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A massively parallel fingerprint classification system is described that uses image-based ridge-valley
features, K-L transforms, and neural networks to perform pattern level classification. The speed of
classification is 2.65 seconds per fingerprint on a massively parallel computer. The system is capable
of 95% classification accuracy with 10% rejects. All tests were performed using a sample of 4000
fingerprints, 2000 matched pairs. Finding two ridge-valley direction sets takes 0.5 seconds per image,
the alignment 0.1 seconds per image, the K-L transform 20 ms per image, and the classification 1 ms
per image. The image processing prior to classification takes more than 99% of total processing time;
the classification time is 0.03% of the total system's time.

Neural networks have had the potential for massively parallel implementation for some time, but
system level image-based applications employing neural networks have only recently been realized,
because the requirements for an image system include the image isolation, segmentation, and feature
extraction as well as recognition.

The problem, Pattern level Classification Automation (PCA), is one of accurately classifying fin-
gerprints into one of five classes from a fingerprint image. The five classes are arch, left loop, right loop,
tented arch, and whorl. These classes are abbreviated A, L, R, T, and \V in this report. A detailed
description of these classes is found in [1]. This paper discusses machine learning based methods of
solving the PCA problem using example images for training. The images used are 512 by 512 8-bit
gray with a resolution of 20 pixels/mm.

Two neural-net work-based methods are used in this system one for feature extraction and one for
classification. The K-L method is used [2] for feature extraction. This is a self-organizing method
[3] in that it uses no class information to select features. The K-L method maximizes the variance
in a feature set by using the principal eigenfunctions of the covariance matrix of the feature set. In
the fingerprint system. local ridge directions are extracted from the image and used in subsequent
processing. A similar technique has also been used with wavelets for face recognition [4] and for Kanji
character recognition [5]. The K-L transform is dimension reducing; for ridge-valley features, the 1680
direction components are converted to (at most) 80 features.

The features generated by the K-L transform are used for training a Multi-Layer Perceptron (MLP)
using Scaled Conjugate Gradient, SCG, optimization [6J. For the problems presented here, this method



is from 10 to 100 times faster than backpropagation in training. Details of the method and procedures
for obtaining the program are available in [6]. Typical classification accuracies on samples with equal
numbers of each class are from 84% to 88%. When accuracies are estimated taking into account
the observed a priori probabilities, accuracies of 94% have been achieved with 10% rejects; the more
common types of fingerprints are easier to recognize.

The Single Instruction Multiple Data (SIMD) architecture used for this study was an Active Memory
Technology 510c Distributed Array Processor with 8-bit math coprocessors.l This machine consists of
a 32 by 32 grid of I-bit processor elements (PE) and a 32 by 32 grid of 8-bit processors. Operation of
the PE array is controlled by a four million-instruction-per-second RISC master control unit (MCU).
All program instructions are stored in a separate program memory and are passed to the PE array
through the MClT. A block diagram of this architecture is shown in figure 1.

All data are stored in a separate array memory. The array memory is organized in 32 by 32 I-bit
planes with corresponding bits in each plane connected to one PE. Data can also be passed between
PEs along the grid. The cycle time of all PEs is 100 ns. This processor configuration is capable of
performing ten billion binary operations per second; processing time increases proportionally with the
precision of data items used. Two data mappings are particularly well suited to the DAP structure:
a vector mode in which successive bits of a single word are mapped into a row of the array, and a
matrix mode in which successive bits of a word are mapped into layers of the array memory vertically.
Operations in both of these modes of operation are used in the system implementation presented in
this paper.

The use of a massively paTaliel computer allows the application of techniques that would not be
implemented on a serial computer due to their computational expense. Image processing and analysis
can be done with fewer system cycles since many pixels of the image can be manipulated or analyzed
at once. In the case of the DAP510c, up to 1024 pixels can be manipulated at the same time.

The present version of the system has been designed in a modular way so that different versions of
each of the modules can be tf'sted independently. This has allowed three methods of ridge direction
feature extraction to be tested and has allowed K-L transforms and MLPs of several different sizes to be
studied. This modular structure will allow the addition of a reject-testing method after the classification
sf'ction; it has allowed networks to be developed that lump all arches into a single class at first and
that separate A-T combinations with a second network. The modular structure separating image
processing from classification has demonstrated its usefulness and should be retained. Substantial cost
savings can result from this type of program design. The present system at NIST was constructed
with about two staff-years of programing effort. This was possible by building on approximately 12
staff-years of effort spent on several character recognition system configurations [7]. This transfer of
software expertise was possible because of the modular design of both systems.

In the past few years neural networks have been discussed as a possible method for constructing
computer programs that can solve problems, like speech recognition and character recognition, where
"human-like" response or artificial intelligence is needed. The most novel characteristics of neural
networks are their ability to learn from examples, their ability to operate in parallel, and their ability

I DAP51 Dc or equivalent commercial equipment may be identified in order to adequately specify or describe the subject
matter of this work. In no case does such identification imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.



to perform well using data that are noisy or incomplete. In this paper, these characteristics of neural
networks are illustrated using examples from the field of fingerprint classification. A functional input-
output data flow of the system discussed in this paper is shown in table l.

The neural approach to machine learning was originally devised by Rosenblat [8] by connecting
together a layer of artificial neurons [9] on a perceptron network. The weaknesses which were present
in this approach were analyzed by Minski and Papert [10] in 1962, and work on neurally based methods
was abandoned by all but a small group of researchers for the next ten years. The advent of new
methods for network construction and training in this ten year period led to rapid expansions in
neural net research in the late 1980s.

Two types of learning, supervised learning and self-organization, are common in neural networks.
The material presented in this paper does not cover the mathematical detail of these methods. A good
source of general information on neural networks is Lippmann's review [11]. The primary research
sources for neural networks are available in Anderson and Rosenfeld [12]. More detailed information
on the supervised learning methods discussed here is given in [13]; self-organizing methods are discussed
by Kohonen [14] and Grossberg [15].

The principal difference between neural network methods and rule-based methods is that the former
attempts to simulate intelligent behavior by using machine learning and the latter uses logical symbol
manipulation. Once the learning phase has been completed the network response is automatic and
similar in character to reflex responses in living organisms. The processes where these methods have
been most successful are in areas where human responses are automatic, such as touching one's nose
or recognizing characters. Neural networks have been successful in engineering applications such as
character recognition, speech recognition, and control systems for manufacturing, where information is
incomplete and context dependent. In other areas, such as learning arithmetic [16], where automatic
responses by humans are not expected, and precise answers are required, neural networks have had
substantially less success.

It is important to understand that the accuracy of the final system produced will be strongly
dependent on both the size and th~ quality of the training data. Many common test examples used
to demonstrate the properties of pattern recognition system contain order of 102 examples. These
examples show the basic characteristics of the system but provide only approximate idea of the syatem
accuracy. The first version of the fingerprint system was built using 150 pairs of fingerprints. This
sytem has accuracy of 94%. As the sample size was increased the accuracy initially dropped as more
dificult cases were includes. As the test and training sample reached 1000 fingerprints the accuracy
began to slowly improve. The porest accuracy achieved was with sample sizes near 103 and was 78%.
The 2000 fingerprint sample used in this paper is well below the 105 fingerprint sample size which we
have estimated is necessary to saturate the learning process.

The implementation of peA discussed in this report combines several neural network methods to
carry out the filtering and feature extraction. The filtering methods used are based on the ridge-valley
method described in section 3 and on a method based on K-L transforms [2]. The basic classification
process starts with an image of a fingerprint. In the self-organizing method, the ridge directions
of the image are applied directly to the neural network and any filtering is learned as features are
extracted [17]. In the supervised method, the features are extracted using the K-L transform, which
is self-organizing, but classification is carried out using an MLP network.

An example of a two-class, two-feature problem using self-organization is shown in figure 2. The
problem is to distinguish the arch class "A" from the whorl class "W." Two hundred samples of each
fingerprint class are used in this example. A three-class, two-feature problem is shown in figure 3. In
this example, the tented arch class "1''' is added to the set of classes, and two hundred examples of
it are added to the previous sample. Feature extraction in both examples is performed by correlating
the input fingerprint image with the first two principal components, or eigenfunctions, using the K-L
transform. One principal component is plotted on each axis of these figures. The self-organization
method used calculates the distance from the mean of each class. If the distributions of the classes are



assumed to be normal, ellipses with major and minor axis lengths 2.17 times the standard deviation are
expected to enclose 99% of each class. This method is a variation of the Probabilistic Neural Network
[18]. Ellipses of these sizes are used in figures 2 and 3.

This is an extremely simple clustering method, but it illustrates the essential concepts of many self-
organizing neural systems. In the A-W problem, the two classes are fairly well separated; only a small
number of characters fall outside the 99% cluster boundaries. In the A-T- \V problem, the "T"s overlap
both the "A"s and part of the"\V"s, but the overlap with the the "A"s is total. This is an illustration
of the observation that "T"s look more like "A"s than "W"s. Both problems illustrate an important
property of clustering methods: the ability to identify cases where the decision uncertainty is very high.
Two types of uncertainty are shown. Uncertainty based on insufficient information is demonstrated by
points outside any of the ellipses, the "\V"s at the bottom of the 99% boundary. Uncertainty caused
by confusion is demonstrated by points in two ellipses at once. In most self-organizing systems a point
in this overlap region will be assigned to classes based on some correlation measure between the point
and examples which have been previously stored. A point near the mean of the "A" class will have a
high, but not certain, probability of being assigned that class. The self-organizing methods have no
mechanism for using class information during training and so will cluster points entirely on the data
stored in existing clusters.

The results of a linear classifier based on a single layer perceptron [8] for the same two problems
are shown in figures 4 and 5. This method fits a linear decision surface between each of the classes; for
a two-feature problem a single line is used. The method works well for the A- \V problem but fails for
the three class problem. The failure illustrates a fundamental problem with supervised systems. The
error surfaces generated are "hard" surfaces. The method achieves an optimal fit as defined by the
optimization method used on the learning data, but provides little information on the generalization
capacity of the network. For the case shown, the "A" class is contained within the "T" class, and no
line exists which will separate them using the first two K-L features. The goal of the supervised method
is to draw the best possible boundary surface between classes. The surfaces used in this problem are
restricted to lines by the simple linear optimization used. neural networks.

3 Image-Based Feature Extraction and Filtering
In this section two methods of feature extraction and image filtering are discussed. These methods
are the ridge-valley filter and a Fourier-transform-based adaptive bandpass filter. The method used
throughout the rest of this report is the ridge-valley filter. This choice was based on the filter cost for
an acceptable level of feature extraction and image quality. The ridge-valley filter, implemented on a
parallel computer, can process a 16 by 16 image tile in 256 ps. The Fourier transform filter, programed
in assembly code on the same computer, can process a 32 by 32 image in 1 ms. The quality of image
reconstruction available with these two methods is shown in figures 6 and 7. The original gray image
is shown in figure 9.

The figures demonstrate that each of the methods remove some data and introduce some artifacts.
The ridge-valley filtered image shown in figure 9 produces the image with the fewest artifacts. These
artifacts are primarily white spaces in lines that change shape as a result of processing. The Fourier-
transform-based filtered image shown in figure 7 introduces more artifacts. Most of these are associated
with the :32 by 32 tile edges. A method for removing these artifacts in the FFT filter is discussed in
section :3.2.

This program is based on the "ridge-valley" fingerprint binarizer described in [19]. The binarizer works
as follows. For each pixel C, slit sums si,i = 1 ... 8, are produced, where each Si is the sum of the
values of all the pixels labeled i in figure 8. The binarizer converts a gray-level fingerprint raster to a
black and white version by a combination of "local thresholding" and "slit comparison" methods. The
local thresholding formula sets the output pixel to white if the corresponding input pixel C exceeds
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The slit comparison formula sets the output pixel to white if the average of the maximum and minimum
slit sums exceeds the average of all slit sums:

1 1 8

2(Smar + Smin) > "8 L Si·
i=1

The motivation for equation 2 is as follows. A pixel in a light "valley" area of the print will have one of
its slits lying along the valley for a high sum. and its other slits crossing ridges and valleys for roughly
equal, lower sums; so the left side of equation 2 will exceed the right side. A similar reasoning applies
to a pixel in a dark "ridge"" area. In a combination of the two formulas, the output pixel is set to white
if
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8 i=1

The ridge-valley direction finder is a simple extension of the ridge-valley binarizer. Upon binarization.
the ridge directions at the individual pixels are considered to be the directions of slits chosen in the
natural way. that is. of the minimum-sum slits for pixels binarized to black and of the maximum-sum
slits for pixels binarized to white. To produce a grid of directions spaced only every III pixels, these
pixel directions are averaged over 16 x 16-pixel squares. Averaging has a smoothing effect and produces
a finer direction quantization.

The ridge angle e at a location is defined to be 0° if the ridges are horizontal, increasing towards 180°
as the ridges rotate counterclockwise. and reverting to 0° when the ridges again become horizontal:
0° ::; e < 180°. \Vhen pixel directions are averaged, the quantities averaged are actually not the
pixel ridge angles e. but rather the pixel "direction vectors" (cos 2e, sin 2e). Averaging the angles can
produce absurd results: the average of a 1° direction and a 179° direction, each nearly horizontal.
produces a vertical 90° direction. Averaging the cosines and sines of the angles also fails: for the same
1° and 179° directions, the (cosine, sine) vectors are (0.999848, 0.017452) and (-0.999848. 0.0174.'>2).
whose average is the vertical (0. 0.0174.'>2). However, good results are obtained by doubling the angles
and then taking cosines and sines. Using this method. 1° and 179° ridges become (0.999391, 0.034900)
and (0.999391, -0.034900), which average to the horizontal (0.999391,0).

The direction finder produces a grid of averages of pixel direction vectors. Since the pixel direction
vectors have length 1, each average vector's length is at most 1. If a region of the fingerprint has a
poorly defined ridge direction, say because of overinking, the directions at its several pixels tend to
cancel each other out and produce a short average vector.

An earlier version of the direction finder produced a grid of directions spaced 16 pixels apart
horizontally and vertically, for a total of 840 (28 by 30) vectors. The current version produces better
classification results by using the same number of vectors, but arranged in a fixed unequally-spaced
pattern which concentrates the vectors in certain areas at the expense of less important areas. Each
32 x 32-pixel tile of the raster gets either 1, 4, or 16 direction vectors. First. a grid is produced
with the vectors spaced every 8 pixels (but still using 16 x 16-pixel averaging windows); this grid
has 16 vectors per tile. Grids with 4 vectors/tile and 1 vector/tile are produced from this original
grid by two averaging steps. Then, some tiles receive their vectors from the coarse grid, some from
the medium grid, and some from the fine grid, according to a pattern produced as follows. Let the
number of tiles that receive 1,4, and 16 vectors be 111, 114, and 1116. There are 1.5 x 16 = 240 tiles, so
111 + 114 + 1116 = 240. The total number of vectors is fixed at 840 for comparability with the earlier
version, so 111 + 4114 + 161116 = 840. Using these two equations in three variables, integer values of 1116

with 0 ::; 1116 ::; 40 produce 111 and 114 values that are nonnegative integers. Meaningful values for the
three variables were produced by simply picking 1116 values and solving for the other two variables,
since there is not a unique meaningful solution.



The equations determine the numbers of tiles that are to be allotted 1. 4, and 16 vectors (given
1116). but do not indicate which tiles should get which numbers of vectors. This was settled by using
cores and deltas. Cores and deltas have ridge-directions that change unusually rapidly, so it seemed
reasonable to concentrate the vectors in tiles likely to contain cores and deltas. The approximate
positions of the cores and deltas of some fingerprints had already been manually marked for another
experiment; the R92-P registration program was run on these fingerprints and each core or delta
location was translated by the dx and dy by which R92-P would have translated the fingerprint to
register it. A histogram was made of the resulting adjusted core and delta locations and the tiles were
sorted accordingly. The 111 lowest-scoring tiles (fewest cores or deltas) each received 1 vector, the next
114 tiles, 4 vectors. and the 1116 highest-scoring tiles, 16 vectors.

Values of 5. 10, and 15 were tried for 1116; in each case, a K-L transform was produced and the
resulting features were used with the conjugate-gradient MLP classifier, using a few different numbers
of input and hidden nodes. Using 1116 = 10, 80 input nodes (K-L features), 96 hidden nodes, and of
course 5 output nodes for the 5 classes. the result was 86% correct classifications when no examples
were rejected. These results were obtained using au fft-based preprocessing filter described in section
3.3 followed by ridge direction extraction for the R92- P program that registers the fingerprints before
extracting the unequally-spaced grid. W'hen the same filter and registration were used but followed by
the equally-spaced grid, the best result obtained across several net architectures was 83% correct.

Equally-spaced grids of directions for five fingerprints are shown in figures 9-13. The unequally-
spaced grid for fingerprint fO009_08 is shown in figure 14.

As implemented on the DAP, the ridge-valley direction finder for an equally-spaced pattern of
840 ridge directions takes about 0.22 seconds, and the finder for an unequally-spaced pattern of 840
directions takes a moderate amount longer.

This filter is used to improve the quality of the fingerprint image before extracting the ridge directions.
Its aIgorithm is basically the same as the one described in [20].

The filter processes the image in tiles of 32 x 32 pixels, starting in the upper left hand corner ofthe
image. After extracting a tile the filter shifts right 24 pixels to obtain the next 32 x 32 tile, resulting
in the first 8 columns of data in the new tile being common with the last 8 columns of the previous
32 x 32 tile. After reaching the right side of the image the filter shifts down 24 pixels, resulting in
8 rows of common data between vertically adjacent tiles, and restarts at the left side of the image
working toward the right. Processing continues in this manner until reaching the bottom right corner
of the image. The common data between the horizontally and vertically adjacent tiles helps reduce
the artifacts created by processing the image in tiles.

Each tile is thought of as a matrix A of real numbers. To filter a tile, the first step is to compute
the discrete two-dimensional forward Fourier transform, defined as follows (with B set to zeros):

... ~~ . (.((j-1)(m-1) (k-1)(n-1)))
}'jk+l}jk=,f::l~(Amn+1Bmn)exp 27rl 32 + 32

(A "fast Fourier transform" (fft) routine is used, rather than using the above formula directly.) Some
of the fft elements, corresponding to very low and very high spatial frequencies, are set to zero, thereby
filtering out these extreme frequencies. The "power spectrum" P of the fft is computed:

The elements of P are then raised to a power (t and multiplied by the fft elements X + iY to produce
new elements U + iV:

Qjk = Pj~,

Ujk = QjkXjk

~jk = Qjk1jk



Finally, the inverse Fourier transform of U + ill is computed, and its real part becomes the filtered
tile, which is used to reconstruct the "filtered" image, In reconstructing the image, the filter accounts
for the 8 columns/rows of common data between adjacent tiles by only keeping the center 24 x 24
pixels and discarding the outer 4 rows/columns from each (32 x :32) filtered tile, The multiplication of
the fft elcments by a power of the power spectrum has the effect of causing those frequencies of a tile
that were originally dominant to become even more dominant. Presumably, the dominant frequencies
of a fingerprint tile are those corresponding to the ridges; so, this filter tends to increase the ratio of
ridge information to non-ridge noise, It adapts to variations of the ridge-frequency from one tile of a
fingerprint to another.

This program is used to compute, for each tile of a fingerprint image, the local direction of the ridges,
As in the preprocessing filter of the preceding section, the fft X + iY of the tile, and its power spectrum
P, are computed, We observed that in a conventional image such as figure 15, the power spectrum of a
typical tile peaks at the lowest frequencies and falls off as 1/ f, as shown in figure 16, In a fingerprint,
however, the power spectrum of a tile almost always has two distinct peaks on either side of the center
DC value, as shown in figure 17, A line connecting either spot to the center of P is perpendicular to
the ridges, Therefore, each element of P corresponds to a ridge angle, It seems reasonable to compute
the ridge angle as a weighted average of the angles corresponding to all the elements, with the P values
at the elements used as weights, However, for the same reasons as mentioned above in the discussion
of the ridge-valley direction finder, it is better to compute an average of "direction vectors" rather
than of angles, The result is an average ridge direction vector for the tile,

A couple of tricks were used to increase speed of this program, First. a way was found to compute
two real-input fft's using only one call of the fft routine, by exploiting fft symmetries, Second, it was
possible to combine two input tiles by multiplying only one of them by a "checkerboard" pattern of l's
and -l's and then adding them, taking just one fft, and then separating the resulting power spectrum
into parts corresponding to the two tiles, The checkerboarded tile's low-frequency elements are near
the middle of the fft and the other tile's low-frequency elements are near the corners; since fingerprint
tiles are very weak in high frequencies, the far-from-zero parts of the two patterns do not overlap and
they can therefore be snipped apart and recovered with little error. Combining these two shortcuts
allowed us to process four tiles with only one call of the fft routine,

As implemented on the DAP, this method took about OA8 seconds to assign 256 ridge directions
to a fingerprint. The ridge-valley direction finder (in the version that produces an equally-spaced grid)
takes only 0,22 seconds to produce a grid of 840 directions; if the fft direction finder had to produce 840
directions, it would take about 1,58 seconds, The ridge-valley direction findcr also produced results
that appeared to be of higher quality, Because the ridge-valley direction finder is superior to the fft
direction finder both in speed and quality, we have discontinued work on the fft direction finder.

The two layer perceptron nonlinearly classifies K-L feature vectors, ''''ith the evolved K-L feature
extraction, the network may be regarded as the three layer fingerprint classifier of figure 18, The first
set of weights ilia is the pre-trai1led incomplete eigenvector basis seL The latter perceptron weight
layers, also fully interconnected, are trained using the conjugate gradient algorithm [6],

All the Karhunen Loeve transform vectors are propagated through the network together and the
weights are updated, This is batch mode training, The use of different subsets of the training patterns
to calculate each weight update is known as on-line training, It is not used in this investigation,
Formally, the forward propagation is represented as:



where the network nonlinearity is introduced by squashing all activations with the usual sigmoid
function f(.r) = (1 +C,c)-l.

The linear superposition of a complete set of orthogonal basis functions will exactly reproduce an
arbitrary eigen fingerprint. However, the whole motivation for using the KLT is to reduce the dimen-
sionality of the feature space by adopting an incomplete basis, i.e., the leading principal components.
Only images that resemble the original training ridge-valley directions are adequately representable by
the reduced basis. It is important that the eigenvectors are obtained from a statistically large sample
since adequate sampling of the feature set is required for this reduction to be useful.

Backpropagation [13] is the most common method for training MLP networks. Essentially, it im-
plements a first order minimization of some error objective. The algorithm has the disadvantages
that convergence is slow [21] and that there are, in the usual implementation [13], two adjustable
parameters, 17 and a, that have to be manually optimized for the particular problem.

Conjugate gradient methods have been used for many years [22] for minimizing functions, and
have recently [2:3]been discovered by the neural network community. The usual methods require an
expensive line search or its equivalent. M0ller [24] has introduced a scaled conjugate gradient method
that instead of a line search uses an estimate of the second derivative along the search direction to
find an approximation to the minimum error along the search direction. In both back propagation and
scaled conjugate gradient, the most time-consuming part of the calculation is done by the forward
error and gradient calculation. In backpropagation this is done once per iteration. Although the
scaled conjugate gradient method does this calculation twice per iteration, the factor of two overhead
is algorithmically negligible since convergence is an order of magnitude faster for OCR and fingerprint
classification [24] [6].

4.4 Fingerprints Used for Training and Testing

All fingerprints used in this study were from NIST Special Database 4 [2.'>].This database consists of
4000 8-bit raster images made from 2000 different fingers, with each finger represented as two different
impressions ("rollings") that were made on different occasions. The images were chosen in such a way
that each of the five classes is equally represented (400 pairs of rollings.) Each image in the database is
labeled with its correct class as determined by an expert. (Of course, the two rollings of any finger are
of the same class.) Supervised training of the MLP was done using features derived from first-rolling
fingerprints, and testing was done using features from the second-rollings.

The Karhunen-Loeve (K-L) Transform [26] was used to reduce the 1680 ridge-direction features of a
fingerprint to a much smaller number of features, such as 64 or 96. This greatly reduces the number
of weights in the MLP, and thereby reduces the amount of time required for training.

4.6 Testing Results

4.6.1 A Prior'i Probabilities and Realistic Scoring

The obvious way to produce a test score is to simply use the percentage of the test set that was classified
correctly. However, this score is useful as a predictor of subsequent performance on naturally occuring
fingerprints only if the test set is statistically the same as natural fingerprints. This is not the case for
Special Database 4. It has equal numbers of prints from each class, but the a priori probabilities of
natural fingerprints (that is. the proportions of them belonging to each class) are far from equal. In



fact, the a priori probabilities, as we have calculated them from a classification summary of more than
222 million prints, are approximately .037, .338, .3] 7, .029, and .279 for the classes A, L, R, 1', and W.

The following calculations were used to produce a realistic test score using this unnatural test set.
Each of the following quantities is defined for classes i = 1, ... , Ej:

a priori prob. of class i
number of the 400 test examples of class i that were correctly classified

conditional prob. of correct classification, given that actual class is i

prob. of correct classification
P(cli)

P(c)

5

P(c) = LPiP(cli).
i=1

P(c) ~ LPiCr/400.
i=]

To test the MLP's performance and find the best architecture, the numbers of input and hidden nodes
were each varied from 32 through 96 in steps of 16. Each of the resulting 25 network architectures was
trained with five different seeds for random generation of initial weights, to assure that at least one of
its training runs produced a representative result for that architecture. Table 2 shows the test scores;
the 64-96-5 architecture produced the best score.

The classifier can be set up to reject some of the prints it is presented with, so as to reduce the
proportion of the accepted prints that it misclassifies. Our rejection mechanism is a simple algorithm:
it rejects a print if the highest output "activation" of the MLP minus the second-highest activation is
below a threshold.

To implement various levels of rejection, the threshold is set to different levels. The overall perfor-
mance of the classifier across many levels of rejection can be summarized in a "correct vs. rejection"
curve, which shows the "proportion of accepted prints correctly classified" vs. the "proportion of prints
rejected". Actually, we have used calculations similar to those of the preceding section to produce a
graph of "'estimated conditional probability of correct classification given acceptance" vs. "'estimated
probability of rejection". This curve reflects expected performance on natural fingerprints, even though
it is produced using the unnatural test set. The curve for the winning 64-96-5 architecture is shown
in 19.

At first, we trained on all 2000 first-rolling prints in the database. Then. it occured to us that better
results might be obtained by causing the training set to have a natural distribution. The new training
set was made by using all 400 prints of class L (the most common class) and discarding some of the
prints from each of the other classes, so that the proportion of the resulting set belonging to each class
was approximately equal to the a priori probability of that class. This modified training set did in
fact produce better results. All results reported here were made using this new training set.



5.1 Testing Requirements
All work performed in this study has used NIST Special Database 4 [2.5]. The sample size available
from this database should be sufficient to test PCA accuracy to about the 2-3% error level. We estimate
that further testing to reduce error to the 0.3% level will require sample sizes from 25 to 81 times as
large as the one presently available.

Accuracy is the most difficult part of the PCA problem. The best accuracy achieved to date on a
balanced sample, with equal numbers of A-T-L-R-W patterns, is 90.2% with 10% rejects. When the
a prori probabilities of the different classes are taken into account this is increased to 95.4% with 10%
rejects. To put this result into perspective, 89% is approximately the level of accuracy achieved with
handprinted digits using Gabor features [27] in early 1991. Results achieved on the handprint digit
problem, by expanding the training and testing sets and by using better segmentation and feature
extraction, have allowed accuracy on character recognition to improve to 98.96% with 10% rejects.
This suggests that a PCA system can be built which will achieve 99% accuracy.

The speed achieved in this study, 2.65 seconds per fingerprint, demonstrates that existing parallel
computers are fast enough to process the FBI's current workload with a small number of systems. This
speed is also essential for large scale testing of potential recognition methods. If feature extraction
using ridge directions or some other method takes 1000 seconds per fingerprint instead of 2.6.5 second
per fingerprint, the training time for the existing database goes from 50 minutes to over 550 hours,
or 23 days. This demonstrates that the extensive training and testing performed on 2000 fingerprint
samples required for this study is practicaI only if speeds near the FBI current operative requirement
are achieved.

The authors would like to acknowledge Jim Blue, Jane Walters. Jon Geist. Mike Gilcrest. and
Fred Preston for assistance in improving the presentation and clarity of this paper.
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System Input Output Time
Module (see. )

FFT 8-bit filtered 1.73
Filter 512 x 512 Image

Image
Ridge 8-bit 840 0.3
Valley 512 x 512 directions

Features Image (unregestered)
R92 840 offset 0.1

Resistration directions Image
Registered .r, Y 840 0.216

Ridge translated directions
Valley Image (registered)

Features
K-L 840 64 0.02

Transform directions features
MLP 64 .5 0.001

Classifier features classes

32
90.29
90.54
90.66
90.60
91.07

48
89.82
90.24
90.48
91.:34
90.65

hiddens
64

90.96
91.34
91.20
90.60
90.40

80
90.24
91.12
91.19
90.27
91.28

96
90.99
90.92
91.76
91.18
90.37
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Figure 4: Supervised linear model for the A-\V classification problem superimposed on the prevIOUS
self-organizing clusters.



Figure 5: Supervised linear model for the A-T-\iV classification problem superimposed on the previous
self-organizing clusters.
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Figure 12: Examples of a tented arch fingerprint image which is cross referenced to a right loop with
ridge direction from the ridge-valley algorithm.
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Figure 16: Example of Fourier transform power spectrum of a 32x32 tile of the space walk image. DC is
at the center of the image and high frequencies are at the corners.



Figure 17: Example of Fourier transform power spectrum of a 32x32 tile of a fingerprint image. DC is
at the center of the image and high frequencies are at the corners.



Figure 18: Classification Architecture. All weight layers are fully connected. The eigenvectors are
obtained a priori to the training of the subsequent layers.
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