Correlated Run Length Algorithm (CURL) for Detecting
Form Structure within Digitized Documents

Michael D. Garris
National Institute of Standards and Technology
Bldg. 225, Rm. A216
Gaithersburg, MD 20899

Abstract

An algorithm designed to detect intrinsic
form structure within binary digitized docu-
ments has been developed. This Correlated
Run Length algorithm automatically locates
and extracts line segments, line endings, and
combinations of line intersections including
corners, crosses, and T’s from images. These
structures, once detected, can be used as form
features to identify the form type in an image,
and they can be used to automatically identify-
ing entry fields containing information in need
of optical character recognition. This tech-
nique has several advantages over more con-
ventional approaches in that form structures
are detected without any a priori knowledge of
the specific form in the image, and these struc-
tures are detected directly from the original
image so that any distortions including trans-
lation, rotation, and scale are automatically
handled. The algorithm performs extremely
well on highly clurtered forms and noisy
images and is well suited for implementation in
a highly parallel processing environment.

1 Introduction

Imaging technologies have been rapidly
advancing as the performance of computers

In: Third Annual Symposium on Document Analysis and Information Retrieval, pp. 415-424, UNLYV, April 1994

and the intelligence of algorithms have contin-
ued to increase. Current document processing
technologies rely heavily on the use of forms
printed with drop-out inks and are overly con-
strained to rigid form design and printing spec-
ifications. Document processing applications
frequently cannot be limited to these con-
straints rendering the technology useless or
only partially useful. In order to effectively and
efficiently handle electronically scanned docu-
ments, automated document processing tech-
nologies must continue to improve.

The Correlated Run Length algorithm
(CURL) has been designed to support flexible
forms identification and entry field location.
These functions serve as font-ends to Optical
Character Recognition (OCR) systems. CURL
automatically detects a wide variety of struc-
tures frequently incorporated into the design of
a form. These structures include line segments,
line endings, and combinations of line intersec-
tions (corners, crosses, and T’s). These low-
level structures form higher-level constructs
including lines, boxes, and grids denoting form
regions and data entry fields. By detecting
these intrinsic structures, the form type of an
image can be identified.

The NIST Model Recognition System [1]
currently uses localized spatial histograms to
detect and locate the types of form structures

listed above. Every entry field on the forms
processed by the system is demarcated by a
bounding box like the entry field shown in Fig-
ure 7. The field isolation module of the system
uses a static template to direct localized histo-
gram searches in an attempt to locate the four
edges of each box. This is accomplished by
defining a region of interest in which both hor-
izontal and vertical histogram projections are
calculated. The corners of a box are located by
finding coinciding bins containing relative
maxima between the horizontal and vertical
projections.

The localized histogram technfque works
well when the boxes are well defined by bold
markings, when the boxes are more than suffi-
cient in size to comfortably contain the data
requested to be entered into the box, and when
the boxes are adequately spaced apart from one
another on the form. When a form does not
conform to these constraints, the accuracy of
the localized histogram technique quickly
degrades due to ambiguities introduced in the
histogram projections. These projections can
be used to describe orthogonal densities, but
they cannot be used to accurately detect com-
plex shapes, such as box corners, on cluttered
and cramped forms because the technique sim-
ply aggregates pixels in rows and columns
without taking pixel contiguity into account.

In his paper, “Image Segmentation with
Networks of Variable Scales”, Hans Graf
describes an experiment in which he studied
the application of a set of kernels for detecting
edges and corners in gray scale images of box-
cars.[2] The kemels define directions and
shapes of contrast change in local neighbor-
hoods. In the experiments described in Graf’s
paper, the kemnels were very successful in
detecting characters on the sides of boxcars.
The success can be attributed primarily to the
fact that the gray scale background of the box-
cars is relatively uniform, so that contrast
changes primarily occur around the characters
of interest. This technique suffers when applied
to binary scanned documents and forms that

are comprised almost entirely of edge informa-
tion. Hand print strokes, machine print text,
and form structures are all ambiguously repre-
sented by collections of edges. Therefore, con-
trast detection kernels detect contrast-based
structures at too fine a detail to be useful in
extracting higher-level form structures.

The algorithm presented in this paper
extracts larger-scale shape-based structures,
not contrast-based structures, and accurately
distinguishes hand print strokes and machine
print text from form structures. This paper
demonstrates how the CURL algorithm over-
comes the deficiencies of localized histograms
and contrast kernels by using vector correla-
tions that reward contiguity of pixels through
the use of run length values. Section 2 provides
a technical description of the algorithm, Sec-
tion 3 shows working examples for entry fields
and form structures, Section 4 points out vari-
ous implementation issues, and Section 5 dem-
onstrates CURL'’s tolerance to rotational
distortions.

2 Technical Description of CURL

2.1 An Overview

CURL correlates and aggregates pixels along
selected trajectories in order to detect and
locate shape-based structures within an image.
Shape is represented by at least two edge vec-
tors called an edge pair. The elements of the
edge vectors address pixel positions within the
input image, and these pixel addresses are
defined relative to a current pixel location
within the image. The edge pair is applied inde-
pendently to each pixel in the image, extracting
pixels along the specified trajectories. For
example, one edge vector may be defined to
extend horizontally 32 pixels to the right of the
current pixel, and another edge may be defined
to extend vertically 32 pixels below the current
pixel. CURL uses this edge pair definition to
detect upper-left corners of boxes. CURL is not
limited to linear edges only. A point-to-point

Correlated Run Length Algorithm (CURL) for Detecting Form Structure

Correlate Edge 3

Pairs o
Parallel Input » I =el.me2. Parallel Output
Image " Y Y Image
{pi} ‘ {s;if
/,,//: (rfr: 5
-——”/’ Accumulate Runs| 4 Sy |
Distribute Edge|_! “":___ Tm TLLL
Pairs il il
el,-j, e2,~j ’ il »]
4:::::1 Apply Non-linear| 5 ::1\1

Operator [~ ~
n

= A

i=1

RO Wa

J=1

Figure 1: Flow diagram describing the CURL algorithm.

correlation can be computed between any two
or more vectors representing any given shape
and the points within each vector may be
spaced apart from one another.

Applying an edge pair to each pixel posi-
tion in the image, an intersection is computed
between the two vectors of extracted pixels,
forming contiguous groups of correlated pixels
called runs. A non-linear operator is applied to
the length of each resulting run called a run
length. The non-linear accumulation of a run
length accelerates rapidly as the duration of the
contiguously correlated pixels increases. The
accumulation grows very little for uncorrelated
edge vectors because the runs are short. In this
way, edge pairs can be defined to detect arbi-
trary shapes.

Figure 1 illustrates the CURL algorithm as
a sequence of fundamental steps. First, a
selected set of edge pairs represented by box 1
are distributed across every pixel in input
image 2. The intersection in box 3 is computed
for each edge pair extracted from the input
image. Run lengths in box 4 are computed from

M. D. Garris

each intersection, and a non-linear operator in
box 5 is applied to the run lengths. Finally, each
pixel in output image 6 is assigned the accumu-
lated results from the non-linear operator for a
given pair of edges.

2.2 The Algorithm

For each pixel pjj in a binary image, two pixel
edges el ; and e2;; of equal length n are defined
with origins relative to p;;- The intersection of
the two edges form a single logical vector /,,.
[, = elijmeZij (hH
The vector /,, is divided into groups of con-
tiguous elements with values of 1, with each
group separated by one or more 0’s. Run
lengths are accumulated for each contiguous
group and stored in the list r,,,, where m is the
number of groups. The list of run lengths r,,, is
used to compute an output value s;; for each
edge pair belonging to the pixel pj; as follows:

000
000
0000000000000000000000000006000000000000000000000000
Q000000000000000000060000000000000000000000000000000
000

Q 9 0 0
QOOCOII I I T LI TTTTTQOT T I T I T I T IOttt tiitit11tl
COOQOTTTTTTTIIT lllUUlllllIllllll]JlllllIl]llll]Ill]
QOO0 T TN T I100 A LTI L T VI Tt taintentt
QOO0 I T LYTTTOOT I T T IV T T T T T TTOTTITIT TR T ITIl4111
QOO0 T100RO000000000000000000000000000000000000
GOOOILTTT00Q00G00000006000000000000000000000000000
QOO0 TT100Q00000000000000000000000000000100000000
Q000 1 T100Q00000000000000000000000000000000000000
000011 TEO0RO0000000000000000000000000000000000000
000011 1T 1O00QO0000000000600000000000000000000000000
00000 110000000 0000000600000000000000000000000000
Q0000 11100QLB000000000000000000000000000000000000
Q000 111000000000 00000000000000000000000000000000
QOO 11100000 006000000000000000000000000000000000
00000 T11060A0N0000000000000000000000006000000000000
Q000NN 11100000 0000000000000000110000000000000000600
000001 TTTO00QOO00000000000000001000000000000000000
QOO0 THT00Q0000060600000000000000000000000000000
Q000 ITTI00QOGC0000000000000000000000000000000000
GOOOOITTTOONOLOB0000000000000000000000000000000000
GOOOILTTTIO0QOR000000000000000000000000000000000000
00000000000 N0O0C00000000000000000000000000006000000
GOO0NOBO0000YOOO00000000000000000000000000000000000
0000 T1100Q00000000000000000000000000000000000000
00000HLETTO0Q00000000000000000000000000000000000000
000001 E1100Q0O06000000000000000000000000000000001
VOO0 E1100¢00000000000000000000000000000000000011
00000 T 1TO0Q000000000000000000000000000000.00000111
V000G TTTO0QUN000000600000000000000000000000001111
00000 1110000 000000000000000000000000000000001111
QO0OOHETETOOYOPOB00000000000000000000000000000111111
Q0O0OOIfLTE100Q00C00000000000000000000000000001111111
00000TI111006001000000000000000000000000000011111111
000001 11110001J0000000000000000000000000000F1111E111
000001 111100000000000000000006000000000001 111111110
GOOOOT11IT1100000000000000000000000000000011111111100
000001111100000000000000000001000000000111111111000
0000011E11000000000600000000000000000001111111110000
0000011110000060000000000000000000000011111111100000
000001111100000000000000000000000000111111111000000
000001 1T1100000000000000000000000001111111110000000
Q0000I1TEIO0000000000000000000000011111111100000000
0000011 1100000000000000000000000111E113110000000000
000001111100000000000000000000003111111110000000000
GO000111110600000000000000000001E111111100000000000

Figure 2: An example binary image containing a corner.

Y f(r) @)

k=1

where:

(rk) ZI 3)
t=1

For example, Figure 2 lists a portion of an
image containing the upper-left hand corner of
a box. Notice that the bottom-right hand por-
tion of the image contains pixel information of
what was entered in the box. In order to locate
the corner in the image, the first edge el is
defined as the row of pixels with its origin atp;;
and extending to the right n pixels, where n in
this example equals 32. The second edge €2 is
defined as the column of pixels with its origin
at p;; and extending downward 32 pixels. The
edge pairs for two pixels, ps s and p3 7, are
outlined in the figure. Both edges of ps 5 lie on

the corner, whereas only one edge for p |3 5 lies
on the corner.

Figure 3 illustrates how the value ss 5 is
computed by applying CURL to the edge pair
corresponding to ps 5 outlined in Figure 2. The
first two vectors in Figure 3 are the edges el 5
and e25 5. The third vector is the result of the
intersection of the two edges. The fourth line
contains the resulting run lengths accumulated
from each contiguous group of I’s resulting
from the intersection. The fifth line in the figure
lists the values computed for each run length
using equation (3). The last line shows the
result of the summing the values listed on the
fifth line according to equation (2).

Figure 4 illustrates how the value 537 is
computed by applying CURL to the edge pair
corresponding to py3 5 outlined in Figure 2
The first two vectors in the figure below are the
edges el}3 7 and €23 7. The third vector is the
result of the intersection of the two edges. The
fourth line contains the resulting run lengths
accumulated from each contiguous group of
1’s resulting from the intersection. The fifth

Correlated Run Length Algorithm (CURL) for Detecting Form Structure

elss : TTTHILTITITTIITI1100 1101111110111
255 TITILITTILII I L1100 1111111
Iy ¢ 1TLLLITDII1111111001111100111110111

r4 : 14,5,5,3
firy) 1015, 55, 55, 14
S5, = 1139

Figure 3: Correlated run length example for Ps5

elj37: I111001 100ttt tttintetnl
€23 7: 11000000010000000000000000000001
lz = 11000000010000000000000000000001
s 21,1
firg + 51,1
Si37 = 7

Figure 4: Correlated run length example for p, 37
elss : TYTTIT 0L EL IR 1000111111118 110111
€255 : TTTTILT Pt 100r11ei1111
ly, TTTTTI111 01111100111 11001Y1110111
€3 ¢ 1234567809I01112131400 12345001 234501 23
Ss5 = €37 C3
sss = 1139

Figure 5: Alternative implementation of equations (2) and (3).

line in the figure lists the values computed for
each run length using equation (3). The last line
shows the result of the summing the values
listed on the fifth line according to equation (2).

Comparing (s5 5= 1139) to (513 7=7) dem-
onstrates how CURL can be used to emphasize
corner information within a binary image. Note
that equation (3) is one of many possible
choices, which may be used to measure the cor-
relation between edge pairs. By replacing the
contiguous groups of 1°s in /,, with consecutive
increments of the run length counter, such as
shown in Figure 5, equations (2) and (3) may
be implemented as the dot product of the vector

M. D. Garris

¢, with itself. However, by using the approach
designated by equations (2) and (3), alternative
functions for f{r;) may be used. In fact, each
candidate function may be implemented as a
look-up table containing precomputed values
based on ry.

2.3 Edge Pair Definitions

To date, numerous edge pair definitions have
been studied. They include an upper left-hand
comer (c,j) pair, an upper right-hand corner
(cyy) pair, a lower left-hand corner (cy)) pair, a

Cul elii={py
€2 =1{pu
Cur el ij= {Pis
6'2t'j ={pu
cl el;i={py
€2 ={py
C)r el={py
e2;={py
Ih el;={py:
€2 = {py:
Iy el;i={pu
€2y = {p

k
+k
tk
ck
k
ck

k
tk

=i, .. i+n-1;1=j)
=i l=j, ..., jn-1}

=1, .., -+l 1=}
=i l=j,..,j+tn-1}
=1, .., i+n-1; 1=}
=i l=j,..,j-n+l}
=i, ..,i-n+l; 1 =j}
=i l=j ..,j-n+l}
=1, ..,i+n-1;1=j)
=1, .., -+l 1=}
=i;l=j ..., j+tn-1}
=il=j ..,jn+l}

Figure 6: Edge pair definitions used by CURL.

lower right-hand corner (c;;) pair, a horizontal
line (Ip) pair, and a vertical line (1,) pair. Figure
6 lists the definitions of these edge pairs using
set notation. These definitions assume the ori-
gin of an image is its upper left-hand corner.
The edge pair examples outlined in Figure 2
are of type ¢,

Note that CURL is not limited to the set of
linear edges shown in Figure 6. A point-to-
point correlation can be computed between any
two vectors representing any given shape and
the points within each vector may be spaced
apart from one another. Also, intersections may
be computed on more than two edge vectors
simultaneously. For example, T-shaped struc-
tures are detected with three edges, and cross-
shaped structures are detected by using four
edges.

3 Example Results
3.1 Entry Field Results

Based on the algorithm described above, each
of the edge pairs in Figure 6 were studied on
different test images. Figure 7 shows an exam-
ple using the upper-left corner edge pair, ¢,
with the original test image on the left, the gray
scale results in the middle, and the thresholded

binary results on the right. Notice that the ¢
edge pair locates the upper left-hand corner of
the box while ignoring all other pixel informa-
tion in the image. Similar results are achieved
when using the ¢, ¢, and ¢, edge pairs.

Figure 8 shows an example using the hori-
zontal line edge pair, I}, with the original image
on the left, the gray scale results in the middle,
and the thresholded binary results on the right.
Notice that the I;, edge pair locates the horizon-
tal sides of the box while ignoring all other
pixel information in the image. Similar results
are achieved when using the 1, edge pair.

Figure 9 shows an example using all the
edge pairs defined in Figure 6 with the original
image on the left, the gray scale results in the
middle, and the thresholded binary results on
the right. Notice that the sides and corners of
the box are detected while ignoring all other
pixel information in the image. The results
from each edge pair are combined by simply
accumulating the s;; for each edge pair into a
single output element.

3.2 Form Results

This section demonstrates how CURL can be
used to extract intrinsic form structures from
an image. In Figure 10, a section of a form is

Correlated Run Length Algorithm (CURL) for Detecting Form Structure

Figure 9: Results from using all 6 edge pairs.

shown whose entry fields have been filled in
with machine printed data. The form in this
example is representative of an entire image
database produced by NIST. NIST Special
Database 2 (SD2) is a collection of IRS 1988
1040 Package X forms completed with
machine printed data generated by a computer
model in order to simulate real tax data.[3] Fig-
ure 11 shows the results obtained by running
CURL on the form image using the line and
corner edge pair definitions in Figure 6. Notice
that the resulting image contains the line and
grid structures of the form and is completely

M. D. Garris

void of any font information. This is true even
though the majority of the font data entered in
the fields intersects these structures. The infor-
mation in Figure 11 can be used to identify the
form and it can be used to locate data entry
fields on the form. Notice that CURL detected
the corners of the boxes for lines 6a, 6b, and 6d.

Figure 12 shows a section of a form com-
pleted with hand print. The CURL results are
shown in Figure 13. The form in this example
is representative of an entire image database
produced by NIST. NIST Special Database 6
(SD6) 1s a collection of IRS 1988 1040 Pack-

o} X] gy yas g worase

r.

wsverm ay mw g

Tww - ew) J e e v v e eamtiwigy

60 [Yourselt 1f someone (such as your parent) can claim you 33 2 dependent, do not check box 6a. No. of bonss

Butbesuretochecktheboxonline33bonpage2. cheched on 62
;;nptions B LRSPOUSE. . . o e e e e L] —
ructions ¢ Dependents: @O 1531 1g0 5 o aidr, dupoadont’s |G Meefmethe g of your
on poge 8) (1) Name (i, il and s mase) e | il sty somber Oheotonty ™alie™ hdwmonte
X {A39i04i9862]Niece .. I 3 olwiwthyw _7_
Shimer Linn X } A91:22:5904]|StpMo 5 o $gu'tim with
1 more than 6 Nasson Yamhill X 1A97:04i1100]Sister 9 Vit _ 0
dependents, see Albright Placer X 1 A19:80i7180{Fa-law 1 No. of other
gy ghons on Reedley Cloud X | A17:0211922 |[Nephew 1 Sopndual it
Taylor Emmet X 1 a11i64:3500IM0= 6 .
@ Myour child didn't ive with you but is claimed as your dependent under » pre-1985 agieement, check here . [E‘i“g‘ :;l
e Totsl numberofexemptionsclaimed. L L ..o .. Ll BT
7 Wages salaries, tips, efc. (attachForm()W-2)« . « .«0 .. 7 334,520 64
income 82 Taxable interestincome (also attach Schedule 8ifover$400) 8o §3.,318] 92
Please attach b Tax-sxempt interest income (see page 11). DON'T inciude on line 82 "

Figure 10: Results from using the c,; edge pair.

Figure 11: Results from using the 1;, edge pair.

age X forms completed with hand printed data
generated by a computer model in order to sim-
ulate real tax data.[4] This example is extreme
in that the hand print is large compared to the
size of the fields, the hand print is very bold,
and the hand printed data intersects frequently
with the structures on the form. In light of this
worse-case example, CURL performs very
well. Most of the hand printed data is removed
with only a few spurious vertical strokes and
some salt and pepper noise remaining. The
noise is primarily caused by the vertical stokes
in the hand printed dollar signs.

4 Implementation Issues

In this section, issues related to implementa-
tion are discussed. The CURL algorithm is
modular allowing many different functions for
f{r;) to be used. Note that equation (3) can also
be implemented as the dot product of the two
edges as shown in Figure 5, and the values for
f{r;) can be precomputed and stored in a look-
up table. To date, no equation has been found
to perform superior to equation (3) with an
edge length of 32 when applied to cluttered
forms scanned at 12 dots per millimeter. Also,
the algorithm has been extended to detect com-

Correlated Run Length Algorithm (CURL) for Detecting Form Structure

. e v el B e R T L T

7 Wages, salaries, tips, otc. (sttach Form())W-2) e e e 2 @
income 8a Taxable interest income (atso attach Schecule 8 ifover $400) 8 | OF
MM b Tax-exompt interest income (see page 11). DON'T include on line 8a
Gopr 8. your 2. 9 Dividendincome (sisoattach Schedle BH over $400) 3
.mzp 10 Tauabie refunds of state and local income taxes, i any, from worksheet on page 11 of instructions . . _%:_.

13 Alimonyreceived L L L L e e e
"‘”“Mhm 12 Business income or (loss) (altech ScheduwieC). 12 | -
mmm 13 Copital gain or (loss) (sttach Schedule D) 13

14 Capital gain distributions not reportedon line 13 (seepage1l) 14 74

13 Other gains or (losses) (aftach Formd97) [}

16a Tots! {RA distributions . . Taxable smount (see page 11) | 16%

17a Total pensions snd annuities b Taxable amount (see page 12) 1170
I_ 18 Rents, royatties, partnerships, estates, trusts, otc. (attach Schedule£) 18 | &

19 Farmincome or (loss) (sttach Schodule F). . . ., 19

20 Unempl tion ¢ Y(seepage13) 20 | fed
Pleste 21s Soc-al secunty bemms (seepageld)

:}""“""" b Taxabie amount, if any, from the worksheet on page 1&0
order here 22 Other income (st type and amount—see page 13) &—G 22

23 Addthe

wmbz

m.nmungmcdunmmmmm_zgrp‘u

Figure 12: Results from using the c,; edge pair.

Figure 13: Results from using the 1, edge pair.

binations of line intersections including T’s
and crosses by computing the intersections of
edge triples and edge quadruples. Edge pairs
have also been developed for detecting circular
shapes in an image.

This technique has several advantages over
more conventional approaches. First, form
structures are detected without any a priori
knowledge of the specific form in the image.
For example, no form template is required.
Second, these structures are detected directly

M. D. Garris

from the original image so that any distortions
including translation, rotation, and scale are
automatically handled. Therefore, global
descewing and normalization of the image is
avoided. One disadvantage of this algorithm is
that a serial implementation is computationally
expensive because results are computed and
stored for every pixel in the input image. How-
ever, CURL is well suited for implementation
in a highly parallel processing environment.

v

Eq. (1):

Input Image Shifts and Intersection

A\l

Y

Loop on
Edge Length

Eq. (3): Run Length Increments / Resets

Y

Eq. (2):

Output Image Increments

Figure 14: Parallel implementation of CURL.

The algorithm has been successfully imple-
mented in serial on a Sun Microsystem’s
SPARCStation 2 and in parallel on a DAP
510c[5], a massively parallel Single Instruction
Multiple Data (SIMD) computer manufactured
by Cambridge Parallel Processing (CPP).! The
serial implementation sequentially computes
equations (1), (2), and (3) one pixel at a time.
The parallel implementation distributes these
equations across multiple processors so that
parts of each equation are computed for all the
pixels in the image at once. Equation (1) is
reorganized so that one element from each pix-
els’s logical vector, /,, is calculated simulta-
neously. This is accomplished by a set of
parallel image shifts followed by a parallel
intersection. The run lengths, r,,, used in equa-
tion (3) are also distributed across the pixels,
Pyj» so that each pixel has associated with it a
current run length counter that is incremented
or reset in parallel based on the results of the
parallel intersection from equation (1). The
output pixels, s, in equation (2) are then incre-

1. Sun SPARCStation 2 and CPP DAP 510c or
equivalent commercial equipment may be identi-
fied in order to adequately specify or describe the
subject matter of this work. In no case does such
identification imply recommendation or endorse-
ment by the National Institute of Standards and
Technology, nor does it imply that the equipment
identified is necessarily the best available for the
purpose.

mented in parallel by the square of their corre-
sponding run length counters. In order to
calculate every element of every pixel’s logical
vector, /,,, the above steps must be repeated n
times. The parallel implementation of CURL is
illustrated in Figure 14. Currently, the parallel
implementation runs 40 times as fast as than
the serial version.

5 Algorithm Robustness

In the examples shown in this paper, CURL
utilizes correlations of linear edge pairs to
detect line segments, and CURL utilizes corre-
lations of orthogonal edge pairs to detect cor-
ners. One would expect the performance of
CURL to degrade as the image of a form
becomes increasingly rotated. An experiment
was conducted in which the entry field image
shown in Figure 7 was perturbed by increasing
degrees of rotational skew and then processed
by CURL. The following figures show that the
algorithm can tolerate significant rotational
skew. CURL successfully detects both line
segments and corners between +6 and -6
degrees of rotation as shown in Figure 15 and
Figure 16. At rotations greater than 6 degrees,
detected line segments begin to break up. How-
ever, the box corners are consistently detected
even at +12 and -12 degrees of rotation as

Correlated Run Length Algorithm (CURL) for Detecting Form Structure

.N

Figure 15: CURL performance when image is rotated 6 degrees clockwise.

Ql

[/

Figure 16: CURL performance when image is rotated 6 degrees counter-clockwise

N

Figure 17: CURL performance when image is rotated 12 degrees clockwise.

Wy

e

- w
P

Figure 18: CURL performance when image is rotated 12 degrees counter-clockwise.

M. D. Garris

shown in Figure 17 and Figure 18. This clearly
demonstrates how CURL gracefully degrades
with increasing amounts of rotational skew.

6 Conclusions

An algorithm designed to detect intrinsic form
structure within binary digitized documents
has been presented. It has been shown that
CURL automatically locates and extracts line
segments and corners from images, overcom-
ing the deficiencies of localized histograms and
contrast kernels by using vector correlations
which reward contiguity of pixels through the
use of run length values. CURL extracts larger-
scale shape-based structures, not contrast-
based structures, and accurately distinguishes
hand print strokes and machine print text from
form structures. CURL is not limited to linear
edges only. A point-to-point correlation can be
computed between any two vectors represent-
ing any given shape and the points within each
vector may be spaced apart from one another.
Also, intersections may be computed on more
than two edge vectors simultaneously, detect-
ing T-shaped structures using three edges, and
cross-shaped structures using four edges. This
technique has several advantages over more
conventional approaches in that form struc-
tures are detected without any a priori knowl-
edge of the specific form in the image, and
these structures are detected directly from the
original image so that any distortions including
translation, rotation, and scale are automati-
cally handled. One disadvantage of this algo-
rithm is that a serial implementation is
computationally expensive because results are
computed and stored for every pixel in the
input image. However, it has been demon-
strated that a parallel implementation of CURL
on a massively parallel SIMD computer, CPP
DAP 510c, runs 40 times as fast as than the
serial version on a Sun Microsystem’s SPARC-
Station 2. It was also demonstrated in this
paper that CURL gracefully degrades as

increasing amount of rotational skew are added
to the image. The algorithm detected both line
segments and corners between +6 and -6
degrees of rotation, and the algorithm detected
corners up to +12 and -12 degrees of rotation.
In general, CURL is a shape-based feature
detector. The algorithm was developed as a
flexible front end to optical character recogni-
tion systems, extracting structures useful for
automatically identifying form types and locat-
ing entry fields on forms.

References

[1] M. D. Garris et. al., “Massively parallel
implementation of character recognition
systems,” in Conference on Character
Recognition and Digitizer Technologies,
Vol. 1661, SPIE (San Jose, California),
269-280, February 1992.

[2] H. P. Graf, C. Nohl, and J. Ben, “Image
segmentation with networks of variable
scale,” Advances in Neural Information
Processing Systems, Vol. 1V, Morgan
Kaufmann, (Denver Colorado), 480-487,
December 1991.

[3] D. L. Dimmick, M. D. Garris, and C. L.
Wilson, “Structured forms database, Tech-
nical Report Special Database 2,” SFRS,
National Institute of Standards and Tech-
nology, December 1991.

[4] D. L. Dimmick and M. D. Garris; Struc-
tured forms reference set 2, Technical Re-
port Special Database 6,” SFRS2,
National Institute of Standards and Tech-
nology, September 1992.

[5] P. M. Flanders et. al., “Efficient high-level
programming on the AMT DAP,” in IEEE
Proceedings: Special Issue on Massively
Parallel Computers, 79(4):524-536, April
1991.

Correlated Run Length Algorithm (CURL) for Detecting Form Structure

