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ABSTRACT

This paper introduces scoring methods developed to automatically
assess the performance of document recognition systems; specifi-
cally, to evaluate the spatial correspondence of zones produced by
a document segmentor. Two different approaches are discussed.
The first approach (based on zone overlap and nearest-neighbors)
is better applied to merged zones, whereas the second approach
(based on zone alignments) is better applied to nested zones (such
as those found in tables and graphs). Definitions of coverage and
efficiency error are presented, and scoring results on real system
output is provided that validates the usefulness of these methods to
compare different document recognition algorithms. Currently, no
standard testing procedures exist for measuring and comparing
algorithms within a complex document recognition system. Scor-
ing methods, like the ones introduced in this paper, serve as design
and validations tools, expediting the development and deployment
of document analysis technology for system developers and end
users.

1. INTRODUCTION

The ability to automatically assess the performance of document
recognition systems will expedite the development and the deploy-
ment of document analysis technology. Currently, no standard
methodology exists for measuring and comparing algorithms
within a complex document recognition system. If automatic per-
formance measurements and procedures were available, they
could be used as a design tool that would enable system developers
to efficiently evaluate new ideas and algorithms.The results from
standard testing methods can also be used by end users of the tech-
nology as a validation tool to compare the performance of different
document recognition products. Without these measurements and
procedures in place, no performance baseline can be derived in an
unbiased way from within the document analysis community,
leaving both developers and users of this technology with the dif-
ficult task of filtering through published system statistics that are
often inconsistent and at times obscure.

The National Institute of Standards and Technology (NIST)
has spent considerable effort in establishing standardized evalua-
tion methods for optical character recognition (OCR) systems [ 1],
(2] and text retrieval systems [3], [4]. As a result, a number of
widely used and accepted databases [5], [6]. research publications
{71, and software packages [8]. [9] have been developed. It is antic-
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ipated that a similar contribution can be made by NIST to the doc-
ument analysis community.

This paper presents research primarily focussed on evaluat-
ing the spatial correspondence of zones produced by document
segmentors. Zones include document structures such as columns
and paragraphs of text, titles, headings, footnotes, page number,
mathematical equations and chemical formulae, logos, tables,
graphs, drawings, and pictures. The first goal of this research is to
develop measures and procedures that evaluate how well a recog-
nition system detects and then determines the proper position and
extent of each zone on a document’s page. To do this, a test set of
document pages has been collected and digitized, and the zones on
each page have been marked using a computer-assisted labeling
tool. These reference zones are stored as ground truth and later
compared with the location of hypothesis zones produced as output
from the segmentor of a document recognition system.

At least two types of observations should be measured from
the zone comparisons. The first determines the coverage, in other
words how well the hypothesis zones cover the reference zones.
The second observation is the efficiency, which measures how
many hypothesis zones were detected as compared to how many
zones really exist on the document’s page. These two observations
complement one another. For example, one document recognition
system may achieve high zone coverage while reporting nearly the
same number of hypothesis zones as reference zones. A second
system may also achieve high zone coverage, however it could do
so by fragmenting the reference zones into many smaller hypothe-
sis zones. Clearly. the first system’s performance is desirable, and
the behavior of the second system should be avoided. Without the
measure of efficiency, the two system’s would appear to be per-
forming with the same level of accuracy when compared accord-
ing to coverage alone. Acknowledging this relationship.
techniques for measuring zone coverage and efficiency were
developed and tested.

2. POLYGONS VS. PIXELS

When measuring the coverage of a reference zone with a hypothe-
sis zone, one could implement a pixel painting routine, where pix-
els mutually contained in both zones are painted one color, and
pixels contained in one zone (but not in the other) are painted
another color. The pixels of the various colors could then be
counted and used to derive a coverage value. While this would pro-
vide measurements at the finest possible detail, there are nearly 15
million pixels in one of our full page test images scanned at 15.75
pixels per millimeter (400 pixels per inch). To label, store, search,



and compile statistics at the pixel level would be unnecessarily
costly and cumbersome. Therefore, operations on larger multi-
pixel objects, such as polygons, are more desirable. Using poly-
gons makes statistical compilations more efficient and record
keeping more manageable while still permitting distinctions to be
drawn between different system performances.

To simplify matters, it was determined that zones would be
represented by their tightest bounding rectangle aligned with the
image’s raster grid. Using rectangles, the position of a zone is rep-
resented by an (x,y) pixel location within the image, and the extent
of a zone is represented by a pixel width and height. This provides
for a very compact encoding, such that all measurements are com-
puted on zone rectangles (boxes) rather than the 15 million original
pixels. Once boxes were chosen to represent zones, it became nec-
essary to develop two types of measurements (distance and simi-
larity) for comparing rectangles.

2.1. Box Distance

A distance measure was developed for determining how far
apart any two boxes are from each other in terms of pixels. The dis-
tance chosen was the length of the intervening line segment shown
in Fig. 1. This segment lies along the line connecting the center
points of the two boxes. As the two boxes increasingly overlap the
distance becomes negative, preserving continuity at the crossover
boundaries. The minimum distance (the most negative value)
occurs when the two boxes are perfectly centered on each other
(aligned top-to-bottom, left-to-right). This distance measure is eas-
ily derived using simple geometry and is inexpensive to compute.
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Fig. 1. Distance measured between two heterogeneous rectangles.
2.2. Box Similarity

A similarity measure was developed for determining how
relatively close (in terms of size and shape) any two boxes are to
each other. The difference between two boxes can be measured by
using their corresponding widths and heights as coordinate points
and calculating a normalize Euclidean distance between them
according to (1). This measures the length of the diagonal of the
shaded region shown in the right-most illustration of Fig. 2. The
maximum possible normalized length of this diagonal is ﬁ S0
the difference measure can be converted to a similarity measure
according to (2).
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Fig. 2. Relative similarity measured between two rectangles.
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3. ERROR MEASURES

By applying the concepts of coverage and efficiency in combina-
tion with box distance and similarity, several different scoring pro-
cedures were developed and tested using real document segmentor
results. The goal of these methods is to automatically assess the
quality of the segmentation without reconstructing the precise
pathology, in other words, not trying to identify exactly how zones
were split, merged, inserted, and deleted. This is important due to
the fact that these events can occur in varying degrees and in com-
bination with each other, making the pathology ambiguous and
extremely difficult to derive after that fact. The principle exists
that, as the quality of the system’s output degrades, the ability to
accurately derive the pathology becomes increasingly difficult.

Two components of zone coverage error are illustrated in
Fig. 3. The darker gray area, referred to as underage, is the portion
of the reference zone that is not covered by the system’s hypothesis
zone. The lighter gray area, referred to as overage, is the portion of
the hypothesis zone that does not cover any part of the reference
zone.
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Fig. 3. Two sources of zone coverage error.

3.1. First Approach

To assess the amount of underage and overage error, refer-
ence zones must be matched to their representative hypothesis
zones. The first approach computes the total amount of area over-
lapped by reference and hypothesis zones. The total area of over-
lap is subtracted from the combined area of all the reference zones
to measure the underage, and the total area of overlap is subtracted
from the combined area of all the hypothesis zones to measure the
overage. Coverage error is then computed according to (3), where
refarea is the combined reference area. In this way, the matching
of reference to hypothesis zones is based on overlap.

To measure efficiency error. each hypothesis zone is matched
to its nearest reference zone using the definition of box distance
defined above. The nearest reference zones are chosen, such that
more than one hypothesis zone can be matched to a single refer-
ence zone. If a reference zones ends up having more than one
hypothesis zone pointing to it, then the hypothesis zones, minus
one, are tallied as an insertrion. If a reference zone ends up with no
hypothesis zones pointing to it. then a reference zone is tallied as
a deletion. Efficiency error is then computed according to (4).
where refnum is the total number reference zones that could have
possibly been recognized by the system.
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Several deficiencies were noted when the scores produced by
this approach were analyzed. It is possible for multiple hypothesis
zones to overlap with a single reference zone. This can result in the
combined area of overlap to exceed the actual area of the reference
zone, making the underage error negative. It is unclear as to how
this situation should be handled. Perhaps the underage and overage
should be calculated as the intersection of the union of all overlap-
ping areas, rather than the subtraction of all overlapping areas. But
this would not assess penalties for the redundancy among the over-
lapping hypotheses.

3.2, Second Approach

A more fundamental problem is that overlapping hypotheses
may in fact be legitimate nestings of document structures. Such
nestings are common when decomposing tables and graphs. A sec-
ond approach was developed to handle cases where document
structures overlap one another. To do this a different method of
matching reference zones to hypothesis zones was created.
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Fig. 4. Zone alignments for a simulated table.

A box alignment algorithm was implemented that determines
a one-to-one mapping of reference to hypothesis zones based on
box distance, similarity, and overlap. The technique matches the
most likely candidates first, attempting to disambiguate assign-
ments based on these three criteria. Once a one-to-one mapping is
derived, those reference to hypothesis links that exceed certain tol-
erances of distance and similarity are removed. Reference zones
not mapped to any hypothesis zone are tallied as deletions,
whereas hypothesis zones not mapped to any reference zone are
tallied as insertions. An example of zone alignments produced on
a simulated table is shown in Fig. 4.

Using this second approach, the area of deleted zones con-
tributes to underage error and inserted zones contribute to overage
error. The aligned reference / hypothesis pairs contribute to the
underage and overage factors based on their overlap (just as in the

first approach), and coverage error is computed according to (3).
Given the new definitions of deleted and inserted zones, efficiency
error is calculated according to (4).

Several embellishments are needed to improve this second
approach. First, contributions to underage and overage areas
should probably be normalized according to the relative size of
their contributing zones. This will keep small amounts of error on
large zones from dominating errors on smaller zones. Second, the
current alignment algorithm is strictly one-to-one, so that a
hypothesis zone cannot map to more than one reference zone. This
is undesirable when the segmentor merges several reference zones
together as one large hypothesis zone. In this case, the alignment
maps the hypothesis to only one of the merged reference zones,
and the remaining reference zones are tallied as deletions which
may cause inflated penalties to be assessed. Some notion of merg-
ing should be accounted for in the alignment procedure, however
it may not be possible to disambiguate merged zones from nested
zones. If this is true, then the first approach is better applied to
merged zones, whereas the second approach is better applied to
nested zones.

4. RESULTS

A simplistic segmentor was implemented that divides a document
image into non-overlapping tiles (32 by 32 pixels in size). The
number of black pixels in each tile is counted and thresholded, and
the image is down-sampled by replacing each tile in the image
with a single pixel (white if the number of black pixels is suffi-
ciently low and black if sufficiently high). Connected components
within the down-sampled image are then extracted and hypothesis
zones are generated as the bounding box around each connected
component. This segmentor is prone to errors, but it is extremely
inexpensive to compute, and it can be embellished to improve per-
formance. Many alternative approaches to segmenting documents
exist [10],[11], but keep in mind that the primary goal here is to
measure segmentor errors.

The document segmentor was run across 100 test pages
extracted from NIST Special Database 20 [12], a publicly avail-
able database of 104 science and technical (S&T) documents con-
taining 23,468 binary scanned pages. (Other document databases
are available such as the English Document Image Database from
the University of Washington [13].) The 100 test pages were
marked with reference zones using a computer-assisted labeling
tool, and the document segmentor’s hypothesis zones were scored
against the reference zones using several different techniques. The
scatter-plots shown in Fig. 5 and Fig. 6 graph the scores from the
100 test pages processed by two different segmentors. The individ-
ual page scores in these plots were derived using the second scor-
ing approach described above, with the x-axis representing
coverage error and the y-axis representing efficiency error. Those
points closest to the graph’s origin represent pages that were most
accurately segmented, and segmentation quality decreases as
points progress away from the origin.

The segmentor used to generate the scores in the first plot
used down-sampled tiles and derived zones by drawing bounding
boxes around the resulting connected components along tile
boundaries. The second segmentor did the same down-sampling,
only the bounding boxes were drawn tightly around the data within
the tiles, rather than along the tile boundaries. Therefore, the first



segmentor’s zones were (by design) loosely defined causing more
coverage error than the second segmentor. The difference in per-
formance can be seen by comparing the two graphs. There tends to
be a horizontal shifting of results in the direction of decreased cov-
erage error, and there are more scores in the second plot closer to
the origin than in the first.
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Fig. 5. Scoring results using noisy segmentor.
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Fig. 6. Scoring results using more accurate segmentor.

This analysis along with other verification tests were con-
ducted, and the results of numerous pages were visually inspected
and compared. As a result, it was determined that these proposed
measures and procedures (even with their limitations) do in deed
capture the performance of the recognition system in an automated
way.

5. CONCLUSION

This paper introduces scoring methods developed to automati-
cally assess the performance of document recognition systems.
Advantages and disadvantages of two different approaches were
discussed. The first approach (based on zone overlap and nearest-
neighbors) is better applied to merged zones, whereas the second
approach (based on zone alignments) is better applied to nested

zones (such as those found in tables and graphs). Definitions of
coverage and efficiency error were presented, and scoring results
on real system output were provided that validated the usefulness
of these methods to compare different document recognition algo-
rithms.

Currently, there are no standard methods to measure the perfor-
mance of complex document recognition systems. The techniques
proposed in this paper require further refinement as discussed and
should be applied to a much larger set of documents and other
types of document segmentors. This work only examines the issue
of evaluating the spatial correspondence of zones. Future work
should incorporate assessing the performance of zone identifica-
tion tasks, such as measuring a system’s ability to correctly iden-
tify the contents of a zone as being comprised primarily of text,
graphics, math, etc..
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