC, and other systems submit-
ted to the two OCR systems conferences allow us to draw
several important conclusions. NN’s are the most widely used
and most accurate methods of handprint character recognition.
Previous work has shown that PNN’s were the most accurate
of the NN methods tested but with proper training MLP’s are
as accurate and have better rejection characteristics.

Since 1991 when the first OCR systems conference was
held, major improvements in OCR performance have been
achieved. The NIST version 2 public domain OCR system can
achieve an average character recognition accuracy, including
all error sources (such as segmentation) that is comparable to
the best character accuracy achieved on isolated characters in
1991. These results were obtained using an integrated end-to-
end testing method. The NIST version 2 system was tested on
all of Special Database 19. This is the largest public test of
handprint OCR done to date and shows that, with proper form
design and system integration, economically usefu] rates of
recognition are possible using only public domain algorithms.

‘We also conclude that with existing algorithms the accuracy
of NN OCR systems is more dependent on overall system
design and NN training set size than on the type of NN
algorithm used.
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