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Abstract: We present a quantum-mechanical theory to describe narrow-
band photon-pair generation via four-wave mixing in a Silicon-on-Insulator
(SOI) micro-resonator. We also provide design principles for efficient
photon-pair generation in an SOI micro-resonator through extensive nu-
merical simulations. Microring cavities are shown to have a much wider
dispersion-compensated frequency range than straight cavities. A microring
with an inner radius of 8µm can output an entangled photon comb of 21
pairwise-correlated peaks (42 comb lines) spanning from 1.3µm to 1.8µm.
Such on-chip quantum photonic devices offer a path toward future integrated
quantum photonics and quantum integrated circuits.
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1. Introduction

Quantum-entangledphoton pairs play a key role in quantum information processing appli-
cations such as quantum key distribution, quantum teleportation, and linear optical quantum
computing [1]. Traditional sources produce such photon pairs using spontaneous parametric
down conversion (SPDC) in bulkχ(2) nonlinear crystals [2,3], and more recently, spontaneous
four-wave mixing (FWM) inχ(3) standard optical fibers [4–6] and photonic crystal fibers [7,8].
However, the common drawback for all these sources is that they do not offer an easy path to
scalable integration. As quantum optical circuits become increasingly complex to handle more
and more qubits, it is highly desirable to develop a compact and efficient way to produce and
propagate photonic qubits while preserving quantum coherence among them. Silica-on-Silicon
waveguide quantum circuits [9] have emerged as an efficientpassive guide for single photons.
On the other hand, compactactive devices for generating photon pairs demonstrated so far in-
clude quantum dots [10], SPDC in quasi-phase-matched microphotonic waveguides [11–14],
and FWM in Silicon-on-Insulator (SOI) nanophotonic straight waveguides [15,16] and micror-
ing resonators [17]. Among these, SOI devices appear most integration-compatible by leverag-
ing the mature Si fabrication technology from the integrated circuit industry. As the bending
loss decreases exponentially with increasing core-cladding refractive index difference, the high
index contrast between crystalline Si and its surroundings (air and/or SiO2) enable ultrasmall
bending radii (severalµm) without incurring high loss, thus enabling large-density integration
of SOI devices in a single platform.

Both SOI straight waveguides and microring resonators are of great interest: the former are
capable of generating broadband FWM photon pairs, whereas the latter output narrowband
photons. Classically, the field enhancement effect by a microring resonator has been studied
in Ref. [18] with GaAs microring resonators, and in Ref. [19] with SOI microring resonators.
Quantum mechanically, there are several experimental demonstrations of photon pair genera-
tion in straight SOI waveguides [15, 16], and a quantum theoretical description has also ap-
peared [20]. For mircoring resonators, Ref. [17] demonstrates photon pair generation exper-
imentally, but uses classical arguments from Ref. [18] to explain their experimental results
which leads to certain discrepancies. This highlights the need for a quantum theory for de-
scribing resonator-enhanced photon-pair generation in SOI micro-cavities, which we present in
Section 2. Our theory is also markedly different from the straight-waveguide quantum theory in
Ref. [20] in that our theory deals with FWM in a resonant cavity while Ref. [20] treats FWM in
a non-resonant structure, with the emission bandwidth from the former being at least 3 orders
of magnitude narrower than the latter. This helps address the issue of mode-mismatch between
photonic and material qubit systems by narrowing the difference in inherent bandwidths, which
is now an area of much research interest [21]. In addition, instead of using Heisenburg picture
with operator evolution as done in Ref. [20], our theory uses Schrödinger picture with state
vector evolution, which facilitates explicit calculation of the final two-photon wave function
and spectral characteristics. Section 3 is devoted to discussing important design principles for
SOI microring resonators developed through extensive numerical modelling. Straight-cavity
resonators are studied in Section 4, and are found to be generally inferior to their ring-shaped
counterparts in terms of enhancing FWM photon-pair production. We conclude with an outlook
for future work in Section 5.

2. Quantum theory of two-photon state generation via cavity-enhanced four-wave
mixing

FWM is a third-order [χ(3)] nonlinear process, in which 2 pump photons are absorbed and a
pair of energy- and momentum-conserving daughter photons (referred to as signal and idler)
are generated, satisfying 2ωp = ωs+ωi and 2~kp =~ks+~ki , whereωp,s,i and~kp,s,i are the photon
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frequencies and wavevectors, and the subscripts p, s, and i stand for pump, signal, and idler,
respectively. Here we focus on a continuous-wave (CW) pump scenario, which is also the most
relevant pumping scheme for a micro-resonator cavity. A treatment of the pulsed-pump case
can be done by following Ref. [22]. Emitted simultaneously as a pair, signal and idler photons
are strongly time-energy entangled, forming a two-photon state.
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Fig. 1. (a) Schematic of a microring resonator side-coupled to a bus waveguide, both inte-
gratedon a SOI chip. (b) Top-down view of photon pair production in the SOI device shown
in (a). Pump is injected into the microring via the bus waveguide; copolarized photon pairs
are generated and resonantly enhanced and evanescently coupled out of the microring.
Waves propagate in thez direction in the bus waveguide. Inside the microring, there exist
two polarization eigenmodes: TM (Electric field perpendicular to the plane of propagation)
and TE (Electric field in the plane of propagation but perpendicular to the propagation di-
rection).R1, inner ring radius;R2, outer ring radius. (c) Cross section of both the microring
and the bus waveguide. The crystallographic axes are designated for the bus waveguide
only. (d) An entangled comb of photon pairs is generated when pump frequency is tuned
to mode numberMp. A signal photon occupying modems can always find its partner idler
photon symmetrically placed around pump occupying modemi = ms. Also shown is the
simulated signal output with a relative mode numberms = 1, which has a full width at
half-maximum of 20 GHz for a cavity damping rate of 31.25 GHz.

The integrated SOI devices under consideration consist of a microring side-coupled to a
straight bus waveguide [Fig. 1(a)]. The bus waveguide can be fabricated on the same chip, but
it can also be a tapered optical fiber. The coupling strength between the two can be tuned by
changing their separation, which also tunes the cavity damping rateγ. Strong, CW pump light
at λp is injected into the microring from the bus waveguide [Fig. 1(b)]. The wavelengthλp is
chosen to be near the zero-dispersion wavelengthλZDW of the microring (or equivalently, a bent
waveguide) so that FWM phase matching produces a broad gain spectrum without taking into
account the cavity resonances. The resonator effectively acts like an active filter, enhancing its
resonant frequencies while suppressing all other non-resonant ones.

For simplicity we focus on the case where both the microring and the bus waveguide share
the same cross-sectional dimensions. This monolithic design will minimize spatial mode mis-
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match between the microring and the bus waveguide if the bending radius is not too small. The
crosssection is shown in Fig. 1(c), where a 750 nm by 750 nm square-shaped Si block sits on
top of a SiO2 buried oxide (BOX) layer (with a thickness≥ 0.5µm to prevent leakage into
the Si substrate) with an air top cladding. The bus waveguide is fabricated along the [01 1]
directionon a (1 0 0) silicon wafer for cleaving convenience. This particular geometry is cho-
sen because numerical simulations show that the microring’s zero-dispersion wavelengths for
both quasi-TE [transverse electric,Eρ in Fig. 1(b)] and quasi-TM [transverse magnetic,Ex in
Fig. 1(b)] fundamental modes are within the 1550 nm telecommunications band (see Section 3).
Although shown as a ring, the microcavity could also be shaped as a racetrack to improve cou-
pling between the resonator and the bus waveguide. Both the microring and the bus waveguide
are multimode over a broad spectral range due to the deep etch down to the BOX layer; how-
ever, higher-order modes have quite different spatial mode profiles, polarization, and dispersion
characteristics compared to the fundamental modes. As a result, FWM involving higher-order
modes have negligible contributions to the production of correlated photon pairs inside the
wavelength range of interest. Thus we can limit our study of the generation of photon pairs to
fundamental modes only.

There are a myriad of nonlinear optical processes that may occur when intense pump light
circulates around the SOI microring. These include FWM, Raman scattering, Brillouin scatte-
ring, two-photon absorption (TPA), and free carrier absorption (FCA). A general description
of these processes can be found in Ref. [23]. For the purpose of generating photon pairs, we
are concerned only with spontaneous FWM, as the pump power is kept low to avoid stimulated
scattering. Processes such as TPA and FCA are only efficient when the pump power is high, and
therefore can be neglected in the low pump power regime. Brillouin scattering is two orders of
magnitude weaker in strength compared with first-order Raman scattering in Si [23], and there-
fore is negligible here. Due to the intrinsic crystal symmetry of Si and the ring structure under
consideration, Raman scattering is absent for the process wherein a quasi-TM pump transfers
its energy to another quasi-TM mode (TM-TM), but is allowed for all other processes such as
TM-TE, TE-TM, and TE-TE to transfer part of the pump energy to a mode that is 15.6 THz
down-shifted from the pump (the so-called Stokes wave) with a full width at half-maximum
(FWHM) of 105 GHz [23]. Thanks to the narrow-band nature of Raman scattering in Si, it
is possible to neglect Raman scattering altogether by simply designing the microring cavity
to have its resonances detuned from the pump-derived Raman Stokes wave (see Section 3 for
details).

The following theory is developed with general applicability to all cavities, including straight
cavities and microring cavities as special cases. The notation, however, uses that of a straight
cavity as default. When applied to a microring cavity, care should be taken as there are sub-
tleties of whispering gallery modes (WGM) [24] that are not entirely captured in the following
formalism. For example, the physical lengthL of a straight cavity mode remains fixed, while
for the microring WGMs it shortens slightly for shorter resonant wavelengths. Another exam-
ple is the transverse mode overlap between optical fields, which for straight cavity modes can
be assumed to be close to unity, but for WGMs it is generally less than 1 because the mode
profiles shift slightly with wavelength. Nevertheless, for signal and idler wavelengths close to
the pump the above differences are minute, and can be safely disregarded.

The physical cavity lengthL is typically several tens of micrometers long. We further require
that all optical fields participating in the FWM process are fundamental resonant modes of the
cavity, satisfying:ngjL = Mjλj (j=p, s, i), whereMj are integer mode numbers (Ms < Mp < Mi)
andngj are group indices for each field. The propagation direction is denoted asz (which should
be replaced byρθ for the microring case). Without loss of generality, the transverse spatial
mode of each field is taken to be the fundamental TM mode of the cavity, and we assume that
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all fields are copolarized so that scalar notation can be used. The pump field is a classical wave:

E(+)
p (z, t) = Epei[kp(ωp)z−ωpt]e−iΓPz , (1)

whereΓ is the nonlinear parameter for the Si waveguide andP is the circulating power inside
the cavity. Note that the pump self-phase modulation terme−iΓPz is explicitly included. The
resonant signal field is quantized, and can be written as [25]:

E(−)
s (z, t) =

√

h̄ωs

2ε0nscAeff,s

√
γs∆ωs

2π ∑
ms

∫ ∞

−∞
dΩs

a†
s(ωs,ms +Ωs)

γs/2− iΩs
e−i[ksz−(ωs,ms+Ωs)t] . (2)

The idler equation can be obtained by exchanging the subscripts s and i. HereAeff,s =
|∫ ∫ |Fs|2dxdy|2/∫ ∫ |Fs|4dxdy is the effective mode area, withFs being the transverse mode
profile of the signal field.γs is the cavity damping rate for the signal, which represents all
possible loss mechanisms including both linear loss (propagation loss, out-coupling loss) and
nonlinear loss (TPA, FCA). In practice, the nonlinear loss terms play a minor role at the pump
power levels we use (see Section 3 for loss estimation).∆ωs is the free spectral range (FSR),
ωs,ms is themsth central frequency,Ωs is the deviation fromωs,ms, anda†

s is the creation opera-
tor for signal. Lastly, we usepositive integersms = Mp−Ms andmi = Mi −Mp to represent the
relative mode number for signal and idler, respectively.

Using first-order perturbation theory, the two-photon state|Ψ〉 = (ih̄)−1∫ ∞
−∞ dtHI |0〉 can

be calculated through the interaction HamiltonianHI = ζ χ(3)
∫ 0
−L dzE(+)

p E(+)
p E(−)

s E(−)
i + h.c.

whereζ is a proportionality constant, andh.c. stands for Hermitian conjugate. For simplicity,
we only consider signal and idler frequencies close to the pump, so that a Taylor expansion
of the propagation constantk around the pump frequency can be employed, and we keep the
expansion series up to second order (k′′). A straightforward calculation yields the following
expression for the two-photon state:

|Ψ〉 = ηL∑
ms

∑
mi

∫ ∞

−∞
dΩs

∫ ∞

−∞
dΩi

√γsγi δ (−ms∆ωs+mi∆ωi +Ωs+Ωi)

(γs/2− iΩs)(γi/2− iΩi)

e
iL

[

k′′
4 (ms∆ωs−Ωs)

2+ k′′
4 (mi∆ωi+Ωi)

2+ΓP
]

a†
s(ωs,ms +Ωs)a

†
i (ωi,mi +Ωi)|0〉

sinc

{

L

[

k′′

4
(ms∆ωs−Ωs)

2 +
k′′

4
(mi∆ωi +Ωi)

2 +ΓP

]}

, (3)

whereη is another proportionality constant, andk′′ = d2k
dω2 |ω=ωp is the group velocity disper-

sion at the pump frequencyωp. In deriving Eq. (3), we have used the following mathematical
identities:

∫ ∞

−∞
eiutdt = 2π δ (u) , (4)

∫ 0

−L
e−iβ xdx = LeiβL/2sinc(βL/2). (5)

We can further simplify Eq. (3) by taking into account the following reasonable assumptions:
(i) the cavity bandwidth is much smaller than the FSR (|Ωs(i)|≪∆ωs(i)) and (ii) all participating
frequencies are close so that there is negligible difference in their group indices and the FSR
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can be considered constant (ms = mi = m, Ωs = −Ωi = Ω, ∆ωs = ∆ωi = ∆ω). The following
simplified two-photon state is thus obtained:

|Ψ〉 = ηL∑
m

∫ ∞

−∞
dΩ

√γsγi eiL[k′′(m∆ω−Ω)2/2+ΓP]

(γs/2− iΩ)(γi/2+ iΩ)
sinc{L

[

k′′(m∆ω −Ω)2/2+ΓP
]

}

a†
s(ωp−m∆ω +Ω)a†

i (ωp +m∆ω −Ω)|0〉. (6)

Equation 6 demonstrates the energy-entangled nature of the two-photon state through the
arguments of its two creation operators (which sum up to twice the pump frequency). The two-
photon state also exhibits a “frequency-bin entangled comb” structure with discrete spectral
peaks that are correlated pairwise in energy, all in a superposition state. The frequency-bin en-
tanglement notion is exactly analogous to time-bin entanglement [26] as a discrete form of the
more familiar continuous frequency entanglement [27]. Photon pairs in Eq. (6) can be thought
of as existing in discrete “Schmidt modes” [27]: If one photon is found to be in the mode
|ωp −m∆ω + Ω〉, then its partner must be found in the mode|ωp + m∆ω −Ω〉. The “comb”
term signifies the nearly equidistant nature of these mode pairs when the dispersion in the
cavity is low (or compensated). We emphasize that the frequency-bin entangled state intro-
duced here is different from the ones recently demonstrated in Ref. [28] (two-level frequency-
entangled qubits) and Ref. [29] (discrete, one-to-many frequency correlation). In comparison,
our state featuresmulti-level, one-to-one frequency correlation with explicitly-generated (in-
stead of mathematically decomposed) Schmidt mode pairs.

Although simplified, Eq. (6) is still useful in most practical cases, and can be used to calculate
the biphoton production rate (∼ 〈Ψ|Ψ〉), the single-photon spectrum, and the coincidence spec-
trum. We calculate the single-photon spectrum below as an example. The spectrum of signal
photons is obtained viaS(ωs) = 〈Ψ|a†

s(ωs)as(ωs)|Ψ〉. Using Eq. (6), we obtain:

S(ωs) = (ηL)2∑
m

γsγi sinc2{L[k′′(ωp−ωs)
2/2+ΓP]}

|γs/2− i(ωs−ωp +m∆ω)|2 |γi/2+ i(ωs−ωp +m∆ω)|2 . (7)

The idler photon spectrum can be derived in a similar fashion:

S(ωi) = 〈Ψ|a†
i (ωi)ai(ωi)|Ψ〉

= (ηL)2∑
m

γsγi sinc2{L[k′′(ωi −ωp)
2/2+ΓP]}

|γs/2− i(ωp−ωi +m∆ω)|2 |γi/2+ i(ωp−ωi +m∆ω)|2 . (8)

We can see that the single-photon spectrum is defined by two frequency characteristics that
are wildly different. First of all, the sinc function defines the frequency range in which the
FWM phase matching condition is satisfied. It can extend to almost 100 THz for some cases
(see Fig. 5 for examples). On the other hand, the product of the two Lorentzians (a characteristic
of the cavity) defines the narrow-band output of each resonant peak under the sinc-function
envelope. Comparison between Eq. (7) and Eq. (8) leads to the observation that signal and idler
spectra consist of identically-shaped spectral peaks that are pairwise energy-entangled, forming
an entangled photon comb. Idler damping (γi) plays a role in shaping the signal spectrum, and
vice versa. Each comb peak has a FWHM that is related to the cavity damping rate through:

FWHM=
√√

2−1γ ≈ 0.64γ, where we assumeγs = γi = γ. A numerically simulated signal
peak forms = 1 is shown in Fig. 1(d), whereγ = 31.25 GHz is assumed (which leads to a
resonant peak FWHM of 20 GHz).

3. Design principles of SOI microring resonators

A microring resonator has several key design parameters: the cross section dimensions and
the bending curvature (quantified by the ring inner radiusR1). All of them dramatically affect
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Fig. 2. Conformal transformation from a bent waveguide to its equivalent straight waveg-
uide,along with the fundamental TE mode shape (R1 = 8µm, λ = 1.528µm) in its corre-
sponding coordinate.

the microring’s dispersion properties, and in particular its zero-dispersion wavelength, which
has significant implications on where the pump wavelength should be. The effect of the cross
section (both size and aspect ratio) on the dispersion of a straight Si waveguide has been studied
extensively [30–32]. However, the effect of the bending curvature on dispersion has not been
fully explored, to the best of our knowledge. Here we take the ring’s cross section to be fixed at
750 nm×750 nm, and gradually changeR1 (from ∞ for a straight waveguide to 3µm) to find
its effect on the microring dispersion.

The microring is modelled as a bent waveguide, and a conformal transformation approach is
used to transform the bent waveguide to its equivalent straight waveguide [33]. The procedure
is illustrated in Fig. 2, where the conformal transformation is described by

u = R2 ln(ρ/R2) , (9)

v = R2 θ . (10)

Here ρ and θ are polar coordinates depicted in Fig. 1(b), withρ =
√

y2 + z2 and θ =
arctan(z/y) (y, z are Cartesian coordinates).v is the direction of propagation (perpendicular
to the cross section in Fig. 2). As shown in Fig. 2, a bent waveguide with inner (outer) radiusR1

(R2), width W ≡ R2−R1, and heightH is transformed to an equivalent straight waveguide of
width −R2 ln(R1/R2) and heightH. The refractive index of each material is also transformed
according ton′a = naeu/R2, a = Air, Si, SiO2. For the refractive indices, we use

nAir = 1, (11)

nSiO2 =

√

1+
0.6961663λ 2

λ 2−0.06840432
+

0.4079426λ 2

λ 2−0.11624142
+

0.8974794λ 2

λ 2−9.8961612
, (12)

nSi = 3.41906+
0.123172

λ 2−0.028
+

0.0265456
(λ 2−0.028)2

−2.66511×10−8 λ 2 +5.45852×10−14λ 4 , (13)

where we have used the Sellmeier equations for air and SiO2, and the Herzberger equation for
Si [34].λ is the free-space wavelength in units of micrometers. Note that the equivalent straight
waveguide is situated in the negative-uplane.
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Fig. 3. Numerically simulated group indexng and group velocity dispersionk′′ for (a)
straight waveguide, (b) bent waveguide withR1 = 8µm, and (c) bent waveguide with
R1 = 3µm. TE mode: black; TM mode: red. The curves for bulk Si are plotted in blue
for reference.

We use a commercial finite-element solver (COMSOL [35,36]) to numerically calculate the
eigenmodes and propagation constants for each waveguide, from which we obtain the group
index (ng = c dk

dω ) and the group velocity dispersion (k′′ = d2k
dω2 ) through numerical differen-

tiation, wherec is the vacuum speed of light. The results are shown in Fig. 3, for a straight
waveguide and two bent waveguides with its inner radiusR1 = 8µm and 3µm, respectively.
Bending the waveguide has a significant influence on both the group index and group velocity
dispersion of its fundamental TE and TM modes. Bending a straight waveguide toR1 = 8µm
changes the relative magnitude of the group index for TE and TM modes, and a further bend-

#133913 - $15.00 USD Received 24 Aug 2010; revised 2 Nov 2010; accepted 2 Nov 2010; published 13 Jan 2011
(C) 2011 OSA 17 January 2011 / Vol. 19,  No. 2 / OPTICS EXPRESS  1478



���� ���� ���� ���� ���� ���� ���� ����

����

����

����

����

��	�

����

����

����







�
�
�


�
�
�
�

���
�

�
��

��
�

��� �������


��
���	
��

��

� 

Fig. 4. Zero-dispersion wavelength vs. the inverse of the bending radius of an SOI waveg-
uidefor both TE (black dots) and TM (red squares) modes.

ing to R1 = 3µm reverses the relative positions of the group velocity dispersion curves for
TE and TM modes. The bending effect on dispersion is more pronounced whenR1 becomes
comparable to the waveguide cross dimension (0.75µm in this case).

The above bending effect can be intuitively understood if we notice from Fig. 2 that the equiv-
alent straight waveguide has a smaller index contrast (∆n′ = ∆neu/R2) than a straight waveguide
(∆n = nSi−nsurroundings) for u ≤ 0, where the mode is predominantly located. Furthermore,∆n′

reduces with decreasingR1 (or R2). This means that mode confinement is strongest for a straight
waveguide; as the bending increases (R1 decreases), the mode confinement becomes weaker.
Therefore, both group index and group velocity dispersion approach that of bulk Si with de-
creasingR1, as can be seen in Fig. 3.

Since the zero-dispersion wavelength (λZDW) is of great interest for phase-matching con-
siderations, we plot its dependence on the inverse of the bending curvature (1/R1) in Fig. 4.
We can see that the bending curvature has a dramatic effect on the location of zero-dispersion
wavelengths for both TE and TM modes. At a suitable bending radius (R1 = 8µm), the TE and
TM zero-dispersion wavelengths overlap (λ TE

ZDW = λ TM
ZDW = 1530nm). This can also be seen in

Fig. 3(b), as the TE and TMk′′ curves almost completely overlap each other throughout the
wavelength range from 1300 nm to 1900 nm. At a small bending radius ofR1 = 3µm, λ TE

ZDW
far exceedsλ TM

ZDW by over 50 nm. We also see that bending affects TE modes more than TM
modes, as the slope forλ TE

ZDW vs. 1/R1 is larger than that forλ TM
ZDW vs. 1/R1. This is because

TE polarization is within the bending plane, while TM polarization is perpendicular to it, mak-
ing the two polarizations see the bending effect differently. The above information can help us
determine where the optimal pump wavelength should be for a microring resonator of a given
size, as can be seen in the next part of our simulation.

For an azimuthally symmetric resonator such as a microring, each resonant WGM mode
exhibits a unique angular momentum with a field distribution ofEM(ρ,θ ,x) ∼ eiMθ where
M is an integer [see Fig. 1(b)]. The FWM phase-matching requirement of linear momentum
conservation in a straight geometry is adapted to angular momentum conservation in a curved
geometry, which stipulates 2Mp = Ms+Mi . This is clearly satisfied for signal/idler pairs that are
symmetrically placed around the pump mode, i.e.,Ms/i = Mp±m (m is an integer). Due to the
dispersion inside the microring, the equally-important energy conservation requirement is not
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Fig. 5. (a) Frequency mismatch for TM modes for a microring resonator ofR1 = 8µm.
Blue, λp = 1.498µm with Mp = 114; red,λp = 1.555µm with Mp = 109; black,λp =
1.616µm with Mp = 104. One can see thatMp = 109 corresponds to the optimal pump
mode. Frequency mismatch when pump is chosen optimally for TE (black) and TM (red)
for several different bending radii: (b)R1 = 8µm, Mp = 111 for TE,Mp = 109 for TM;
(c) R1 = 7µm, Mp = 97 for TE,Mp = 96 for TM; and (d)R1 = 5µm, Mp = 69 for TE,
Mp = 68 for TM. Optimal pump wavelengths are labelled on the figures.

always satisfied for those adjacent modes, which is quantified by thefrequency mismatch [37]:

∆ =
1

2π
(2ω0p−ω0s−ω0i) , (14)

whereω0j (j = p, s, i) are resonant frequencies of the microring. It is clear that if all optical fields
participating in FWM are resonant modes of the cavity, the FWM efficiency will be greatly
enhanced. Therefore, it is important to reduce the frequency mismatch to below the cavity
linewidth, in which case the FWM efficiency will suffer the least (referred to as the dispersion-
compensated regime in Ref. [38]). For eachR1, we numerically simulate the resonant modes
using the weak-form formulation in COMSOL developed by Oxborrow [39]. An iterative rou-
tine is needed to arrive at self-consistent resonances when the wavelength-dependent refractive
indices of SiO2 and Si (cf. Eqs. 12 and 13) are taken into account [40]. Frequency mismatch is
then calculated via Eq. (14) for various pump wavelengths.

Typical results are shown in Fig. 5 for several values of the bending radii. ForR1 = 8µm,
Fig. 5(a) shows that there is an optimal pump for which frequency mismatch is minimized over
a large wavelength range (from 1.3µm to 1.8µm), which we denote asλopt. Any deviation
from the optimal pump results in reduction of the effective FWM range. As shown in Fig. 5(b),
TM and TE modes generally have differentλopt, even though forR1 = 8µm they have the
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same zero-dispersion wavelength: for TM modeλopt = 1.555µm, and for TE modeλopt =
1.528µm. Nevertheless, both are very close toλZDW = 1530nm, with negligiblek′′ values
(k′′ = −0.097ps2/m for TM andk′′ = 0.005ps2/m for TE). Extensive numerical study shows
that this statement holds true for other bending radii as well; Fig. 5(c) and (d) depict two such
examples. ForR1 = 7µm, Fig. 5(c) shows thatλopt = 1.556µm with k′′ = −0.08ps2/m for
TM and λopt = 1.539µm with k′′ = −0.007ps2/m for TE. Figures 5(d) depicts the case for
R1 = 5µm, where we haveλopt= 1.597µm with k′′ =−0.17ps2/m for TM andλopt= 1.572µm
with k′′ =−0.026ps2/m for TE. In all these examples, the optimal pump resides close toλZDW,
and often (but not always) in the anomalous dispersion regime (i.e.,k′′ < 0).

Take an SOI microring withR1 = 8µm for example. From Fig. 5(b) we can see that the effec-
tive FWM range is roughly estimated to be [1.3µm, 1.8µm], where the frequency mismatch
|∆| ≤ 4 GHz for TE modes and|∆| ≤ 10 GHz for TM modes. Inside this 500-nm broad wave-
length range, there exist 21 TE-comb and 19 TM-comb peak pairs. Each peak has a FWHM of
20 GHz, and peaks are separated by a free spectral range of about 12 nm. These are important
design parameters that are relevant for experimentally testing a fabricated device.

In addition to the linear frequency mismatch in Eq. (14), there is a nonlinear contribution to
frequency mismatch due to the intensity-dependent refractive index [38], which is given by

∆nl =
2n2I

n(ωp)

ωp

2π
, (15)

wheren2 = 2.5× 10−18 m2/W is the nonlinear index coefficient of Si andI is the intensity
of the pump circulating the cavity. Assuming a pump circulating power of 100 mW inside the
microring (very high for the purpose of photon-pair production) and an effective areaAeff =
0.33µm2, the intensityI is estimated to be about 3× 1011 W/m2. ∆nl is then estimated to
be 86 MHz at a wavelength of 1550 nm, which is much less than the cavity linewidth (20
GHz, corresponding to a moderate cavityQ of 104). Therefore, the nonlinear contribution to
frequency mismatch can be ignored for most practical cases.

Let us also estimate the productΓPLeff, which is important in gauging the importance
of nonlinear loss terms such as TPA and FCA. According to the studies done in Ref. [20],
as long asΓPLeff ≤ 0.2 the effect of TPA and FCA remains small. In the above exam-
ple, the nonlinear parameterΓ = 2πn2/(λAeff) ≃ 30.7W−1m−1. The effective propagation
length,Leff, is determined through the cavity linewidth (FWHM = 20 GHz) and photon life-
time [τ = 1/(2π FWHM) ≃ 8ps] in such a cavity, and is given byLeff = cτ/ng ≃ 0.65mm.
With P = 0.1W, we estimateΓPLeff ≃ 0.002. At thisΓPLeff level, we can safely ignore the
nonlinear loss terms such as TPA and FCA.

Raman scattering in an SOI microring deserves some special attention, partly because of the
ring geometry which mandates transformation ofχ(3) tensor components. Here we adopt the
formalism in Ref. [23] to systematically derive the transformedχ(3) tensor components for a
microring resonator fabricated on Si (1 0 0) wafer whose coordinates are shown in Fig. 1(b). In
the Cartesian coordinate system wherex = [1 0 0], y = [0 1 0], z = [0 0 1] are the crystallo-
graphic axes, the third-order nonlinear response function is given by (Eq. (39) in Ref. [23]):

R(3)
ijkl (τ) = γeδ (τ)

[σ
3

(δij δkl +δikδjl +δil δjk)+(1−σ)δij δjkδkl

]

+γRhR(τ)(δikδjl +δil δjk −2δij δjkδkl) . (16)

Hereγe (γR) is the electronic (Raman) part of the third-order nonlinearity,δij is the Kronecker
delta,δ (τ) is the Dirac delta function,hR(τ) is the Raman response function, andσ ≈ 1.27 is
the nonlinear anisotropy at 1550 nm [23].
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The ring geometry requires that the nonlinear response function be transformed into the polar
coordinatesystem, wherex = x, y = ρ cosθ , z = ρ sinθ . The transformation matrix is given by





a′x
a′ρ
a′θ



 =





Mxx Mxy Mxz

Mρx Mρy Mρz

Mθx Mθy Mθz



 ·





ax

ay

az



 , (17)

whereaj is the unit vector along axis j, and the (un)primed notations represent the (Cartesian)
polar coordinate. The matrixM is calculated to be:





Mxx Mxy Mxz

Mρx Mρy Mρz

Mθx Mθy Mθz



 =





1 0 0
0 cosθ sinθ
0 − sinθ

ρ
cosθ

ρ



 . (18)

Tensor transformation obeysR′(3)
qrst = R(3)

ijkl MqiMrjMskMtl , where Einstein summation convention
is assumed. Using Eq. (18), we obtain the four nonlinear response components pertaining to
the TE and TM modes in the polar coordinate system:

R′(3)
ρρρρ = γeδ (τ)(cos4θ +sin4θ +2σ sin2θ cos2θ)+4γRhR(τ)sin2θ cos2θ , (19)

R′(3)
xxxx = γeδ (τ) , (20)

R′(3)
xρρx = R′(3)

ρxxρ =
σ
3

γeδ (τ)+ γRhR(τ) . (21)

One can see that Raman component is absent only for the TM-TM process (corresponding

to R′(3)
xxxx), and is present for all other processes (TM-TE, TE-TM, TE-TE). The design rule for

avoiding Raman scattering can therefore be summarized as: (i) for TM pump, there is no TE
resonance 15.6 THz away; or (ii) for TE pump, there is neither a TE nor TM resonance 15.6 THz
away. Both rules are satisfied, for example, with the design ofR1 = 8µm. Calculations show
that neither TM-pump nor TE-pump-derived Raman Stokes wave occurs near any TE or TM
resonances for this particular design. It is not the case, however, for the design withR1 = 10µm,
where the TE-pump-derived Raman Stokes wave occurs too close to a TE resonance (less than
120 GHz away), violating the above rule (ii). It can still be used to enhance FWM photon pairs
with a TM-pump, since its Raman Stokes wave occurs far enough from any TE resonances.

4. Straight cavities

For a straight cavity, its cavity length is fixed (i.e., independent of the mode number) in contrast
to the varying cavity lengths for WGM modes. Therefore, we can calculate the resonances of a
straight cavity by numerically solving the following nonlinear equation:

ngL = Mλ , (22)

whereM is the mode number,λ is the resonant wavelength,L is the cavity length, andng is
the group index for the resonant wavelength in a straight waveguide [such as the one shown in
Fig. 3(a)]. Taking into accountng = c dk

dω andλ = 2πc/ω, Eq. (22) is reduced to

ω
dk
dω

=
2πM

L
. (23)

Resonantfrequency of mode numberM is obtained by numerically solving Eq. (23). Following
the discussions in Section 3, we calculate the frequency mismatch of a straight cavity (cross
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Fig. 6. Frequency mismatch in a straight cavity for quasi-TE modes withλp = 1.407µm
(solid blue), 1.516µm (solid red), and 1.649µm (solid black), and quasi-TM modes with
λp = 1.405µm (hollow blue), 1.514µm (hollow red), and 1.646µm (hollow black).

dimension 750 nm by 750 nm and lengthL = 100µm with air top cladding) for both its quasi-
TE and quasi-TM modes, as shown in Fig. 6.

It can be seen that the frequency mismatchalways grows with mode separation, independent
of the pump wavelength. This is in stark contrast with the microring case, where there is a flat
dispersion-compensated frequency range for a properly-chosen pump wavelength (i.e.,λopt).
For the straight-cavity case, there are only a few resonant modes for which the frequency mis-
match is below the cavity linewidth (20 GHz in our case). For those modes cavity-enhanced
FWM still play a role. One can, of course, broaden the cavity linewidth to incorporate more
dispersion-compensated modes, at the expense of a lower cavityQ. We have also explored
several other cross-sectional dimensions of a straight cavity, and find that the same conclu-
sion holds: In general, for a given cavity linewidth, the straight-cavity design is inferior to its
ring-cavity alternative for enhancing FWM.

5. Conclusion

We have developed a quantum mechanical theory for the two-photon state generated via spon-
taneous FWM inside an SOI micro-cavity. The two-photon state is shown to be a frequency-bin
entangled comb of photon pairs. We have also provided practical design principles for SOI
microring-based photon-pair sources through extensive numerical simulations. More specifi-
cally, an SOI microring with an inner radius of 8µm can output an entangled photon comb
of 21 pairwise-correlated peaks (42 comb lines) spanning from 1.3µm to 1.8µm. Microring
resonators are found to be superior than straight cavities at enhancing FWM photon-pair gen-
eration, as the latter lack a wide dispersion-compensated wavelength region. Such integrated-
optic devices are a building block of future quantum integrated circuits, which consist of pas-
sive waveguides, interferometers, modulators, and quantum logic gates etc., all integrated on
a single chip. We believe Silicon-on-Insulator is the platform of choice. Future research is
aimed at fabricating the proposed devices, and experimentally demonstrating cavity-enhanced
frequency-bin entangled photon-pair comb generation in SOI microring resonators.

Official contribution of the National Institute of Standards and Technology; not subject to
copyright in the United States.
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