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ABSTRACT

This paper presents a neural network solution that combines
character segmentation and character recognition concurrently
as a single task. Current segmentation methods utilize tradi-
tional image processing techniques such as spatial histograms
which are only 60% accurate on handprint. Using traditional
techniques for segmenting handprint in a model recognition
system running on a massively parallel machine requires 55%
of the entire processing time while the neural network classifi-
cation requires 0.34% of the time. A neural network based solu-
tion for segmentation offers improvements in both speed and
accuracy.

In order to demonstrate feasibility, initial experiments were con-
ducted on machine printed digits. The results demonstrate that
neural networks can be used for concurrent segmentation and
recognition. Two different neural network solutions are studied,
one based on a self-organized multi-map architecture, and the
other based on the use of multi-layered perceptrons. Both
approaches achieve 100% segmentation and recognition over
a test set of 1,104 image samples. The multi-layered percep-
tron solution processes the activation signals from two sepa-
rately trained networks whereas comparable results are
achieved using the raw associations produced from a single
self-organized network.

1. INTRODUCTION

Character recognition, the classification of well formed and
cleanly segmented characters, has been studied in great detail
in the pas'(.1'5 What is often avoided in character recognition
research is the study of automated segmentation, the separa-
tion of text images into individual letters, one letter per image.
Without this essential component, character-based classifiers
are rendered useless.

A model recognition system has been implemented on a mas-
sively parallel computer at NIST.6 The system consists of eight
functional components. The loading of the image into the sys-
tem and storing the recognition results from the system are /O
components. In between are components responsible for
image processing and recognition. The first image processing
component is responsible for image correction for scale and
rotation, data field isolation, and character data location within
each field; the second performs character segmentation; and
the third does character normalization. Three recognition com-

154

ponents are responsible for feature extraction and character
reconstruction, neural network-based character recognition,
and low-confidence classification rejection. Studies have
shown that traditional image processing techniques used for
character segmentation, even when implemented on a parallel
computer, require 55% of the system’s processing time at a
rate less than 8 character/second.” A form containing 130
handprinted characters requires 17 seconds of processing just
for character segmentation. This is much longer than the 1 sec-
ond per page throughput required by many automated docu-
ment processing applications. In order to improve
segmentation, alternative methods are being explored.

One likely way of improving character segmentation through-
put is via a neural network implementation. The model sys-
tem’s recognition component is implemented using a neural
network which requires only 0.34% of the system’s processing
time. Using the parallel computer, classification rates as high
as 10,100 characters/second can be realized. A neural network
successfully trained to segment characters could be expected
to provide similar performance.

Neural network-based segmentation has been the focus of
recent work.82 One interesting approach is to combine the
tasks of character segmentation and character recognition into
a single neural network solution. This also has been the focus
of recent research.'®'! The work presented in this paper is
unique for several different reasons. First, the network solu-
tions are small and robust; second, an unique class of objects
is used for training; and third, the network solutions are imple-
mented on a massively parallel computer.

2. ANTI-OBJECTS

Segmentation can be thought of as a two-object classifier. If a
character segmentor is given a visual receptor field, imple-
mented as a sliding window, then the task of the segmentor is
to distinguish occurrences of a complete character in its visual
field from occurrences of parts of neighboring characters.
Images of isolated whole characters are referred to as true
objects. The opposite of true objects are images centered on
the space between two neighboring characters, referred to as
anti-objects. The images contained in the segmentor’s visual
field will be referred to as frames. Figure 1 shows an example
of a frame containing a true object on the left and a frame con-
taining an anti-object on the right.
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Figure 1. Example of a frame containing a true object (left) and
a frame containing an anti-object (right).

A simple segmentor can be implemented by training a neural
network to distinguish true objects from anti-objects. A window
can be incrementally moved across a line of text producing a
sequence of image frames. Frames classified as anti-objects
demarcate character boundaries, and frames classified as true
objects represent detected character images.

3. NETWORK ARCHITECTURES

Results from two different network architectures are studied in
this paper. The first network presented is a self-organized
multi-map algorithm developed at NIST. The second network
solution studied uses a multi-layered perceptron (MLP) archi-
tecture.

3.1 Self-organized Network

The self-organizing multi-map algorithm is named Feedforward
Association Using Symmetrical Triggering (FAUST).12 FAUST
provides a parallel, multi-map, self-organizing, pattern classifi-
cation procedure similar to those known to exist in the mid-level
visual cortex.'2 This neural network uses a feed-forward archi-
tecture which allows multi-map features stored in weights act-
ing as associative memories to be accessed in parallel and to
trigger a symmetrically controlled parallel learning process.
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Figure 2. Diagram of the FAUST architecture.

A diagram of the FAUST architecture is shown in Figure 2. This
network allows features of different data type, such as binary
image patterns and multi-bit statistical correlations, to be
updated in parallel. This capability is provided by the parallel
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pattern association and relevance paths shown in Figure 2 and
by the existence of separate input modules for each path. The
number of feature types is shown as two (pattern and rele-
vance) in the network diagram for this application, but the archi-
tecture is not restricted to any number or kind of feature types.

The FAUST network used in these experiments used two asso-
ciative memories for each self-organized class. One is a pat-
tern memory, an image that becomes an average of all images
matched to the class. The other is a relevance memory, a mem-
ory that stores the importance of each pixel location in the pat-
tern memory. No feature extraction is done; 1024-pixel binary
images are the inputs to the network.

In the comparison units, the image is compared in parallel to
the memories stored for each of the classes, and similarity val-
ues are computed. Two similarity values are computed for each
class, one from the pattern comparison and one from the rele-
vance comparison. The triggering unit decides if the image
belongs to a known class or should be assigned to a new class.
If both similarity values are above a given threshold, the image
is assigned to the tentative class; the pattern memory and rel-
evance memory use the image for learning. Otherwise a new
class is begun and the image is used for learning by the new
class. The total number of classes is determined by the training
data and the threshold values chosen. After learning is com-
pleted on all images, each class is assigned to a character. Up
to this time, the identity of each input image has not been used.

The three essential features of FAUST are: 1) Different feature
classes use individual association rules for pattern compari-
son. 2) Different feature classes use individual learning rules
for pattern modification. 3) All feature classes contribute sym-
metrically to learning.

3.2 MLP Network

Results using a MLP network, a more traditional neural network
architecture, are also presented.'# This network classifies by
generating feedforward activations across a fully connected
network containing an input layer, one hidden layer, and an out-
put layer. Supervised training is done using Scaled Conjugate
Gradient (SCG)'® learning. Using the MLP architecture trained
with Gabor feature vectors, character recognition accuracy of
99.8% for medium quality machine print has been demon-
strated. 6

Gabor functions are a set of incomplete nonlinear functions
which reduce random image noise and smooth irregularities in
image structure by acting as spatially localized low-pass filters.
Gabor functions provide the minimum combination of uncer-
tainty in position and spatial frequency resolution, and they
match the visual receptor field profiles of mammalian eyes.'’
Figure 3 illustrates how Gabor functions can be tuned accord-
ing to spatial extent, orientation, and phase.

These functions can be used in two different ways. Gabor
reconstructed characters are enhanced by emphasizing the
body of the character, reducing both the variations along its
edges due to digitization and by normalizing its stroke width.'®
These functions can also be used to create feature vectors.



Each basis function applied separately to the character image
produces a coefficient value. A feature vector of coefficient val-
ues can be computed by applying a set of basis functions to a
single character image. This feature vector can then be used in
place of the original character image by a neural network.

Figure 3. Example of 4 differently tuned Gabor functions.

The coefficient value vectors are especially useful in reducing
the input dimensionality to MLP networks. For example, 32
tuned Gabor functions, when individually applied to an image,
produce a vector of 32 coefficient values. The MLP networks
studied in this paper were trained on these 32 coefficients
rather than on the 1,024 pixels from the original character
image. This dimensional reduction increases the generaliza-
tion capabilities of the network'®, decreases classification
times, reduces training times, and requires smaller sized train-
ing sets.

4. COMBINED SEGMENTATION AND RECOGNITION

Based on the theoretical segmentor described in Section 2,
experiments were designed to combine segmentation with rec-
ognition. It was decided that initial experiments should be run
on the relatively constrained environment of machine printed
digits. Numerous experiments were conducted, two of which
are discussed here.

4.1 Single Network Solution

The first set of experiments used a single trained network to
perform both character segmentation and recognition. Net-
works were trained to classify the ten digit classes, “0” through
“9”, plus an additional class, the space character, which is sim-
ply an empty frame. Using this training strategy, the space
character represents the most extreme case of anti-object, one
which is void of any character image data.
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4.1.1 FAUST Results

The FAUST network was trained using 1,100 input patterns.
Each pattern was a character image scale normalized to 32 by
32 pixels. The training set contained 100 examples of each
digit class, “0” through “9”. In addition 100 space characters,
blank white images, were included. The training digits were
created by segmenting a full page of 12-point Courier machine
print produced from a laser printer. The digits were scanned at
300 dots per inch binary, and a segmentor, using traditional
image processing implemented on a massively parallel com-
puter, was used to automatically segment the page of text.”
Upon training, the self-organizing network created twelve pairs
of memories, two classes for the digit “0”, one class for each of
the remaining nine digits, and one class for the space charac-
ter.

A testing set was created by incrementally moving a window
along a line of text and cutting successive frames. A line of 12-
point Courier text containing 80 digits in the repeated order of
“0” through “9” was used. The repeated order minimized the
number of anti-objects used in these experiments. A window,
32 pixels in width, was incremented in steps of 2 pixels across
the line of digits creating a sequence of 1,104 individual
frames. A sequence of frames from the test set with a window
increment of 4 pixels is shown in Figure 4.
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Figure 4. Sequence of test frames.

Figure 5 plots the associative memory activations produced
when the trained FAUST network was presented the entire
sequence of 1,104 testing frames. The signal responses pro-
duced from each frame presentation are plotted for the twelve
self-organized memories. Successive frame presentations are
represented horizontally, left to right. The associative memory
responses are stacked vertically as separate signal channels.
A repeating pattern in signal spikes can clearly be seen in this
plot. As the frames proceed left to right, the true objects, “0”



through “9”, periodically become centered. When this occurs,
the appropriate FAUST memory fires strongly. Any time a
frame contains an anti-object the network activation is
absorbed by the memory associated with the space character
(sp). The top associative memory in Figure 5 never receives
any signal because it has a very low statistical relevance map
due to its pattern memory being matched with only a single
example of a “0”. The results in Figure 5 demonstrates how a
simple network trained on ten digit classes and a space char-
acter can be used to distinguish true objects from anti-objects
and concurrently be used to classify the true-objects.
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Figure 5. FAUST network responses.

4.1.2 MLP Results

Using the same single network strategy, a MLP network was
trained using Gabor feature vectors. Each feature vector con-
tained 32 coefficients created by applying 32 spatially tuned
Gabor functions to a 32 by 32 scale normalized character
image. The Gabor functions were tuned to the four quadrants
of the normalized image with four equally spaced orientations
within each quadrant and both sine and cosine phases.15 The
consistent dimensions of 32 are no coincidence. The massively
parallel computer used to compute the coefficients contains
two 32 by 32 grids of processing elements.

The MLP network was trained using 5,192 Gabor feature vec-
tors. The training set contained 720 feature vectors from
images of each digit class, “1” through “9”, and 720 feature vec-
tors representing the space character. The network contained
32 input neurodes, 32 hidden neurodes, and 11 output neu-
rodes. After SCG training, the MLP network was tested using
feature vectors computed from the same sequence of 1,104
frames used to test the FAUST network.

The results from testing the MLP network are plotted in Figure
6. The presentation of Gabor feature vectors computed from
successive test frames is represented horizontally, left to right.
The signals of the eleven output neurodes are stacked verti-
cally. The results shown here are dramatically different from the
results produced by the FAUST network in Figure 5. The output
neurode activations of the ten digit classes contain significant
noise.
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Figure 6. MLP network responses trained on 0-9 and space.

Test Frames

Notice that the signal plotted for the output neurode represent-
ing the space character is very periodic with local minima
occurring at regular intervals. Upon inspection, it was found
that the frames coinciding with the points of local minima con-
tained images of centered characters. Figure 7 shows the
results of using the signal from the space character as a shunt
across the other channels so that when the space character
signal is strong the network classifications are suppressed. The
10 signals in this figure are the result of multiplying the signals
from the digit class neurodes in Figure 6 by one minus the sig-
nal from the space character neurode. Combining the MLP net-
work’s activations in this way removes the majority of noise
shown in Figure 6. The same repeating pattern seen with the
FAUST results in Figure 5 can be seen in Figure 7 with noise
remaining within the “1” and “2” channels.
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Figure 7. Signals from shunting 0-9 with the space signal.
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The singie network strategy, which works well with the FAUST
network, is not as effective with the MLP network. This differ-
ence can be intuitively linked to the use of Gabor feature vec-
tors. The spatially tuned Gabor functions used to produce the
32-coefficient feature vectors work as coarse stroke detectors.



Ambiguities arise when frames of anti-objects contain vertical
strokes and curvature pieces of neighboring characters. These
artifacts contribute to the false positive spikes shown in the sig-
nals for digit classes “1” and “2".

4.2 Two Network Solution

Experiments were conducted to improve the performance of
the MLP network shown in Figure 7. A second MLP network
was trained to classify frames into the two general categories,
true objects and anti-objects. This new network is referred to as
the object/anti-object network or OA network. Unlike the train-
ing of the single network solution, which generalized all anti-
objects into a single space character, the OA network was
trained with frames containing pieces of two neighboring char-
acters with their intervening space centered in the frame.

The OA network was trained using 915 Gabor feature vectors.
The training set contained 46 feature vectors from images of
each digit, “1” through “9”, assigned to the true object class. In
addition, the training set contained 455 feature vectors com-
puted from real anti-objects. Each anti-object was created by
centering a window over the cut-point made by the page seg-
mentor when separating two neighboring digits. The OA net-
work was an MLP network containing 32 input neurodes, 16
hidden neurodes, and 2 output neurodes. The OA network was
trained using SCG with all feature vectors of digits mapped to
the first output neurode and with all feature vectors of anti-
objects mapped to the second output neurode. in order to
emphasize training on the space between characters, all 915
feature vectors were computed from images in reverse video,
white print on a black background. The importance of reverse
video training was not explored and is left to future study.

The OA network was tested with the same test set used with
the single network solution, except in reverse video. Analyzing
the activations of the OA network revealed a very well defined
anti-correlation between the true object and anti-object neu-
rodes. Based on this observation, a two network solution was
designed. Figure 8 combines the shunted digit signals shown
in Figure 7 with the true object signal (to) from the OA network.
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Figure 8. Shunted signals from Figure 6 with the true object sig-
nal from the OA network.
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Figure 9 shows the results after combining the two network
responses. This was accomplished by thresholding the OA net-
work’s true object signal and creating a logical mask at points
of local maxima. All digit signals from the first network not coin-
ciding with local maxima in the true object signal from the OA
network were set to 0. This is equivalent to only accepting clas-
sifications from the first network’s shunted digit signals when
the OA network’s true object activation is significantly high.
This two network solution results in 100% correct segmentation
and recognition when presented the 1,104 frame testing set.
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Figure 9. Results produced by combining the signals from two

MLP networks, one trained to classify 0-9 and space, the other
trained to distinguish true objects from anti-objects.
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5. MERITS AND LIMITATIONS

The merits of the work in this paper are three-fold. First, the net-
work solutions presented are based on the definition of anti-
objects. This concept provides a new implementation tech-
nique whereby simple and yet powerful training strategies are
possible. This was demonstrated through the single network
solution based on the self-organizing FAUST algorithm. The
FAUST network was successfully trained on a single space
character which served as a generalization of all possible anti-
objects. This generalization capability is important because for
n true objects there are O(n?) anti-objects. Second, the MLP
implementation using two separately trained networks is very
compact, avoiding the failure of generalization which is associ-
ated with large networks.'® Third, the anti-objects used in train-
ing the MLP networks did not require manual labeling of center
points and were automatically derived from a segmentor based
on traditional image processing techniques.” This greatly sim-
plified the building of anti-object training sets.

The results presented in this paper have been based on
machine printed digits. All training and testing has been con-
ducted on a single font style and size. These solutions assume
that a near-optimal window size and increment for creating
frames exists. The implications of this assumption are small
when working in the relatively constrained environment of
machine print. However, it is likely that the details of this
assumption will have to be addressed in order to successfully



apply these solutions to handprinted text. Dynamic window
control will be the focus of future research.

6. CONCLUSIONS

Neural network solutions show great promise in improving the
speed and accuracy of character segmentation. In addition,
concurrent segmentation and recognition solutions are possi-
ble. Two solutions based on the definition of anti-objects have
been studied. The first solution was based on a single network
trained to classify machine printed digits and a space charac-
ter. This strategy was very successful using the self-organized
FAUST network. The same training strategy when applied to an
MLP network trained with Gabor feature vectors contained a
high number of false positive classifications. This can be attrib-
uted to ambiguities existing in the feature space. To eliminate
these false positives, a second MLP network was trained to dis-
tinguish true objects from real anti-objects. Using the second
network’s activations as a mask, the false positives were com-
pletely eliminated. Both solutions resulted in 100% correct seg-
mentation and recognition when presented a set of 1,104 test
images.
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