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Abstract: The representation and management of product lifecycle information is critical to the success of any 
manufacturing organization. Different modeling languages are adopted to represent different product information, 
for example EXPRESS for geometry as seen in the Standard for Exchange of Product model data (STEP), and the 
Unified Modeling Language (UML) for beyond-geometry information as defined in the Core Product Model (CPM). 
It is necessary to consolidate product information created using these different languages to create a coherent 
knowledge base. In this paper, we present an approach to enable the translation of STEP schema and its instances 
to Ontology Web Language (OWL). This gives a semantically rich model, which we call OntoSTEP, that can easily 
be integrated with OWL ontologies. A plug-in for Protégé is developed to automate the different steps of the 
translation, and the integration of beyond-geometry information. As additional benefits, reasoning, inference 
procedures, and queries can be performed on the enriched legacy CAD model. We describe the mapping rules for 
the translation from EXPRESS to OWL, and illustrate the benefits of OWL translation with an example. We will also 
describe how these mapping rules can be implemented through meta-model based model transformations. 

 

1 Introduction      

The Product Lifecycle Management (PLM) approach enables organizations to manage their 
product portfolio from conception to disposal, in an integrated fashion [1].  Manufacturing 
organizations spend a considerable amount of resources to understand and apply the PLM 
approach. The PLM concept is gaining acceptance primarily because of the emergence of the 
networked firm and the networked economy, in contrast to the market- or hierarchy-based 
organizations that typically use a transactions cost model as the cornerstone for the choice of 
organizational structure [2]. PLM support entails the modeling, capturing, manipulating, 
exchanging, and using of information in all product lifecycle decision-making processes, across 
all application domains. Proper representation and management of product information is the key 
for a successful implementation of PLM.  

To enable the exchange of product data throughout a product’s lifecycle, the International 
Organization for Standardization (ISO) has developed the Standard for Exchange of Product 
model data (STEP) [3] (ISO 10303), which is still evolving to meet the needs of modern 
Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), and Product Data 
Management (PDM) systems. Application Protocols (APs) represent the implementable data 
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specification of STEP. Examples of the most widely used APs are AP203 (Configuration 
controlled 3D design of mechanical parts and assemblies) [4], AP214 (Core data for automotive 
mechanical design processes) [5] and AP239 (Product life cycle support)[6]. These APs mainly 
focus on product data management and geometry information. Unfortunately, the representation 
of beyond-geometry information such as the function and behavior of the product is usually not 
part of the information contained in these APs.  

 
The STEP APs are modeled using the EXPRESS (ISO 10303-11) [7] language. EXPRESS was 
developed for representing product models and providing support to describe the information 
required for designing, building, and maintaining products [8]. Data models (or schemas) are 
represented in EXPRESS as a network of concepts (entities) and relationships between concepts 
(attributes). Entities and attributes are therefore the basic constructs of EXPRESS. STEP Part 21 
[9] defines the syntax for representing instance data according to a specific EXPRESS schema.  

Many tools have been developed to check the syntax of EXPRESS information models and the 
validity of the instances against the information models. Unfortunately, these tools are 
specifically developed for implementers and consumers of STEP, so their usage is restricted to 
the field of product modeling in EXPRESS. Lack of explicit semantics and contexts in the 
information content to be shared across PLM applications is a major problem. Making data 
semantics explicit and context aware and sharable among product lifecycle applications is a 
major challenge. For an evolving organization to function, an information infrastructure that 
supports well-defined information exchange among the participants is critical. 

The development of a high-level interoperable model poses many challenges, such as, i) the 
complex nature of interactions in product modeling and ii) representation of the information 
content and abstraction principles used. The model for representing mechanical assemblies 
(products) is inherently complex due to: 

• the variety of information elements to be represented: function, behavior, structure, 
geometry and material, assembly features, tolerances, and various levels of interaction of 
these concepts 

• the abstraction principles needed to represent the information model: generalization, 
grouping, classification, and aggregation. 
 

A recent paper [10] outlines a method for evaluating the appropriate level of expressiveness to 
capture both the information content and the abstraction principles, discussed with the aim of 
developing a consistent formal model for product assemblies. The report also evaluates the 
application of OWL [11] (Ontology Web Language) for the development of ontologies for 
manufacturing products, in terms of expressivity and the use of SWRL (Semantic Web Rule 
Language) [12] for representing domain-specific rules. 

Based on our previous work [10,11],  this paper describes how to translate STEP models from 
EXPRESS to OWL to semantically enrich the models. This translation allows the application of 



logic mechanisms to check the validity of the models and data, to check the consistency of the 
instances, and to infer new knowledge. These logic mechanisms are performed by software tools 
called reasoners [10]. We refer to the translated STEP as OntoSTEP in the remainder of the 
paper. OntoSTEP [13] could be used to express and semantically enrich product information 
available in STEP files. In this paper, we describe the translation of STEP AP 203 data models 
and Part 21 CAD files into OWL. The methodology followed is fully applicable to any other 
STEP AP and corresponding Part 21 file.  

OntoSTEP is a step towards developing semantically enriched product models. Semantic models 
support both the representation of product geometry concepts and beyond-geometry concepts. 
Figure 1 shows the different steps involved in building a semantic product model. We outline 
three important steps: 1) a STEP AP (AP203 in this paper) written in EXPRESS is translated into 
an OWL schema, 2) data instances are extracted from a Part 21 file (exported from a CAD 
system) and translated into OWL individuals, 3) this ontology is now combined with another 
product model (CPM-OAM in this paper) to add beyond-geometry information, resulting in a 
new semantically enriched product model. The semantic product model also allows us to perform 
reasoning, inferences, and queries, as shown in the figure (this will be described in Section 2.3).  



 

Figure 1: Building semantic product model 

In our earlier work [14], we created a semantic model for including beyond-geometry concepts 
(such as function, behavior, requirements and sustainability factors) from the Core Product 
Model (CPM) [15]  and Open Assembly Model (OAM) [16] developed at NIST (National 
Institute of Standards and Technology). This model was developed in OWL-DL 1.0 [11] and 
enriched with SWRL rules [12]. A third party reasoner allows reclassifying the input instances, 
and the SWRL rules allow refinement and improvement of the model. 

In this paper, we combine OntoSTEP with the semantic models of CPM and OAM. A plug-in for 
Protégé [17] will enable the beyond-geometry information of the designed product to be included 
in the OntoSTEP representations. The traditional geometry information and beyond-geometry 
information would then be represented in a unified, consistent OWL model.  

The paper is organized as follows. We introduce the OntoSTEP concepts and benefits in 
Section 2. We present the details of our implementation (plug-in for Protégé) and the tools used 
to realize it in Section 3. We illustrate the integration of beyond-geometry information with a use 
case in Section 4. In Section 5, we introduce a high-level model transformation specification for 
the OntoSTEP translation. Finally, we present our conclusions and future work in Section 6. 



2 OntoSTEP: translating STEP data model into OWL   

This section describes how a STEP data model (schema) is translated into OWL. The term STEP 
data refers to the models written in EXPRESS and instances of these models. For example, the 
data model would be an AP203 schema, while an instance would be a Part 21 CAD file 
containing the 3D representation of a product. We use Courier New font to denote 
EXPRESS code and we use Arial Narrow font to denote OWL code. 

2.1 Schema Mapping (TBox)  

In our translation, EXPRESS entities and instances map to OWL classes and individuals 
respectively. Attributes are mapped to OWL properties. The OWL language defines two kinds of 
properties, object properties and data properties. Object properties link classes together, while 
data properties link classes to data types. The domain of a property defines which classes have 
this property. Without restrictions, OWL properties are aggregations, so an individual can be 
linked several times to other individuals using the same property. However, it is possible to 
restrict the cardinality and the range of values of a property. We used the 
“ObjectExactCardinality” and “ObjectAllValuesFrom” constructs to represent these restrictions. 
ObjectExactCardinality asserts how many times an object property must be used for a given 
individual. ObjectAllValuesFrom defines what the range of the property is. In the case of an 
optional attribute, the “ObjectAllValuesFrom” construct is used to link the entity that has the 
attribute to the union of the attribute type and the class owl:Nothing. This solution is adopted to 
explicitly express the semantics of the OPTIONAL keyword in EXPRESS, which means that a 
value is not required for this attribute. 

An ontology may contain statements related to both classes (TBox - terminological box) and 
individuals (ABox – assertion box). In our translation, a schema is translated into an ontology 
that contains mainly classes and property definitions [10]. The following table summarizes our 
proposed translation of the basic concepts from EXPRESS to OWL. 

 

EXPRESS OWL 

Schema Ontology 

Entity Class 

Subtype of Subclass of 

Attribute with 
an entity type 

ObjectProperty. The domain of the property is the class that 
corresponds to the entity that contains the attribute. This class 
is restricted to have ObjectExactCardinality equal to 1 and 
ObjectAllValuesFrom equal to the entity type for that 
property. 



Attribute with a 
simple data type 

DataProperty. The domain of the property is the class that 
corresponds to the entity that contains the attribute. This class 
is restricted to have ObjectExactCardinality equal to 1 and 
ObjectAllValuesFrom equal to the data type for that 
property. 

Optional 
attribute 

The range of the property is restricted to have 
ObjectAllValuesFrom equal to the union of the attribute type 
and the class owl:Nothing. 

Table 1: Translation of the basic concepts from EXPRESS to OWL 

We also need to redefine the naming conventions for properties. In EXPRESS, attributes are 
defined to be within the scope of the entity; in OWL, properties have a global scope. We prefix 
the attribute names with the entity names in order to differentiate attributes that have the same 
name but belong to different entities. 

2.2 Instance Mapping (ABox) 

An EXPRESS schema is instantiated by creating a file as defined in “Clear Text Encoding of the 
Exchange Structure -10303-21,” or Part 21. CAD packages can export data in STEP format that 
complies with the AP203 schema and the constraints of STEP Part 21. In this paper, we refer to 
these files as “Part 21 files.”  

The translation to OWL is performed by parsing all the instances declared within the Part 21 file, 
and then creating individuals and property assertions. In STEP, the schema and the instances are 
declared in different files: the related schema is specified in the Part 21 file in the 
FILE_SCHEMA section. In a similar fashion, we generate two different ontologies during the 
translation: a schema ontology for the EXPRESS schema and an instance ontology for the Part 
21 file. OWL provides a mechanism to import statements declared in an external OWL ontology. 
We use this feature in the instance ontology to import the schema ontology, so that we maintain 
the schema ontology separate from the instance ontology while accessing both simultaneously. 
By having the final ontology containing both the TBox and the ABox, we are able to check the 
consistency of the instances against the schema.  

All the EXPRESS instances contained in a Part 21 file are distinct, which means that any two 
EXPRESS instances represent two different real world objects. Conversely, OWL individuals are 
not inherently distinct. Unless explicitly declared as distinct, two OWL individuals may 
represent the same real world object. To translate the EXPRESS instances correctly, it is then 
necessary to declare explicitly all the OWL individuals contained in the same file to be distinct 
using OWL constructs. 

The treatment of an unknown fact is another major difference between EXPRESS and OWL. In 
EXPRESS, any unknown fact is supposed to be false. For example, let us consider two 
EXPRESS entities called product and product_category. If an instance of product is 



not declared as an instance of product_category, then the system assumes it is not. This 
behavior is called the Closed World Assumption (CWA), because it supposes that the world is 
limited to what is stated. OWL uses the Open World Assumption (OWA): unless a reasoner 
proves a fact is false, that fact is unknown. Hence, the translation sometimes requires additional 
information to capture the semantics of EXPRESS in OWL. The difference between CWA and 
OWA causes a translation problem when an instance is constrained to have one attribute. The 
attribute id of the entity product is not declared as optional, so it must be instantiated for 
all the instances of product. In EXPRESS, the lack of data will raise an error. In OWL, even if 
the id is not specified for an instance of product, the reasoner will not detect an 
inconsistency: the instance is still considered to have an unknown id. To allow the reasoner to 
detect an inconsistency in case of a missing id, it would be required to declare explicitly that 
that instance of product has no id. 

The translation of some additional concepts, such as derived data types, is also required before 
completing the translations of STEP APs. Our approach for translating these concepts is 
presented in the next section. 

2.2.1 Mapping additional concepts 

Some EXPRESS constructs, such as functions, cannot be automatically translated: these 
constructs usually define entity constraints and attributes computation, and may rely on complex 
algorithms. OWL, as it is based on Description Logic, does not contain any procedural aspects. 
This section focuses on the EXPRESS language aspects that can be automatically translated to 
OWL concepts. More details regarding the translation of some EXPRESS concepts, such as 
SELECT, ENUMERATION, and UNIQUE can be found in our earlier report [13]. 

2.2.2 Data types 

EXPRESS includes all the data types required to capture product information. OWL inherits the 
data types defined in the XML Schema Definition (XSD) language. Some EXPRESS types, e.g., 
Boolean and String, have an exact equivalent in OWL, while other types, e.g., Number and 
Real, are represented in a slightly different way in OWL. For example, we translated the 
EXPRESS Real type as a double in OWL, even though the precision of those two data types is 
different. The translation of the Logical and Binary data types is outside the scope of this 
paper since these data types are not contained in AP203. 

EXPRESS allows the derivation of data types from simple types. In order to deal with these 
derived types in OWL, we build a type hierarchy and apply the concept of data wrapping. 



 
Figure 2: Attributes 

In the example in Figure 2, we define a class String that has a DataProperty relation to the string 
data type. It is then sufficient to subclass the class String to translate all the user-defined data 
types (Label in this case) derived from string.  Because of the possible use of functions, we cannot 
guarantee an automatic translation of data type restrictions. Using a manual case-by-case 
translation, most of the types defined in AP203 can be translated. 

2.2.3 Aggregations 

EXPRESS provides four different kinds of aggregations: set, bag, list, and array. Each of 
these aggregations has order and duplication policies. When an actual aggregation is used in a 
schema, the type of its content and the number of elements it shall have are defined. The detailed 
mapping of aggregations is explained in [13]. Here, as an example, we provide the detailed 
mapping of bag. 

Bags are unsorted collections of elements. The only difference between sets and bags is the 
duplication policy: the same element can be repeated several times in a bag. As object properties 
in OWL do not allow duplications, we create the concept structure shown in Figure 3 to correctly 
map bags from EXPRESS to OWL. Consider an EXPRESS bag called Container, which can 
contain items of type Content. To correctly map this aggregation to OWL, we perform the 
following steps. 



 
We create a class Container in OWL. A new class, called Bag, is inserted between the Container 
class and the Content class. The class Bag is used to represent an occurrence of Content using the 
property hasContent. The property hasContent is declared as functional, which means that there can 
be only one instance of Content linked to an instance of Bag by the property hasContent. Figure 4 
represents the instantiation of the schema presented in Figure 3, illustrating how an EXPRESS 
bag containing a duplicated element is converted to OWL. An instance of Container (cont) is 
linked to two different instances of the Bag class (b1 and b2). Each of these two instances is then 
linked to the same instance of the Content class (elem1). Since b1 and b2 are different, the 
ontology contains the fact that the elem1 element is present twice in the aggregation. 

 
Figure 4: Bag (Individual level) 

 

Figure 3: Bag (Class level) 



2.2.4 Abstract Entity and Class 

An entity in EXPRESS may be declared as abstract. The meaning is the same as in object-
oriented programming: an abstract entity cannot be directly instantiated, but it may be 
subclassed. Consider, as an example, the following two entities: 
ENTITY document_reference 
ABSTRACT SUPERTYPE; 
assigned_document : document; 
source            : label; 
END_ENTITY; -- document_reference 
ENTITY cc_design_specification_reference 
SUBTYPE OF (document_reference); 
items : SET [1:?] OF specified_item; 
END_ENTITY; -- cc_design_specification_reference 
 
In this example extracted from AP203, the entity document_reference is declared as 
abstract, and the entity cc_design_specification_reference is defined as its 
subtype. This means that the entity document_reference cannot be directly instantiated, 
but cc_design_specification_reference can be instantiated. 
 
OWL does not provide any feature to translate the ABSTRACT keyword, i.e. an OWL class 
cannot be declared as abstract. Using an OWL class to represent an abstract entity causes a 
problem: because of the Open World Assumption, we cannot assume that the OWL class will 
never be instantiated. To overcome this problem, we can declare the subtype classes as partitions 
of the supertype. A partition forces the instances of the supertype to belong to at least one 
subtype. This is achieved by declaring that the set of instances of the supertype is equivalent to 
the set of instances of all its subtypes. In that case, if an individual is declared as an instance of 
document_reference and not an instance of 
cc_design_specification_reference, the reasoner would detect an inconsistency. 
However, this solution works only when the supertype and all the subtypes are declared within 
the same schema. Because of these reasons, we choose to ignore the ABSTRACT keyword. 

2.2.5 Inheritance 

In order to specify the allowed combination of subtypes for an entity, EXPRESS provides three 
keywords: ONEOF, ANDOR, and AND. Along with the ABSTRACT keyword, they restrict the 
usage of the instantiation mechanism.  

ONEOF:  The ONEOF keyword takes a list of entities as its parameter, and it specifies that only 
one of these entities can be instantiated. An equivalent behavior in OWL is obtained by defining 
the subclasses as disjoint: an inconsistency is detected when an individual is an instance of two 
of these subclasses. We mark the set of classes contained in a ONEOF list as disjoint. Another 



solution could be to use the logical definition of XOR. We could also use the OWL intersection, 
union and complement operations, to translate AND, OR, and NOT. However, this increases the 
complexity of the ontology, as the length of the formula increases dramatically with the number 
of elements involved. For this reason, we choose the first solution. 

ANDOR: When no specific constraints are defined, the default keyword for the instantiation is 
ANDOR. This means that the instance can belong to more than one subclass. In OWL a set of 
entities joined by an ANDOR is translated by the union of the corresponding classes in OWL. We 
first represent the union of the subclasses by using the ObjectUnionOf construct and then declare 
this union to be equivalent to the parent class. 

AND: The AND operator imposes that the object be an instance of all the subclasses. In order to 
represent this constraint in OWL, we use the ObjectIntersectionOf construct to link the 
subclasses. 

2.3 Benefits of OWL ontology for STEP 

OWL 2 RL (Rule Language)[18] is based on Description Logics (DL), a family of knowledge 
representation languages. These languages can be used to define domain concepts according to a 
predefined and well-understood formalism. Concepts are used to represent the domain's objects, 
while roles are used to represent relationships between these concepts. The OWL representation 
provides benefits subject to the level of OWL expressivity.  The expressivity of OWL is denoted 
using different characters. For example OWL 2 RL is SROIQ(D). The explanation of this 
expressivity is given in [10]. In [10] the authors show examples of DL semantic axioms in 
product modeling and highlight that DL semantics can be implemented in a reasoner engine to: 

• Check its consistency. 
• Perform inference on the class hierarchy. 
• Perform inference on the membership of the individuals to the classes. 
• Query and search the model. 

2.3.1 Consistency checking 

The consistency checking procedure can be applied at two different levels, namely the schema 
level and the instance level. At the schema level, the consistency checking will determine 
whether an instantiation of a concept would create an inconsistency in the model. At the instance 
level, the consistency checking procedure checks whether an individual declared as an instance 
satisfies the definition of the class it is instantiated. 

Currently, libraries are available to check the consistency of EXPRESS schemas and Part 21 
files. With OntoSTEP, a DL reasoner performs both kinds of consistency checking. Checking the 
logical consistency of the OWL classes and individuals resulting from a translation is a necessary 
condition to use an inference procedure. As we will see later in Section 4, the integration of 



beyond-geometry information allows us to perform advanced consistency checking that is not 
available in EXPRESS. 

2.3.2 Inference procedure 

An inference procedure is a mechanism not available to the EXPRESS community. An inference 
procedure uses the data evidence in a context and draws conclusions using certain problem 
solving strategies [19]. An inference procedure is the process of reaching these conclusions, and 
is performed by a reasoner. Reasoners use a knowledge base as a source of data, such as 
concepts, roles, and axioms, to reach a conclusion. The expressivity of the axioms and concept 
definitions is dependent on the logic language used. 

Once the reasoner has applied all the inference procedures on our ontology, new knowledge and 
data can be made available. This new data and knowledge can be both at the schema and at the 
instance level. These dynamic modifications cannot be done in EXPRESS. One can then use a 
querying mechanism to query the new data, which represents an enriched version of the original 
ontology. 

2.3.3 Queries 

Queries are performed to retrieve specific data from a large amount of information. This 
mechanism does not readily exist with STEP, though some mechanisms have been developed 
[20]. In our case, we perform queries to retrieve some specific product information from an 
OntoSTEP file. The information contained in a CAD file is first translated into OWL 
representation, then checked for consistency, inferenced upon, and finally queried. 

There are two approaches in practice today to perform queries on OWL ontologies. The first 
approach uses a language called SPARQL Query Language (SPARQL) [21], and the second 
approach uses the Semantic Query-Enhanced Web Rule Language (SQWRL) [22]. OntoSTEP 
gives users the freedom to choose any query language. 

SPARQL was specifically developed for Resource Description Framework (RDF) models, so we 
would need to translate our OWL ontology to RDF before performing SPARQL queries. 
SPARQL has two major drawbacks. First, the translation from OWL to RDF increases the 
computational time. Second, the Pellet [23] reasoner does not support several SPARQL built-in 
functions, such as DESCRIBE, OPTIONAL, or FILTER. While SPARQL was developed for 
RDF, SQWRL was specifically developed for OWL. Unlike SPARQL, SQWRL is based on 
SWRL [12] and does not need any RDF bridge. SQWRL provides not only many built-in 
functions, but also some classical aggregation functions like maximum, minimum, sum, or 
average [24], which are missing in SPARQL. While being more appropriate to OWL, we found 
two issues with SQWRL. First, it is based on the proprietary engine Jess [25], which is the only 
option currently available to process SQWRL queries. Second, because it is based on SWRL, 
SQWRL does not allow combining functions together, e.g., it is not possible to query the 
maximum of averages.  



3 Implementation of OntoSTEP   

The previous section discussed the transformation rules and mappings necessary to generate an 
ontology from EXPRESS schemas and instance files. We now present an implementation of 
these rules and mappings. The main goal here is to create tools to generate ontologies from STEP 
data. These tools translate both schema files and instances files (Part 21).  

We use the Protégé [17] editor to implement OntoSTEP. Protégé is a free, open source ontology 
editor and knowledge base framework. It is one of the most widely used tools to edit and manage 
knowledge bases. The Protégé architecture allows third party developers to write their own 
extensions in Java. 

The implementation involves the following steps: generation of the OWL Schema from the 
EXPRESS Schema (schema translation for creating TBox), generation of the OWL individuals 
from the Part 21 file (schema instantiation for creating ABox), and development of a plug-in to 
integrate the TBox and ABox within the Protégé environment. We will also combine OntoSTEP 
with CPM-OAM (Step 3 in Figure 5) to create an ontology representing beyond-geometry 
information.  

3.1 Schema translation for creating TBox 

Translation of an EXPRESS schema file is carried out in two stages. First, we retrieve the syntax 
tree of the schema. Second, we translate this information by applying the rules described in 
Section 3. The following paragraphs explain these two stages. 

In order to obtain the syntax tree of the EXPRESS schema, we use an open source EXPRESS 
Parser [26]. This parser is implemented using the ANTLR (ANother Tool for Language 
Recognition) [27] parser generator. From EXPRESS grammar rules, ANTLR creates a parser 
that retrieves the structure of any EXPRESS schema. The result is a syntax tree representing the 
information contained in the schema. 

ANTLR also provides facilities to scan syntax trees and to trigger specific actions depending on 
the encountered element. For instance, in our implementation, the detection of the keyword 
ENTITY leads to the creation of a class in OWL. 

We used the open source OWL Application Programming Interface (OWL API) [28] for OWL2 
to create the ontology. This API is used by Protégé 4 [17]. 

3.2 Schema instantiation for creating ABox 

To map the EXPRESS instances contained in a Part 21 file to OWL individuals, we first retrieve 
the EXPRESS instance information from the Part 21 file. We then process this information to 
translate them into OWL individuals. 



In STEP there is a mechanism called Standard Data Access Interface (SDAI) [29] to manage 
data defined in EXPRESS schemas. Bindings to several popular languages (C, C++, and Java) 
are specified by SDAI. We used the open source SDAI implementation from Java SDAI (JSDAI) 
[30] to translate EXPRESS instances and attributes into OWL individuals and their properties 
(ABox). For each instance, an individual is created, and its attributes are obtained and translated.  

The result is a file containing all the individuals and the assertions on these individuals (ABox). 
The TBox translation of the EXPRESS schema is also imported as it contains the definition of 
the OWL classes.  

  

Figure 5. Implementation of OntoSTEP 

 

3.3 Protégé plug-in of OntoSTEP 

The third and last step of this implementation is to integrate the schema translation and the Part 
21 translation within the Protégé editor. This integration is done via the plug-in platform 



provided by the editor. This platform allows developers to extend the capabilities of Protégé by 
developing their own plug-ins. The OntoSTEP plug-in we developed provides two new menu 
options in Protégé. One option allows translation of a schema, and the other option allows 
instantiation of a schema. The resulting ontology is displayed through Protégé and users are then 
free to manipulate the ontology. This implementation of OntoSTEP is summarized in the Figure 
5. 

4 Extending STEP to include beyond-geometry information using OntoSTEP 

OntoSTEP can be extended, as OWL schema and individuals can be enriched by the inclusion of 
other extensions containing beyond-geometry information. In [14] the authors explain the 
translation of CPM from UML to OWL.   Extensions written in other languages such as UML 
can be translated in OWL, but it is out of the scope of this paper. We use this font to denote CPM 
terms. 

4.1 Motivation for including beyond-geometry information  

NIST developed a Core Product Model (CPM) [15] that provides an open, generic, and 
expandable product model.  CPM aims to capture all product information shared throughout the 
product lifecycle. The key concepts of CPM are Artifact and Feature. Artifact represents a product. 
A sub-artifact relationship allows product decomposition. Feature is defined as a portion of an 
artifact's form that has specific functions. Different characteristics of the Artifact are also 
described in CPM. Function describes what the artifact is supposed to do. Form describes a design 
solution for the problem specified by a Function. A Form in CPM is composed of Geometry and 
Material. Behavior describes how an Artifact implements a Function. CPM also defines different 
kinds of relationships, such as Constraint or Usage, to link all the previous concepts.  

Because CPM is a generic product model, an extension called the Open Assembly Model 
(OAM) [31] was created in order to include assembly representation. Some generic concepts 
defined in CPM are specialized into assembly-specific concepts. For instance, Artifact is 
specialized into Assembly and Part. Particular focus is given to the connections between artifacts 
(MoveableConnection, FixedConnection, IntermittentConnection, etc.). These connections can also 
describe parametric assembly constraints, and can include tolerance information.  

We use both CPM/OAM and STEP AP203 to capture product design information. CPM and 
AP203 share several notions, for example the class Artifact and the entity Product refer to the 
same concept. Moreover, both models can specify relationships between Artifacts. The goal of the 
integration is to make sure that information representing the same knowledge is actually 
recognized as such. 



In order to make the integration possible, the data has to be expressed in the same language. To 
get an integrated representation in OWL, we used the translation tools from EXPRESS to OWL 
previously introduced, and the OWL version of CPM/OAM explained in [14].  

4.2  An OntoSTEP example 

In this section, we show how to combine AP203 and CPM through a clock design. AP203 is 
used to create a 3D CAD model of a product, while CPM and OAM are used to represent the 
functional decomposition of this product and the relationships between the parts. 

4.2.1 Functional Decomposition 

The first step is to perform a functional decomposition of the clock assembly. The different parts 
of the assembly are identified, and their functions are provided. The result of this design phase is 
an assembly composed of six subassemblies. In CPM, one Artifact is created for the assembly and 
for each subassembly, and the relationship subArtifacts is used to relate them. Then for each 
Artifact, a function is created and linked to it by the relationship functionOfArtifact. Table 2 presents 
these subassemblies and their corresponding functions. 

Subassembly Function 

Speed-reduction Change the angular speed 

Escapement Transmit motion 

Weight Provide energy 

Pendulum Create motion 

Face Show the reading 

Frame Support 

Table 2: Functional decomposition of the clock 

4.2.2 Geometric definition of the clock 

The next step is the design of the product using a CAD system. The assemblies were created 
using Pro/ENGINEER [32], and then saved in Part 21 files conformant to AP203. The parts are 
set to have the same name in the CAD file and in the CPM model, so that they can be easily 
mapped. Figure 6 shows the Speed-reduction subassembly.  



 

Figure 6: 3D representation of the Speed-reduction subassembly 

4.2.3 Data Integration of geometry and beyond-geometry information 

The previous steps allowed the designer to create two different assemblies using two different 
data models: the AP203 and the OAM models. The benefit of using semantic technologies is the 
capability to bring in external knowledge to create a richer model. For instance, in this case we 
can assert that the clock that has a geometric representation in AP203 model is the same as the 
clock that has a function in CPM. Then, all the knowledge about the product in each of the two 
models will be shared. 

In order to integrate the geometric data, we follow the steps defined in the previous section. We 
first have to generate an OWL representation of AP203, which is the EXPRESS schema used by 
the CAD file to represent the product. This is achieved by translating the EXPRESS schema 
using the OntoSTEP plug-in in Protégé. The translation of the schema is saved in a file, so that it 
can be reused by all the relevant Part 21 translations. The second step is to use the OntoSTEP 
plug-in to convert our CAD file into OWL. This translation requires the schema to be already 
translated, so the ontology previously created is selected and imported by the plug-in. Once the 
translation is completed, all the information described in the CAD file is available in Protégé. 

Next, it is necessary to identify what concepts are equivalent in CPM and in AP203. The main 
equivalence is between the class Artifact in CPM and the entity Product in the AP203. Our goal 
will be to match the individuals of these two concepts in order to get a single view of the 
product. We consider three levels of complexity regarding the way the integration should be 
performed. The easiest is an algorithm that is able to “guess” which parts are equivalent in the 
two models from the information available. It could, for instance, compare the assembly tree in 
the two models. The hardest approach is performing the integration manually because there 
would be no way to “guess. ” This would make the designer assert the equivalence in CPM each 
time a part is created in CAD. A simple tradeoff is to have equivalent parts have the same name 
in both models, in which case a simple rule that makes this equivalence based on the name is 
enough. We used the Semantic Web Rule Language (SWRL) to make this rule work: 



 

cpm:Artifact(?art) ^ cpm:hasName(?art, ?artName) ^ ap203:product(?prod) ^ 
ap203:product_has_name(?prod, ?prodName) ^ ap203:toString(?prodName, 
?prodNameVal) ^ swrlb:equal(?prodNameVal, ?artName) => sameAs(?art, ?prod) 

 

 

Figure 7: 16-teeth gear in Protégé 

4.3 OWL benefits  

The benefits described in the Section 2.3 are especially useful in this example. The consistency 
checking ensures that each class, whether it is the translation of an entity or the translation of a 
type, is actually instantiable (they can be used). In addition, the Part 21 translation is checked in 
order to determine if the instances are used as intended.  

Once the ontology is verified, the inference mechanisms use logic to determine the types of each 
translated individual. SWRL rules are also executed by the reasoner. A single integrated view of 
the product is then generated, as the ontology combines geometry and beyond-geometry 
information. Figure 7 shows the result in Protégé for the 16-teeth gear (named “Art_23”), which 
is part of the Speed-reduction subassembly. The figure was annotated to indicate the different 
sources for the individuals (Part 21 and CPM instance) and for their classes (AP203 and CPM). 



The window in this figure is vertically split into three portions. The portion on the left contains 
the list of all the OWL individuals in the ontology. Here the 16-teeth gear is selected, so the 
individual named “Art_23” is highlighted. The part in the middle shows all the classes the 
selected individual is instance of. The statements written as bold text have been explicitly 
asserted while the statements written as normal text have been inferred. In this example, the 
individual Art_23 has been explicitly declared as an Artifact. As Art_23 is also the same 
individual as product i53363, the type product is inferred for Art_23. The portion of the 
window on the right contains all the object property assertions and all the data property 
assertions for the selected individual. As an example of object property assertion, the gear is 
linked to the function Fn_07 (Transmit_motion) by the CPM object property artifactHasAspect. 
The gear is also linked to an identifier i53363_id by the AP203 object property 
product_has_id. In regards to data property assertions, the gear has a property hasName that 
contains the value “Art_23”.  

It is now possible to take advantage of this integrated system to query the ontology. We present 
two queries that use both CPM and STEP information to answer simple questions a designer may 
ask.  

The first query is about retrieving the function of a part defined in a CAD system. The input of 
this query is the identifier of the part defined in the CAD system. The expected output is a string 
representing the function of that particular part. Here is the SQWRL query that retrieves the 
function of the product i53363: 

cpm:Artifact(i53363) ^ cpm:Function(?func) ^ cpm:artifactHasAspect(i53363, 
?func) ^ cpm:hasName(?func, ?name) => sqwrl:select(?name) 

Because of the integration previously performed, the product i53363 is recognized as being 
the Artifact Art_23. Hence i53363 gets the properties of Art_23, including the functions Fn_07 
(Transmit_motion) and Fn_12 (Change_angular_speed) (see Figure 7). Thus, we are able to infer 
that the 16-teeth gear performs the functions of transmitting motion and changing angular speed, 
which would not have been possible with the CAD model alone. 

The second query is about retrieving the parts that are connected to a particular part via a fixed 
connection. The CPM class FixedConnection is a kind of ArtifactAssociation that is used to state that 
two parts are physically connected and have a fixed joint. The relationship 
artifactAssociation2Artifact links the connection with the two involved parts. As in the previous 
query, the input will be a particular part defined in a CAD system: the 16-teeth gear. Here is the 
SQWRL query that gives the intended result: 

cpm:Artifact(i53363) ^ cpm:FixedConnection(?fc) ^ 
cpm:artifactAssociation2Artifact(?fc, i53363) ^ 
cpm:artifactAssociation2Artifact(?fc, ?art)=> sqwrl:select(?art) 



This query returns the individuals representing a shaft in CPM and in the CAD system. Since the 
class FixedConnection is defined only in CPM, this knowledge cannot be represented in CAD 
alone. 

5 Meta-model Based Model Transformations 
So far, we have described our mapping rules from EXPRESS to OWL, and its implementation in 
Java. The translation scheme shown in Table 1 is a high-level description that is easy to 
understand. However, the implementation requires us to deal with low-level details such as 
language grammar and programming libraries. A more straightforward method to implement the 
translation is using high-level model transformations, which will allow domain experts to 
concentrate on the high level mapping rules, and not worry about low-level language details. 

A model transformation is a sequence of well-defined rules that takes an input model (such as an 
EXPRESS model) and produces an output model (such as an OWL model). While these 
transformations are usually conceived as high-level mappings as described here, they are often 
implemented using an imperative programming language such as Java. However, recent 
developments in model transformation allow us to specify these mappings using more formal, 
high level, visual representations. Using these technologies, the transformations themselves can 
be specified as models. Specifying the transformation itself as a model allows us to better 
understand, analyze, and archive the transformation. This is particularly significant when 
considering long term retention of these specifications. 

A meta-model in systems engineering is a model that captures the salient concepts and relations 
of a domain, along with the rules that define the domain. Meta-model based transformations 
provide a high-level specification of a mapping between two domains (called source and target 
domains), such as from EXPRESS to OWL, that is easier to understand and analyze. The high-
level specifications are also easier to evolve when changes are made to the source and target 
domains. 

Section 2 described the mapping rules we used to translate STEP models into OWL. In this 
section, we create a model transformation from these mapping rules. As an example, we created 
meta-models for EXPRESS and OWL (derived from a subset of the previously published Meta-
Object Facility (MOF) meta-models for these languages in [33] and [34]). We specified model 
transformation rules based on our previous mapping descriptions, and used an automatic model 
transformation tool to execute the transformation. This example is described next. 

5.1 Example using GME/GReAT 

As a prototype study, we have used the Generic Modeling Environment (GME) [35], a tool for 
domain modeling developed at Vanderbilt University, to create meta-models for subsets of 
EXPRESS and OWL. The meta-models are defined using stereotyped Unified Modeling 
Language (UML) class diagrams, as shown in Figure 8 and Figure 9. The notation used in these 



meta-models is in the native meta-language of the GME tool, which is derived from UML class 
diagrams. More details on the meta-language can be found in [36]. The meta-models for 
EXPRESS and OWL used in this example were created by extracting a small subset of the MOF 

meta-models that were defined in [33] and [34].  We use the Arial Unicode MS  font  to denote 
concepts defined in GMEFor example, Figure 8 shows a subset of the EXPRESS meta-model, 

which defines concepts called EntityType and Attribute. Attribute has a relation called 

attributetype, which connects it to ParameterType (ParameterType is shown in italics to 
denote that it is an abstract type) . Connections are modeled as UML association classes, and the 
rolenames (‘srcattributetype’ and ‘dstattributetype’) on the connections are used by the GME 
toolset to keep track of the source and destination objects in the instance models. The 

ParameterType has three subtypes namely SimpleType, DefinedType, and EntityType. 

Figure 9 shows a subset of the OWL meta-model. It defines concepts such as OWLClass and 

Property. OWLRestriction is a subtype of OWLClass. OWLClass and Property have a 

relation called  DomainForProperty. The rolenames ‘srcDomainForProperty’ and 
‘dstDomainForProperty’ for this connection are used by GME to keep track of the source and 
target objects of this connection. 

 

Figure 8: Representative Subset of Express Meta-model 



 

Figure 9: Representative Subset of OWL Meta-model 

Next, we specified the mapping rules described in this paper as high-level model transformation 
rules. We used the Graph Rewriting And Transformation (GReAT) tool suite [37] to specify and 
execute the model transformation. GReAT allows us to specify the transformation rules as graph 
transformations, by treating the concepts and relations in the input and output models as nodes 
and edges of a graph. The rules specify portions of the input that must be matched, and portions 
of the output that must be newly created. Figure 10 shows the transformation specified in 
GReAT, with two of the rules expanded for detail. The first rule, CreateOWLClass, specifies the 
creation of an OWL class corresponding to an entity in the EXPRESS schema. This rule denotes 

that instances of EntityType must be matched in the input EXPRESS schema, and for every 

matched entity, an OWLClass must be created in the output OWL schema. The rule 

AssignDomains assigns the domain for a previously created OWL property in the output model, 
corresponding to the attribute type in the input model. 



 

Figure 10: Model transformation from EXPRESS to OWL 

The GReAT tool suite allows us to organize the transformation rules both sequentially and in 
parallel, and encapsulate them hierarchically, making it convenient to analyze and maintain 
them. Each of the elements in the transformation rule must come from one of the two meta-
models. The patterns specified in the transformation rules cannot violate the meta-models. This 
ensures that the output model is conformant with the OWL meta-model, reducing the possibility 
of producing an erroneous output model. Other verification methods and technologies are 
available to perform further analysis, to ensure that the transformation produced the correct 
result.  

6 Conclusions and Future Work 
In this paper, we present an approach to enable the translation of STEP schema and Part 21 files 
defined in EXPRESS to OWL. We described the mapping rules for the translation from 



EXPRESS to OWL, and outlined the benefits of OWL translation with an example. This 
mapping gives a semantically rich product model, which we call OntoSTEP, that can easily be 
integrated with OWL ontologies. Manufacturing systems today must deal with product lifecycle 
information that goes beyond basic 3D geometry. In this paper, we combine OntoSTEP with 
another ontology to add beyond-geometry information, resulting in a new semantically enriched 
product model. We also explained the additional benefits, reasoning, inference procedures, and 
queries that can be performed on the enriched model. A plug-in for Protégé is developed to 
enable the beyond-geometry information of the designed product to be included in the 
OntoSTEP representations. The Protégé plug-in can be downloaded from 
http://www.nist.gov/mel/msid/ontostep.cfm. We also described how these mapping rules could 
be implemented through meta-model based model transformations.  

The OWL ontologies generated by this approach have several applications beyond the example 
described in this paper. One such application, for long term preservation of engineering data, is 
described below. 

6.1 Long Term Knowledge Retention 

The objective of the Long Term Knowledge Retention (LTKR) project at NIST is to define 
guidelines and information models to enable effective archival and retrieval of digital project 
model data and other engineering-related documents. One of the core challenges of long term 
knowledge retention is the interpretation of data stored in a format that has become obsolete.  

Technologies such as OWL enable us to represent knowledge in a computer interpretable form 
that is suitable for long term retention. The OWL representations are generic and open, as 
opposed to proprietary formats. This enables widespread availability of tool support beyond the 
usual lifetimes of proprietary formats. The generic nature of OWL allows us to incorporate non-
geometry information extracted from other documents (such as a requirement specification) into 
the information extracted from CAD files. This satisfies a major requirement by helping 
managing an archival of multiple engineering documents in a coherent manner. It also allows the 
extraction of descriptive information from archived documents, and the search and retrieval of 
archived documents. 

Disclaimer 
 
No approval or endorsement of any commercial product by NIST is intended or implied. Certain commercial 
software are identified in this report to facilitate better understanding. Such identification does not imply 
recommendations or endorsement by NIST nor does it imply the software identified are necessarily the best 
available for the purpose. 
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