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Abstract 

Kinetic lattice Monte Carlo (KLMC) model is developed for investigating oxygen vacancy 

diffusion in praseodymium-doped ceria. The current approach uses a database of 

activation energies for oxygen vacancy migration, calculated using first-principles, for 

various migration pathways in praseodymium-doped ceria. Since the first-principles 

calculations revealed significant vacancy-vacancy repulsion, we investigate the 

importance of that effect by conducting simulations with and without a repulsive 

interaction. Initially, as dopant concentrations increase, vacancy concentration and thus 

conductivity increases.  However, at higher concentrations, vacancies interfere and 

repel one another, and dopants trap vacancies, creating a “traffic jam” that decreases 

conductivity, which is consistent with the experimental findings. The modeled effective 

activation energy for vacancy migration slightly increased with increasing dopant 

concentration in qualitative agreement with the experiment. The current methodology 

comprising a blend of first-principle calculations and KLMC model provides a very 

powerful fundamental tool for predicting the optimal dopant concentration in ceria 

related materials. 
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1. Introduction 

 Ceria related materials are considered to be one of the most promising materials 

for intermediate temperature fuel cell applications because of their high ionic 

conductivity, which in turn facilitates the reduction of their operating temperature and 

thereby eliminates several technological problems. As a result, oxygen vacancy 

migration in ceria and doped ceria has received major attention as it affects the 

performance of this material when used as the electrolyte and anode material within 

solid oxide fuel cells (SOFC) [1-6]. In our previous study, we highlighted various 

applications of praseodymium-doped ceria (PDC) [7] and presented detailed first-

principles (DFT+U) description of vacancy diffusion in PDC.  

 The results of those first principle calculations are ideally suited for input into 

kinetic lattice Monte Carlo (KLMC) models of vacancy diffusion.  Monte Carlo methods 

have been used in the past to study materials for electrolyte applications in SOFC [8-

13]. Most [8,9,10,12,13] of these studies used density functional theory (DFT) 

methodology and one [11] used semi-empirical potentials to determine the energetics 

for oxygen vacancy diffusion in oxides (yttria-stabilized zirconium and yttria-doped 

ceria). Among the studies performed using DFT methodology, some [8,9,12,13] of the 

studies determined activation energies from static calculations, and one [10] study 

determined energetics from ab initio molecular dynamics.  The resulting activation 

energies were used as input into KLMC models of oxygen vacancy diffusion.  However, 

none of these models included the effect of vacancy-vacancy interaction, which we find 

to be significant.  Overall, these earlier calculations demonstrate that kinetic Monte 

Carlo is a powerful technique for investigating oxygen vacancy diffusion (and hence 
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ionic conductivity) in doped oxides. 

On the basis of percolation theory and neglecting the Coulomb repulsion 

between vacancies, Meyer et al. deduced that for systems with fluorite structure, at low 

dopant concentrations, there are many percolating paths to enable vacancies to diffuse 

[14]. They interpreted that at higher dopant concentration, many diffusion pathways are 

blocked due to attraction of vacancies to the dopants leading to a decrease in ionic 

conductivity. Previous calculations used Monte Carlo approaches to analyze oxygen 

mobility in complex oxide systems like CeO2–ZrO2 and CeO2–ZrO2–La2O3 in platinum 

catalysts [15], determining the equilibrium composition profile across a coherent 

interface in Sm-doped ceria [16]. Hull et al. performed analysis of the total scattering 

using reverse Monte Carlo modeling of anion deficient ceria [17].  They showed that the 

oxygen vacancies preferentially align as pairs in the (111) cubic directions as the 

degree of nonstoichiometry increases. 

Molecular dynamics simulations have been used earlier to identify the trends in 

ionic conductivity as a function of dopant concentration. Hayashi et al. used molecular 

dynamics simulations to investigate oxygen diffusion and the microscopic structure of 

ceria-based solid electrolytes with different dopant radii [18]. Inaba et al. studied oxygen 

diffusion in Gd-doped ceria using molecular dynamics simulations [19]. They attributed 

the larger size of the trivalent Gd dopant ion to the higher calculated diffusion constant 

as compared to Y-doped ceria.  An issue with molecular dynamics simulations is that 

they are performed over a very short time frame that can lead to insufficient statistical 

sampling of various configurations.   
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Since KLMC methods have proven very useful in the investigation of oxygen 

diffusion in other oxides, it makes sense to apply this methodology to Pr-doped ceria.  

Previous KLMC models have often suffered from two limitations: 1) very limited data on 

dopant effects on vacancy migration, often limited to a single binding energy, when in 

fact our calculations reveal that the dopant vacancy interactions can be very complex, 

and 2) a failure to include the effect of repulsion between the oxygen vacancies, which 

we will show is a significant effect at higher concentrations.  In this article we develop a 

KLMC model that overcomes both of these limitations, and use it to investigate the 

effects of dopant concentration and temperature on ionic conductivity. Thus, the model 

can be used as a design tool to determine the optimal concentration of Pr dopants for 

maximizing ionic conductivity. 

2. Computational Methodology 

Monte Carlo (MC) techniques were developed originally by Von Neumann, Ulam 

and Metropolis [20] and broadly refer to diverse approaches to unraveling problems 

involving the use of random numbers to sample the ensemble. Kinetic Lattice Monte 

Carlo (KLMC) is one such approach used to model lattice dynamics with the evolution of 

time. In the KLMC model, all atoms are assumed to occupy lattice sites that coincides 

with the local potential minimum with a potential barrier, Exy, separating the adjacent 

lattice sites. The only meaningful events in KLMC simulations are those involving 

transfer or exchange of atoms from one lattice site to another. In this paper we focus on 

a vacancy diffusion mechanism, so we save computational memory and effort by only 

tracking the oxygen vacancies, and assume all other sites are occupied.  In events 



 6 

where Exy << kBT, the transition rate of a vacancy moving from lattice site x to y is 

evaluated by the hopping mechanism governed by the Arrhenius Law: 

                                                        (1)                                                                                                                                                   

 

Here, xy, represents the attempt frequency for an atom hopping from lattice site 

x to y. The harmonic approximation of the effective attempt frequency corresponding to 

the defect vibrations can be expressed using the dynamical matrix theory [21] as: 

 

                                                                                                                                                                                                                                                    (2) 

 

where, “ min” and “ sad” represent normal mode frequencies at the minimum and saddle 

point position of the hopping atom respectively and N is the numbers of ions. The KLMC 

model requires input rates for various allowable events, such as diffusion and reactions. 

One key aspect of the KLMC algorithm are these input rates, since if these rates are 

known then one can accurately simulate time-dependent diffusion of various species. 

The pros and cons of various approaches for identifying the rate process database in a 

KLMC simulation are explained by Adams et al. [22]. KLMC simulations based on a set 

of kinetic atomic-scale processes can describe the evolution of mesoscopic systems up 

to macroscopic times. In this way, we have developed a 3-D KLMC model of vacancy 

diffusion in ceria and doped ceria. This model will further enable us to calculate ionic 

conductivity of various doped materials with respect to the dopant concentration. 

 The KLMC technique is based on a blend of Monte Carlo approaches and 

Poisson processes. In the current KLMC model, the material in consideration can 
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consist of various possible events and evolve as a series of independent events 

occurring in accordance with the input rates. Assuming Arrhenius dependence, the 

diffusivity can be expressed as: 

         

(3) 

 

where D0 is the pre-exponential factor, T is the absolute temperature and kB is the 

Boltzmann constant. The term EA generally comprises of two contributions: the total 

migration energy ( EM), and the vacancy formation energy ( EV). Primarily, most of the 

vacancies in ceria-related materials are generated to maintain the charge balance due 

to the addition of aliovalent dopants. For example, the addition of Pr+3 to CeO2 results in 

an oxygen vacancy for every two ionized dopants (this is the stoichiometric vacancy to 

dopant ratio of 0.5).  Moreover, the vacancy formation energy in ceria and doped ceria 

is very high; hence the concentration of vacancies created thermally in the electrolyte is 

extremely small. Consequently, the vacancy formation energy ( EV) term can be 

neglected and effectively the energy term in equation (3) consists only of vacancy 

migration energy ( EM). We have argued earlier [7] that the activation energy for 

vacancy migration is actually a complex average of many jump events. In this regard, 

we have calculated many activation energies of various diffusion pathways for oxygen 

vacancy migration in PDC for a vacancy hopping mechanism [7]. The energies from our 

previous work [7], as presented in Table 1, are input to the KLMC model. It should be 

noted that, for PDC, the oxygen prefers a second nearest neighbor (2NN) site, which 

means that many types of jump events need to be included (1NN  2NN, 2NN  2NN, 

2NN  3NN, etc.) to properly model the complexity. 

D D0 exp
EA

kBT
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The average rate of displacement of defects in solids by thermal activation can 

be calculated using classical rate theory [23]. Accordingly, the hopping rate for the 

defect can be expressed by equation (1). The pre-exponential factor (D0) in equation (3) 

mainly consists of the jump distance (for ceria it is half the length of the lattice 

parameter) and the hopping rate for the migrating vacancy. In the current work, the 

jump distances for all first neighbor jumps were assumed to be constant for various 

dopant concentrations as very small changes in O – O bond length (~0.001 nm) are 

expected. The attempt frequency (5 x 1012 Hz) was determined from equation 2. It is the 

ratio of the product of 3N normal frequencies of the entire system at the starting point of 

the transition to the 3N – 1 frequencies of the system constrained in the saddle point 

configuration This value of attempt frequency was assumed constant for different 

configurations, as the normal mode frequencies are not expected to differ significantly.  

The KLMC model comprises a number of ordered events which take place in a 

sequence as given in the flowchart in figure 1. We computed the mean square 

displacement of all the vacancies in the simulation cell (accounting for crossing periodic 

boundaries) and used the results to calculate the diffusion coefficient of oxygen 

vacancies as follows: 

        

    (4) 

 

where t is the sum of all the time steps t, for each jump event and Ri(t) is the position of 

the ith vacancy at time t. Following the computation of oxygen vacancy diffusion 

Dv lim
t

Ri(t) Ri(0)
2

6ti 1

N
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coefficient, the ionic conductivity was calculated using the Nernst-Einstein relation as 

given below [1]: 

 
                                        (5)  
                                                                                                                                                                                                                 
 

where i is the ionic conductivity, Ci is the concentration of ionic carriers (vacancies for 

the present case) and qe their charge. 

 We used a 10 10 10 cell comprising of 12,000 possible sites to place the 

respective ion. The periodic cell with a 10 10 10 periodicity was built from a 

conventional 12-atom cubic unit cell of ceria using the theoretically optimized lattice 

constant of 0.5494 nm for bulk ceria [7]. Of these 12,000 positions, 4,000 are available 

for dopant placement and 8000 sites for vacancy formation. The vacancies are allowed 

to hop to adjacent sites, subject to certain constraints.  The simulation cell was repeated 

periodically along the three axes to simulate a lattice of effectively infinite extent. The 

dopant and vacancy concentration were varied. All the dopant ions are assumed to be 

trivalent, hence for every two dopant ions, a vacancy was incorporated. For each of the 

different dopant concentrations, ten simulations were performed, each with a different 

dopant distribution. Each simulation comprised of approximately 3000,000 or more jump 

events. This resulted in achieving a statistical average with a precision of  3 % for 

various dopant concentrations. Considering the difference of the order of  3 % in ionic 

conductivity for the simulations involved, the sampling does not require additional runs 

for each configuration. The simulations were performed for temperatures ranging from 

673 K to 1073 K and approximately equal diffusion distances were used to calculate the 

final diffusion coefficients. To plot the Arrhenius relationship and facilitate comparison 

i

DvCi(qe)
2

kBT
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with the available experimental data, some specific configurations were simulated for 

temperature ranging from 573 K to 1173 K. 

 We have developed two separate models for PDC, a Vacancy Non-Repelling 

model (VNR) and a Vacancy Repelling model (VR). We performed preliminary 

calculations using the DFT+U methodology explained in our previous work [7] to 

investigate vacancy diffusion in PDC. All the calculations were performed for charge 

neutral supercells. We studied two separate cases for PDC; (i) Vacancies are placed 

next to the dopant ions (ii) Vacancies are placed far apart from the dopant ions. For 

case (i), we found that the configuration involving two vacancies separated by a 

distance larger than the 1NN (nearest-neighbor) distance is more stable by 0.38 eV as 

compared to the configuration with vacancies placed next to each other. For case (ii), 

the configuration involving two separated vacancies is more stable by 0.28 eV as 

compared to the configuration with vacancies placed next to each other. The observed 

Coulomb interaction between charged vacancies lead us to develop two separate 

models; (1) In the VNR model, vacancies are allowed to move anywhere in the 

simulation cell except into an existing vacancy; (2) In the VR model, the vacancies are 

not allowed to move adjacent (first nearest neighbor) to any other vacancies in the 

simulation cell, nor into an existing vacancy. (It would be slightly more accurate to add 

the repulsion energy. But the repulsion energy is so large that it is very rare that 

vacancies will move adjacent to one another, so this is a very good approximation).  

Previous studies have neglected the Coulomb interaction between the anionic species, 

but we find that this effect is important in correctly characterizing the optimal dopant 

concentration in ceria related electrolyte materials.  
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3. Results and discussion 

 The energies given in Table 1 correspond to vacancy motion adjacent to one 

trivalent Pr ion as shown in figure 2. In the presence of multiple dopant ions, we use an 

underlying assumption that every additional Pr dopant in the vicinity of the migrating 

vacancy will have an additive effect towards the activation energy for vacancy migration. 

For example, for paths (Table 1), 1NN  2NN and 2NN  1NN, we found that the 

decrease in activation energy for ceria doped with two Pr ions located next to each 

other was twice as much compared to ceria doped with two Pr ions that are separated. 

Using first principles calculations [7] we found that in vicinity of two next neighbor Pr 

dopant ions, the decrease in activation energy relative to the undoped ceria for the 

migration path 1NN  2NN is 0.13 eV as compared to 0.06 eV in presence of one Pr 

dopant ion. Similarly, for the migration path 2NN  1NN, the respective numbers are 

0.07 eV and 0.04 eV. In the KLMC model, for the migration paths 1NN  2NN and 2NN 

 1NN in presence of two Pr dopant ions, the decrease in activation energy is 

calculated to be 0.12 eV and 0.08 eV, respectively. These numbers justify the 

assumption (additive effect of dopants) incorporated in the KLMC model and provide a 

reasonable approximation of migration energies in the presence of multiple dopants. 

Moreover, this decrease in activation energy for the case where two Pr ions are next to 

each other is in reasonably good agreement with results reported by Andersson et al. 

[24]. Using this relationship in the KLMC model, we have simulated diffusion of oxygen 

vacancies in the presence of multiple dopants. Under the current assumption, the 

estimated activation energies for multiple dopants are probably valid to about 10 meV at 

low to moderate concentrations, but may be larger at higher concentrations. 
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One of the principal goals of the current effort is to study the variations in ionic 

conductivity as a function of dopant concentration in PDC and to determine the optimal 

dopant concentration that exhibits a maximum in ionic conductivity. As mentioned 

earlier, researchers have previously studied other systems with similar methodology, 

but have neglected the Coulomb interactions between the charged vacancies. Hence, 

we also wish to investigate the significance of including these effects. Figure 3(a) 

comprises the simulation results for variations in ionic conductivity as a function of 

dopant concentration in PDC using the KLMC-VNR model for temperatures ranging 

from 673 K to 1073 K. For the temperatures ranging from 673 K to 873 K, the maximum 

in ionic conductivity is observed at  25 % dopant concentration, whereas the maxima 

at temperatures of 973 K and 1073 K are shifted at  30 % dopant concentration. 

Incorporating the effects of charged vacancies using the VR model significantly changes 

the results. Plotted in Figure 3(b) are the variations in ionic conductivity as a function of 

dopant concentration in PDC using the KLMC-VR model for temperatures ranging from 

673 K to 1073 K. The overall effect of the VR model is to reduce vacancy diffusion, 

especially at higher concentrations, which also results in a shift of the peak conductivity 

towards lower concentrations.  For the temperatures of 673 K and 773 K, the maximum 

in ionic conductivity is predicted at  15 % dopant concentration, whereas the maximum 

at temperature ranging 873 K to 1073 K is predicted at  20 % dopant concentration.  

Considering all the simulations performed for PDC using KLMC-VNR and VR 

models, the magnitude of ionic conductivity is larger for the values obtained using the 

VNR model. This is a consequence of the fewer number of available sites for the 

vacancies to migrate on the oxygen sublattice for the VR model due to the vacancy-
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repelling factor, which decreases the diffusion coefficient. The computed maximum in 

ionic conductivity at around 25 % to 30 % dopant concentration using the KLMC-VNR 

model agrees well with experiment [25,27], but does not provide the true picture. 

Praseodymium is known to have mixed valence at atmospheric pressure, and hence 

equilibrium between Pr4+ and Pr3+ exists determined by the temperature and oxygen 

pressure. Hence, only half of the dopant ions are Pr3+ [25,28]. This equilibrium reduces 

the probable oxygen vacancy concentration upon doping with Pr and hence the ionic 

conductivity increases more slowly with increase in Pr content as compared to other 

aliovalent dopants [29]. In the current simulations performed using both VNR and VR 

models, all the Pr dopant ions are assumed to be trivalent. Hence, the results obtained 

with the KLMC models should be compared with experimental data plotted vs. ionized 

dopants, not total dopants.  In some cases it has been estimated that only half of the 

dopants are ionized, so this is a large effect. 

Experimental studies by Shuk et al. [25] and Chen et al. [27] found that the 

maximum in ionic conductivity occurred at about 30 % dopant concentration. If we 

assume that approximately half of these dopants are trivalent (in the experiment, only 

half of the dopants are ionized) [25,27], the optimal concentration of dopants (  15 % to 

20 %) as predicted by the KLMC-VR model is in reasonably good agreement with the 

measured values. Moreover, the slight discrepancy in the experimental and theoretical 

findings can be attributed to the dependence of oxygen vacancy concentration on the 

temperature and oxygen partial pressure, and also to grain boundary effects, effects 

that are not included in the KLMC model. 
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To further investigate the origin behind the calculated maximum in the ionic 

conductivity, we performed additional simulations using the KLMC-VR model at 873 K. 

Figure 4 shows two different scenarios, (i) the vacancy concentration is increased 

linearly keeping the dopant concentration fixed at 20 %, (ii) increasing the dopant 

concentration linearly and keeping the vacancy concentration fixed at 5 %. For case (i), 

the ionic conductivity keeps increasing, as shown in the figure. The slight dip in the 

curve is due to vacancy-vacancy interactions at higher vacancy concentration, but this 

effect is modest. Case (ii) results in a steadily decreasing ionic conductivity. The 

conductivity decreases in case (ii) because a growing fraction of the vacancies get 

trapped near the dopant ions, decreasing the net diffusion.  This effect is significantly 

larger than the effect of vacancy-vacancy interactions (case (i)), which also decreases 

ionic conductivity.   

Overall, these two investigations explain the increase and then decrease in ionic 

conductivity with increasing dopant concentration. Initially, the ionic conductivity 

increases at lower dopant concentration due to the increase in vacancy concentration, 

but after reaching a maximum, it decreases due to increasing interactions between the 

dopant ions and vacancies that serves as a bottleneck, decreasing the number of 

minimum energy pathways for a vacancy to diffuse. 

Nauer et al. reported that the total conductivity of PDC increases until a dopant 

concentration of 40 % to 50 % is reached [26]. This is due to the fact that for PDC, 

beyond 25 % to 30 % dopant concentration, the electronic conductivity exceeds the 

ionic conductivity [25] and hence explains the higher dopant concentration for attaining 

a maximum in electrical conductivity. Figure 5(a) shows the plot of ionic conductivity 
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versus dopant concentration at 973 K using the KLMC-VNR and VR model. Figure 5(b) 

shows data obtained by experimental measurements performed by Shuk et al. [25] and 

Chen et al. [27]. Depending on the fraction of dopants that are trivalent, the graph 

obtained using the KLMC-VR simulations should be shifted somewhat towards the right. 

This is in reasonable agreement with experimental data if the vacancy concentration is 

half (in the experiment, only half of the dopants are ionized) of what should be expected 

after the addition of Pr dopant [25,27]. The primary reason for the discrepancy in the 

absolute magnitude of the conductivity as observed from the experimental 

measurements, as shown in figure 5(b), is probably due to the difference in synthesis 

methods of the respective samples [25,27]. Overall, figure 5 shows that the trend of 

increased conductivity in PDC can be reasonably predicted using KLMC-VR model if 

the fraction of ionized dopants is known.    

The primary reason for the decrease in the ionic conductivity with increasing 

dopant concentration is the increase in average activation energy for vacancy migration 

and the percent increase of Pr ions near the migrating vacancy. The increasing number 

of Pr ions often tends to bind the neighboring oxygen vacancy more strongly and 

decrease the diffusion coefficient, which in turn decreases the oxide ion conductivity. At 

low dopant concentration, the number of available minimum energy diffusion pathways 

is higher. For PDC, the formation of an oxygen vacancy is found to be most favorable at 

the 2NN position [7] to the Pr dopant and hence the available minimum energy 

pathways keep decreasing with increasing of dopant ion concentration leading to this 

behavior. Thus the simulations results, obtained using the KLMC-VR model, show 

reasonable agreement with the experimental data and highlight the importance of 
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including the Coulomb interactions between the anionic species. Hence, the current 

methodology serves as a fundamental tool for predicting the optimal dopant 

concentration in PDC.  

Figures 6 (a) and (b) show values of ionic conductivity as a function of inverse 

temperature for Ce0.90Pr0.10O2-x and Ce0.80Pr0.20O2-x respectively, obtained from KLMC 

simulations and experimentally measured values [25,26]. The Arrhenius type behavior 

of the ionic conductivity for this particular configuration is visible with all the simulation 

data points for KLMC-VNR and VR models lying on straight lines. The simulation results 

agree reasonably well with the experiments with some discrepancy in the magnitude of 

ionic conductivity, but this could be due to the reasons mentioned above. For figure 6 

(b), our theoretical results are in the middle of two sets of experimental measurements, 

and the trends with temperature are very similar.  Reference 26 is the total conductivity, 

whereas our model and reference 25 included only the ionic contribution to the 

conductivity. Several other plots for different compositions have been studied and the 

general trends and conclusions that can be drawn are analogous. 

A vacancy can move through a number of distinctive diffusion pathways before 

finally diffusing across an ionic conductor such as PDC. Determination of the rate-

limiting step for a path is complex, because it depends on the dopant concentration and 

arrangement. The input rates used for the KLMC simulations were evaluated using the 

DFT+U calculations [7] and provide a very reasonable initial assumption, but the 

migration energy for a complete diffusion path cannot be associated with a single 

migration event. It has to be averaged using a statistical model that takes into account 

the distinct pathways involved during diffusion. Moreover, the migration energies 
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generated using first-principles are applicable for processes occurring at 0 K. Hence we 

have compared the statistically averaged migration energies elucidating the 

temperature dependence with the experimentally measured values. Figure 7 shows 

averaged activation energy for vacancy migration as a function of dopant 

concentrations. The activation energies presented in figure 7 are computed from the 

slopes of similar Arrhenius plots as seen in figure 6 (a) and (b). 

The plots of average activation energy as a function of dopant concentration 

generated using KLMC-VNR and KLMC-VR simulations show similar behavior with the 

former having slightly lower magnitude. The experimental values taken from the 

measurements performed by Shuk et al. are compared with those obtained from 

simulations in Figure 7 [25]. The experimental and theoretical values are in good 

agreement at low dopant concentrations, and both increase with increasing dopant 

concentration, but the effect is larger for the experimental data, although there are 

significant error bars.  The small increase in the activation energy for vacancy migration 

at dopant concentrations ranging from 5 % to 15 % as seen in Figure 7 from simulations 

is primarily due to negligible interactions between oxygen vacancies and dopant ions. At 

higher dopant concentrations, the increase in average activation energy for migration is 

due to the increased likelihood of finding two next neighbors Pr – Pr or Pr – Ce ions 

pairs near an oxygen vacancy, where a higher energy is needed to overcome these 

barriers. Any further increase in the Pr ions can eventually trap the vacancy and form a 

bottleneck for diffusion. This is also evident from the earlier explanation and Figure 4, 

where the increase in dopant concentration is found to be primarily responsible for the 

decrease in ionic conductivity after attaining a maximum. The differences between 
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theory and experiment may be partly due to 1) limitations in the DFT data used as input, 

2) assumptions involved in the KLMC model regarding activation energies, and 3) the 

uncertainty of the order of 50 meV in measured values. 4) The experimental samples 

are polycrystalline, so grain boundaries may have a small effect, 5) variations in 

sintering temperature may affect the level of reduction of the experimental samples.  

Nauer et al. reported an experimentally measured value of activation energy ranging 

between 0.42 – 0.53 eV for 20 % dopant concentration for PDC [26] as compared to the 

average activation energy value 0.39 eV obtained for similar dopant concentration by 

KLMC simulations. Keeping this in mind, the averaged activation energies obtained 

from KLMC simulations are in reasonable agreement with the measured values. 

4. Conclusions  

 We have used KLMC simulations in conjunction with our previously performed 

first-principles calculations to investigate oxygen vacancy diffusion in PDC. The 

increase in average activation energy for vacancy migration as a function of dopant 

concentration is due to the increase in Pr – Pr dopant pairs that hinder further motion of 

the oxygen vacancies. The current findings are found to follow similar trends as 

compared with the previously measured values. A dopant concentration of 

approximately 15 % to 20 % is found to be optimal for achieving maximum ionic 

conductivity in PDC. The KLMC simulations are in reasonably good agreement with the 

available experimental data, when we take into account that only about half of the 

dopants are ionized. The decrease in ionic conductivity with increasing dopant 

concentration is correlated with the increase in average activation energy for vacancy 

migration from the vicinity of the dopant pairs and the subsequent decrease in 
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availability of minimum energy pathways for the vacancy diffusion.  Based on the 

reasonable agreement with experimental measurements, we believe that the current 

model can be used as a design tool to predict the optimal dopant concentration for 

attaining maximum ionic conductivity. 

 The KLMC code developed for this project will be available for download in the 

near future from: http://enpub.fulton.asu.edu/cms/  
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Table 1. Activation energies for oxygen vacancy migration along distinctive pathways in 

PDC calculated using first-principles. E(X,Y) denotes activation energy for a oxygen atom 

migrating from X-nearest neighbor (XNN) to Y-nearest neighbor (YNN) with respect to 

the Pr ion in PDC.  

 

Migration pathway 
 

Activation energy (eV) 
 

E(1,1) 0.78 

E(1,2) 0.41 

E(1,3) 2.79 

E(2,1) 0.43 

E(2,2) 0.47 

E(2,3) 0.57 

E(3,1) 2.69 

E(3,2) 0.44 

E(3,3) 0.47 
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Figure 1. Flowchart of the major events involved in a KLMC simulation. NN and MSD 

represents the next neighbor and mean square displacement, respectively; Dv is the 

diffusion coefficient and  is the conductivity.  
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Figure 2. Top view of a 2 x 2 x 2 PDC supercell.  The blue, green and red balls 

represent Ce, Pr and O ions, respectively. Numbers 1, 2 and 3 represent 1NN, 2NN and 

3NN oxygen ions with respect to the Pr ion, respectively. (X, Y) represents an oxygen 

ion jump from XNN to YNN. Pr ion closer to the migrating vacancy is only shown 
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Figure 3(a). Plot of calculated ionic conductivity of PDC as a function of dopant 

concentration generated using KLMC-VNR model for temperature ranging from 673 K to 

1073 K.  
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Figure 3(b). Plot of calculated ionic conductivity of PDC as a function of dopant 

concentration generated using KLMC-VR model for temperature ranging from 673 K to 

1073 K. 
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Figure 4. Plot of calculated ionic conductivity as a function of fixed dopant concentration 

and fixed vacancy concentration using the KLMC-VR model at 873 K. For the plot with 

fixed dopant concentration, the x-axis represents the varying vacancy concentration.  
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Figure 5(a). Ionic conductivity data calculated for PDC obtained using KLMC-VNR and 

VR models for simulations performed at 973 K. In both KLMC models, we assume that 

all the dopants are ionized. 
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Figure 5(b). Ionic conductivity data for PDC obtained by experimental measurements 

performed at 973 K. For the experimental results from references 25 and 27, only half of 

the dopants are ionized. 
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Figure 6(a). Arrhenius plot of ionic conductivity of 10 mol% PDC as a function of 

temperature ranging from 573 K to 1173 K for the KLMC simulations and 573 K to 973 

K for data measured by experiments.   
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Figure 6(b). Arrhenius plot of ionic conductivity of 20 mol% PDC as a function of 

temperature ranging from 573 K to 1173 K for the KLMC simulations and 573 K to 973 

K for data measured by experiments. 

 

 
 
 
 
 
 
 
 



 32 

 
 

 

Figure 7. Average activation energy as a function of dopant concentration for PDC 

compared with the available experimental data. The experimental data involves error 

bars of 50 meV.  

 
 


