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ABSTRACT
In manufacturing, Discrete Event Simulation (DES) can be

effectively used to model production and provide sustainabil-
ity analysis of equipment and system operation by measuring
throughput, capacity, and bottlenecks. DES allows analysis un-
der different scenarios and conditions that can then be used to
forecast more optimal system performance. For discrete parts
production, DES is rarely used because of the difficulty in at-
taining timely and accurate statistical modeling of the equipment
and process operation. In this paper we look at the use of the
plant floor interoperability standard, MTConnect, as a means to
improve the access to machine tool data. Given data access,
we develop a Finite State Model in order to streamline Machine
Tool and DES integration. A case study of a prototype Capac-
ity Planning system using DES as a modeling back–end will be
described to help in understanding resource allocation of shop
floor machines to a batch of aerospace parts. Direct machine
tool statistical parameterization into a Web–based DES leads to
“Push–button” automated simulations.
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Nomenclature
CNC Computer Numerical Control
DES Discrete Event Simulation
FSM Finite State Machine
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
KPI Key Performance Indicators
MTC MT Connect
MTBF Mean Time between Failure
MTTR Mean Time to Repair
OEM Original Equipment Manufacturers
SDK Software Development Kit
XML eXtensible Markup Language

INTRODUCTION
Simulation is a powerful analysis tool. Simulation can an-

alyze the performance of a system, help understand proposed
changes to the system, and assist in design decisions about a sys-
tem. Simulation is especially popular where the complexity of
real world makes analytical closed–form solutions impossible.
Simulation that models a system as a chronological sequence of
discrete events is known as Discrete Event Simulation (DES).
DES is useful for modeling and analysis of manufacturing sys-



tems, such as, machinery operation, shop workflow and schedul-
ing, and production lines.

In manufacturing, DES is a computer model of real or pro-
posed production. DES is particularly effective because it is a
controlled environment that assists in the study of the perfor-
mance of the production system under different conditions. With
DES, the model can be used to forecast throughput, bottlenecks
and other performance metrics. Adjustments to parameters can
be run through time sequences to predict the impact of poten-
tial changes. These prediction models can be developed without
disturbing daily operations. DES is useful in decision–making
for new product lines, changes of existing factory processes and
sustainability impact of manufacturing operations.

World class manufacturing aims to increase throughput
while simultaneously reducing inventory and operating costs. To
perform detailed production analysis, manufacturers are turning
to simulation as it is well suited to handle the complexity of large
scale interaction of machines and processes. The level of simu-
lation granularity is an important consideration as many simula-
tions attempt to exactly replicate the machine being simulated.
Of concern in this paper, is the process level where part cycle
times, breakdowns, and inactivity are of interest.

Throughput, utilization, and cycle time are considered Key
Performance Indicators (KPI) for DES manufacturing analysis
but are not intrinsic to the machining operations. Machining
inputs part programs, tool, fixtures, setup information and pro-
duces parts. Machining data model includes positions, velocity,
program line numbers, etc. Since the machining static model
is not sufficient to satisfy the DES KPI requirements directly, a
mapping of the machining CNC model into the DES model must
be done.

However, data acquisition for machine tools has been no-
toriously difficult. Historically, most machine tool Computer
Numerical Controllers (CNC) are closed proprietary platforms.
Closed platforms either do not readily provide access to the raw
data or provide an expensive proprietary solution, so that charac-
terizing the machining process is costly if not impossible. MT-
Connect is a new standard for data exchange on the manufactur-
ing floor that helps in satisfying many of the DES data acqui-
sition requirements. The open MTConnect standard for shop–
floor integration should help end–users collect raw data and as-
sist in understanding the nuances of their process. In this regard,
MTConnect allows for raw data acquisition that can be used for
continuous process improvements [1]. Formalization of raw ma-
chine data acquisition into a DES–ready format is the goal of this
paper.

This paper will study the automation of DES data entry from
shop–floor CNC machining data. Section 2 will give a formal
overview of DES event simulation data modeling, finite state ma-
chine CNC logic, and describe the transformation from machin-
ing data in DES manufacturing KPI statistics. Section 3 will in-
vestigate the implementation details of automating the DES data

FIGURE 1: Spectrum of DES Application in Manufacturing

processing and the issues involved. Section 4 will do a DES
case study for Capacity Planning machine tools in a production
workcell at a Boeing plant. The automation of machine tool data
processing using MTConnect and some extensions will be dis-
cussed. Finally, a discussion on the results and future directions
will be given.

MAPPING MACHINING MODEL TO DES MODEL
DES models have a variety of application domains: anal-

ysis, training, experimentation, decision support, and design or
system optimization. Within this realm, the direct applicabil-
ity of DES to manufacturing depends on the deterministic nature
of the system being modeled. Figure 1 shows the spectrum of
manufacturing determinism that has a great impact on the ease
of use and subsequent utility of DES. DES is especially useful
when modeling deterministic hard automation systems, such as
packaging lines, where the operation is virtually continuous, and
there are series of machines connected by buffers, and there is
relatively little variability in operation. Throughput, bottlenecks
and failures are the basic measures of success or failure in this
case and can be easily characterized by statistical models of the
automation process. From this extreme form of hard automation,
the determinism scale lessens into automation with changeover,
to workflow between machines to the relatively random scenario
of workflow in a job shop. The more variability in the system be-
ing modeled, the more difficult to garner accurate statistics since
the range of potential data points would large, and statistical dis-
tribution would reflect this variability.

The type of manufacturing that will be studied for our DES
analysis will be based on a quasi job shop facility – workflow that
consists of jobs assigned to one of many machines, with little or
no connectivity of process flow through between machines. We
will consider the case of several machine tools operating in a
workcell on similar parts, with similar tooling, cycle times that
handle parts in a first–in, first–out sequence.

Hidergott et al [2] define a DES model simulation as the gen-
eration of a sequence X(k) states, with initial state X(0) = x0, in
such a way that state X(k+1) is obtained from X(k) by a measur-
able state–transition mapping h that consumes a vector of mutu-
ally independent random input variable Y (k) = (Y1(k), ..,Ym(k)),
with Y (k) independent of everything else, where m presents the
number of input random variables needed in each transition;



X(k+1) = h(X(k),Y (k)),k ≥ 0. (1)

The goal of input to DES is to find unbiased estimators for
the random variables Yi(k). Fortunately, the system dynamics of
DES models for a machine tool is driven by relatively simple
input distributions. For example, the machining depends on the
timed intervals in various control states. Exponential, gamma, or
Weibull distributions are used for modeling time variables, nor-
mal distributions for modeling noise, and Poisson distributions
for modeling occurrence of certain events. The primary DES ma-
chining random variables of interest in this paper to be estimated
by sample data are idle time, part cycle times and disturbance
data (i.e., system breakdowns). These state random variables are
primarily characterized by time, but can have secondary data ele-
ments such as energy consumed, or process characteristics (e.g.,
machine feeds and speed) associated to simulation time within
the given state.

This DES model of the machine tool behavior can be equiv-
alently described as a Finite State Machine (FSM), which is a
more common paradigm to model machine CNC logic. A FSM
model is a set of finite states together with a set of state transi-
tions, where the machine controller is in one of a finite set of the
possible states, known as the state–space, at any given time, and
is defined by

G = (∑,Q,δ ,q0) (2)

Here ∑ is the set of states, q0 is the initial state, δ is a finite set
of output symbols, and δ : ∑×Q→Q is the state transition func-
tion. For a machining process, G defines a function that starts in
the state q0 and generates a sequence of events, i.e. state transi-
tions, subject to the range of transitions permitted by the function
δ . Each event results in an output from the set ∑.

We will attempt to formalize the Machining component
based on enumerating the states required for mapping to the DES
KPI knowledge. Inside the Machining Process box shown in Fig-
ure 2, the basic FSM formalism is given as these states: OFF,
DOWN, IDLE, MISC, and MACHINING.

OFF refers to the machine power being off due to inactivity.
DOWN refers to the machine being idle/off due to an alarm or

fault.
IDLE refers to a non–machining condition, where the material

removal process is either in manual model during setup and
takedown or in automatic mode, but not paused.

MACHINING refers to the state where the material removal
process is occurring.

MISC refers to CNC maintenance and other intermittent activ-
ities.

Adopting hierarchical state machine terminology, MISC is
a superstate that contains nested substates for tool changes, lu-
brication cycles and other miscellaneous intermittent activities,
and is unnecessary for our expected DES analysis. For our study,
MISC will be consolidated into the IDLE state, for simplicity.

FIGURE 2: Machining State Model Overview

It is necessary to transform the machine state data into DES
KPI event data. The main machining data requirement that is
typically not part of raw machine data is the Part Count data item
that signals cycle complete and triggers a cycle time event. There
are other mechanisms to detect a completed program, for exam-
ple, monitoring program blocks for an “M30”, but have various
flaws that draw reliability into question.

Table 1 gives an overview of the transformation from ma-
chining data into DES–ready events. Table 1 summarizes
the logic used to calculate the DES model parameters, where
MTCitem E(x) means the reading of the MTConnect data value
“item” and t = T (a,b) means the elapsed time t from the begin-
ning of event “a” until the occurrence of event “b” and t = T (a)
means time t spent in state “a”.

The MTConnect Data row details the raw data available
from the CNC machine tool. Using prevailing technology and
providing free software development kits minimizes technical
and economic barriers to MTConnect adoption. The basic MT-
Connect specification provides for: power (on/off), mode (auto-
matic/manual), execution state (running/paused), program, posi-
tion, feeds, speeds, alarms, and some tooling. For our work, the
data item part count was added to the MTConnect data collection
to assist in determining cycle time.

The KPI Parameters rows show the transformation of state
data into DES events. This transformation entails accumulat-
ing the time spent in a current state until a state change occurs.
Upon the state change, a new DES event is archived containing
the specific event (e.g., cycle time), and the duration spent in
that state. The Computed KPI Parameters rows create new DES
events based on an existing event sequence.



TABLE 1: Mapping Machine State Data into DES KPI Data

MTConnect Data Parameters

Machining Data Timestamp(ts), Machine, Power, Mode,
Execution, Program, Line, Sload, Xload,
Yload, Zload, Aload, Bload, Cload, Tool-
num, RPM, Alarm, AlarmState, Alarm-
Severity, PartCount, Feedrate

KPI Parameters Data Mapping

Cycle Time MTCmode = Auto and MTCrpm >
0 and MTC f eed > 0

Setup Time MTCprogram(t) 6=MTCprogram(t−−1)→
T (MTCmode = Manual) excluding pal-
lete shuttle program

Machining Time Cycle Time

Off Time MTCpower = O f f

Down Time MTCalarm = active

Idle Time T (MTCexecution = Paused or MTCmode =
Manual)

Misc Time Not addressed in this analysis

Computed KPI Pa-
rameters

Mapping

Time Between Fail-
ure (TBF)

t = T (MTCalarm = active, MTCalarm 6=
active)

Time To Repair
(TTR)

Equivalent to Down Time

“PUSH–BUTTON” DES
“Push–button” automated DES would embed and streamline

DES functionality within the machine tool providing DES–ready
event data streams, statistical fitting to KPI, thus minimizing the
time–consuming manual data operations. In this case, DES could
be used continually and cost–effectively in order to evaluate ma-
chine operations. The major drawback to implementing “Push–
button” DES is the time–consuming, error–prone, and costly as-
pect of data acquisition, cleaning and coding of the data into the
DES [3, 4]. It is estimated that up to 31 % of the amount of time
spent on building a DES model is spent on data collection [5].
Push–button DES requires automating the data collection as the
statistical characterization of the machining using the MTCon-
nect data.

Due to the costly nature of the DES data processing, the goal
of automating the data processing for DES is undeniably critical
and considerable effort has been applied in this area. NIST is
collaborating with Chalmers University on the GDM–Tool [6],
which is a middleware approach whose goal is to provide a com-

pletely generic solution that would allow any DES system to con-
nect to any source of raw data and then use a computer–assisted
approach to extract DES–ready data. Since the focus of our data
sampling is constrained to the machining environment, a com-
pletely generic solution is beyond the scope of the project. A
more directed approach will be taken by developing automated
data processing that is restricted to DES simulations of machin-
ing operations.

FIGURE 3: DES Push–button Implementation

Figure 3 shows the architecture for implementing “Push–
button” DES. Step 1 concerns automating the raw data collec-
tion. The prototype data acquisition is based on using MTCon-
nect technology [7–9], but other data acquisition technologies
are used in manufacturing and could potentially have provided
a similar solution [10–12]. MTConnect allows standard, auto-
mated data acquisition on the shop floor that is lightweight and
flexible. MTConnect is a specification based upon prevalent Web
technology including Extensible Markup Language (XML) [13]
and Hypertext Transport Protocol (HTTP) [14].

Step 2 transforms machine state data into DES event data,
which is based on the mappings defined in Table 1. The im-
plementation was an augmented MTConnect Agent, based on
the turnkey Microsoft C# .Net implementation of an MTCon-
nect Agent [15]. Having successfully used the SDK, we felt that



the MTConnect Agent could easily be augmented to handle more
complex processing, while maintaining backward compatibility.
Within the MTConnect agent, the raw data was filtered by ma-
chine states and then logged as DES events. DES naturally mod-
els the time in each state as a statistical distribution, and it is
more efficient to do these statistical calculations on–machine as
opposed to post–processing in Excel Macros [16] or through the
use of data cleansing tools [5].

Step 3 computes DES KPI statistical data from the DES
event data. DES systems use statistical distributions as input, so
that statistical distribution fitting was applied to the DES event
data. In previous work, the statistical distribution fitting was
performed automatically on the event data by the DES statisti-
cal software [1]. In this implementation, some limited statistical
software was embedded to do the statistical distribution fitting,
but was aided by à priori understanding of the data and machine
behavior. The decision to fit sample data to a smaller set of statis-
tical lifetime distributions was deemed sufficient for a feasibility
phase.

Step 4 involves using DES for various “What–if” applica-
tions. NIST and Boeing have been exploring various applica-
tions for exploiting the ease of integration of MTConnect data
and DES modeling. Previously, shop floor MTConnect data was
collected in order to study sustainability [16]. The sustainability
analysis depended on manually–oriented DES input approach,
and at that time, it was clearly evident that for DES to be used in
a factory, it would need to be a more automated or “Push–button”
technology. This overriding requirement prompted us to inves-
tigate more automated approaches of data integration within the
DES software systems.

Step 5 is part of an ongoing demonstration of “Push–button”
technology to test remote DES feasibility. Web–based software
was developed that remotely communicates to the DES system.
First, the Web software reads KPI parameters from the machines
(such as cycle times and disturbance data). Next, KPI parameters
are loaded into a Excel file across the internet. The DES simula-
tion is remotely initiated using Excel interface. Finally, the DES
simulation results are read back from the Excel file and displayed
on the Web page.

CASE STUDY – CAPACITY PLANNING
The concept of “Push–button” DES as a way to perform

shop–floor Capacity Planning was a compelling application for
Boeing. Currently, production knowledge is often only gathered
at a higher level of operation. Workorders enter the shop floor
and then overall performance is measured upon completion. Typ-
ically, this shop floor knowledge may be augmented by manual
signoffs at various stages and visual observation and manual doc-
umenting of the process. Intermediary analysis of the process
steps and costs involved are then generally estimated. This data
is entered into spreadsheets by industrial engineers who develop

FIGURE 4: Capacity Planning User Interface

schedules and expected workflow based on a spreadsheet solu-
tion.

The Capacity Planner is used as a decision aide in determin-
ing the time required to satisfy a desired part throughput given a
set of machine tools running at a given capacity. From a produc-
tion perspective, Capacity Planning using actual shop–floor data
could make scheduling for industrial engineers easier and more
accurate. Better production flow could anticipate bottlenecks
and adjust scheduling to prevent shortages or missed deadlines.
Should the Capacity Planning systems determine beforehand that
there are insufficient personnel and/or machine resources, it can
react accordingly.

Workflow and throughput projections would be based on
real factory floor data. For our initial Capacity Analysis, we con-
centrated on understanding the machining process within an inte-
grated Workcell at Boeing that is primarily dedicated to making
aluminum plane shims, brackets and body joints. The Workcell
operates on batch lots of aluminum parts with part runs rang-
ing from one shim to hundreds of brackets with assorted milling,
drilling, facing and probing operations. Cycle times for these
parts vary from twenty minutes for a bracket, to approximately
five hours for a body joint. Each CNC features a high–speed
spindle and other options for high–speed machining. Production
volume varies, generally a little under 24/7 capacity, with most
machines running 3 shifts a day.

Figure 4 shows the user interface of a prototype implemen-
tation of the Capacity Planning system. In this case, the sched-
uler is responsible for inputting the type and number of parts to



be machined, and the desired machine capabilities: days/week,
shifts/day, idle percentage, and break time/shift. The relevant
KPI data is collected from the augmented MTConnect Agent for
machine–specific KPI: MTTR, MTBF and for process–specific
KPI data: part cycle time. The Capacity Planner stochastically
picks from the part selection, calculates throughput and time, and
quits when done.

The Capacity Planning methodology assumed shifts as the
metric for planning production, as the machines utilization is
based on staffing considerations. In order to assign machines,
the total time must be considered in the context of shifts. The
Capacity Planner must assign operators to run machines based
on shifts (3/day or 2/day or 1/day), so that over time the unit of
measure for machine availability is based on shifts.

Thus, the number of shifts is the fundamental measure of
machine work. If we assume one machine is assigned to this
workload, and further assume zero operator breaks, zero down-
time, running at full 24/7 capacity, then the number of shifts di-
vided by three is the number of days required to finish the work.
Adding more machines will make the work go faster, but the
amount of work as defined in shifts is constant. Adding idle time
follows from this logic. Idle time, such as operator breaks, would
need to be calculated per shift. We assume no unattended ma-
chining, so that any operator break time will be considered idle
time.

The use of MTConnect, with augmented functionality, made
the automation of DES event acquisition straightforward. Over
the course of several months, MTConnect raw data was remotely
accessed and transformed into DES events that were archived to
a Microsoft Jet Database. Because the DES analysis was based
on simple KPI, fault statistics only indicated a problem, not the
type or nature of the problem.

We implemented two DES strategies for handling Capacity
Planning. We use a stand alone closed–form solution as well as
the previously described Web remote interface to an Excel front–
end to the DES software. For the short–term, the closed–form so-
lution was sufficient for understanding the capacity requirements
of four machines, but as the number of machines and interac-
tion among the equipment grows, the need for DES to handle the
increasing complexity would be indispensable.

The major problem encountered in automating the Capac-
ity Planning was the local program naming problem. When ma-
chine operators oversee a workorder, they download workorder
part programs from a central repository to the CNC and then
assign the program an ad–hoc local name. Thus, maintaining
a tight correspondence between cycle times and the actual pro-
grams was challenging. In the part program, a header provides
the actual program name and various setup details, but program
source code was not accessible due to OEM MTConnect imple-
mentation issues that we hope to resolve in the future. Unfortu-
nately, the program naming issue made the input of an expected
part cycle time rely on a more empirical, quasi–manual approach,

to interpreting program names. On–line streams of program, cy-
cle times, and statistical summaries were available but in time,
this manual operation should be completely automated with bet-
ter access to the program header.

DISCUSSION
DES software has matured into a mainstream technology.

Currently, most factories do not take advantage of DES tech-
nology because of various difficulties and obstacles associated
with model development and data acquisition. On the surface,
it would seem that once the DES model is in place, continuous
operational analysis should be straightforward. However, this is
not the case, mostly due to repetitive manual operations required
for DES data entry. Our project was to determine the feasibility
of “Push–button” DES, assuming an automated data stream were
available.

Summarizing, a prototype automated DES event acquisition
and statistical parameterization system was developed. The MT-
Connect data acquisition was straightforward and we were able
to quickly derive the necessary event data. Statistical fitting of
the events was more difficult and required developing goodness–
of–fit algorithms for various statistical distributions we used.

In the future, we plan to integrate more functionality into the
automated on–machine statistical analysis, such as trends, better
fault data, abnormal deviations, and detection of excessive faults.
We hope to report these findings as “Push–button” outcomes and
only draw attention to trends that appear significant.

DISCLAIMER
Commercial equipment and software, many of which are

either registered or trademarked, are identified in order to ade-
quately specify certain procedures. In no case does such identi-
fication imply recommendation or endorsement by the National
Institute of Standards and Technology or Boeing Aerospace, nor
does it imply that the materials or equipment identified are nec-
essarily the best available for the purpose.
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