
CONCURRENT ENGINEERING: Research and Applications

Semantic B2B-integration Using an Ontological Message Metamodel

Marko Vujasinovic,1,2,* Nenad Ivezic,1 Edward Barkmeyer1 and Zoran Marjanovic2

1Manufacturing Systems Integration Division, NIST, Gaithersburg, MD 20899-8260, USA
2Department of Information Systems, Faculty of Organizational Sciences, Belgrade, Serbia

Abstract: E-Business applications are often required to use different, incompatible, message sets to implement message interfaces for a

business-to-business (B2B) communication. This makes communication with every new partner a new interoperability problem. In this article,

we present a semantic-mediation architecture that provides for interoperable B2B data exchange. The mediation process is based on an

Ontological Metamodel of message schemas and messages, and uses existing reference business ontologies. An approach for message schema

semantic reconciliation and annotation is devised to support the mediation. We demonstrate the approach on a scenario that involves two

incompatible message interfaces, one UN/EDIFACT based and another OAGIS XML based.

Key Words: enterprise integration, semantic mediation, semantic reconciliation, semantic annotation, message model.

1. Introduction

Standard business-to-business (B2B) message sche-
mas, such as UN/EDIFACT (www.unece.org/trade/
untdid) or OAGIS BODs (www.oagi.org), standardize
the B2B message definitions, and constrain the usage and
relationships of message components – data types,
elements, attributes, and their content. However, the
standards-based integration has several shortcomings [1].
First, the business-concepts specification based on
syntactic notations and diagrams leads to interpretation
ambiguity. Second, informal annotation of message
component semantics leads to the integration problems
at the message semantic level. Third, the procedural
mapping among application data concepts and standard
message components leads to obscure and inflexible
implementations. Additionally, there can be several
incompatible standards for a particular message type,
or several different customizations of a standard schema
that use different terminologies to name message
components, different structural organizations, or dif-
ferent data types. Also, the syntax, such as XML
(Extensible Markup Language; www.w3.org/XML/) or
EDI (Electronic Data Interchange), might differ.

To address these shortcomings, we explore a reference
ontology-mediated semantic integration for B2B appli-
cations. Explicit and formal reference ontologies, as
common business conceptual models for specific

domains [2], are being recognized as the foundation
for the B2B integration [3]. We base the reference
ontology-mediated semantic integration on two assump-
tions: first, as long as peers are committed to a reference
ontology, they can interact; second, the data concept
mapping always takes place between the message
schema concepts and reference ontology concepts.
That decouples the peers. Here, we detail the proposed
architecture, the integration steps, and the developed
prototype tools. In [4] we reported on the initial set of
tools that we first used in our architecture. Those tools’
weaknesses motivated us to design and develop three
novel foundational aspects of the architecture:
(1) ontological message metamodel, (2) ontological
message metamodel-based semantic reconciliation of
messages, and (3) semantic annotation of message
components definition. In the next section, we begin
discussion of these essential advancements in the
proposed architecture, which is further detailed through
the rest of the article.

2. Semantic Mediation

2.1 Conceptual Architecture

Figure 1 shows the semantic-mediation architecture.
Reference ontology formally captures the common
business concepts and their relationships including the
business meaning of the conceptual messages. We
assume that a reference ontology is developed by
the business community, represented using the OWL
(Web Ontology Language; www.w3.org/2004/OWL/) or

*Author to whom correspondence should be addressed.
E-mail: marko.vujasinovic@gmail.com
Figures 1–5 appear in color online: http://cer.sagepub.com

Volume 18 Number 3 September 2010 219
1063-293X/10/03 0219–14 $10.00/0 DOI: 10.1177/1063293X10379764

� The Author(s), 2010. Reprints and permissions:

http://www.sagepub.co.uk/journalsPermissions.nav



RDFS (Resource Description Framework Description
Language; www.w3.org/TR/rdf-schema/), and publicly
available. The semantics annotation tool provides for
explicit and machine-processable annotation expressions
of the message component definitions in terms of the
reference ontology entities. The annotation tool requires
a business expert to interpret the message component’s
meaning. The tool captures decisions made by the expert
as formal expressions. The reconciliation rules creation
tool provides the rule templates for executable reconci-
liation rules. Forward reconciliation rules specify the
transformation of message content to reference ontology
individuals, while backward rules specify the content
transformation from the ontology individuals to a
message. The reconciliation rules creation also requires
human assistance, or at least oversight; however, the
rules can be derived automatically in most cases from
the annotation expressions. Deriving the rules from the
annotation expressions steers the design time effort
toward reconciliation. The reconciliation rules execution
engine executes the forward reconciliation rules when the
application is sending messages and the backward rules
when the application is receiving messages. Message
model abstracts underlying message and schema repre-
sentation specifics, whilst providing a base for standard
semantic annotation and reconciliation activities.

Message-representation transformation tools provide
transformation of schemas and messages into the
corresponding message-schema models and message-
instance models, respectively. Semantic-mediator compo-
nent assembles the reconciliation engine and runtime
message-representation transformation.

The advances of the architecture over the traditional
integration architectures are: (1) formal specification of
the business domain concepts provides a basis for
unambiguous interpretation of the data-exchange arti-
facts; (2) semantic annotation of message schemas
provides machine-processable annotation expressions
that formally and precisely describemessage components;
(3) automated and consistent semantic integration
through the executable reconciliation rulesmoves the engi-
neering effort away from the implementation details;
(4) semantics-mediation reconcilesmismatches of different
message forms. The architecture also supports message
exchange between independently developed applications
that have nonstandard schema-based interfaces.

2.2 Semantic Integration Methodology

At design time, first, a schema-language-specific
transformer tool is used to produce message-schema
models from given message schemas. Then, integration

Figure 1. Semantic mediation: a conceptual architecture.

220 M. VUJASINOVIC ET AL.



engineers annotate the message-schema model concepts
to formally describe the message components’ meaning.
Next, the engineers use a reconciliation tool to create
required reconciliation rules; either by using the message-
schema models and the reconciliation tool to manually
create the rules, or by loading the annotations into the
reconciliation tool to derive the rules from annotations
automatically. When an ontology concept is required for
comprehension, but does not appear in a message, a
value must be provided by manually creating the
reconciliation rule, as it cannot be derived from the
annotations. At runtime, an application sends a message
and the message-transformer tool transforms the mes-
sage to a corresponding message-instance model. Then,
the reconciliation engine takes that message-instance
model and executes the forward rules for a sending
application. This generates reference ontology indivi-
duals. Next, the reconciliation engine takes the ontology
individuals and executes the backward rules defined for a
receiving application. This generates a message-instance
model for the receiving application. Finally, from that
model, a specific message-transformer tool produces a
schema-conformant message in the syntax expected by
the receiving application. Effectively, the semantic-
mediator provides the semantic integration capability.

3. Model of a B2B Message

The semantic-mediation requires a message model
form that (1) decouples the architecture from underlying
message and schema syntax specifics, (2) provides for
the semantic annotation of message component defini-
tions, and (3) provides for the generation of schema-
conformant messages from the reconciliation output.
There are two alternative approaches: a local conceptual
message-schema (LCM), and here proposed ontological
message metamodel form.

3.1 Inadequacy of a Local Conceptual Message
Schema as a Message Model

Other similar approaches (Section 8) use an LCM as a
message model. The LCM is a conceptual model of the
message elements re-engineered from the message sche-
mas, and represented using the OWL or RDFS. An LCM
proved insufficient to capture required message informa-
tion about (a) naming, (b) structure, (c) granularity,
(d) occurrences, (e) value representation, and (f) format-
ting. For that reason, the LCM is ineffective for message
components annotation, and insufficient for reconstruct-
ing schema-conforming messages from the reconciliation
output, as we elaborated in [8]. To fulfill these require-
ments, LCM-based approaches require additional recon-
ciliation rules that carrymessage formatting data through
the semantic-mediation. That imposes undesired human

effort and expert knowledge about message-representa-
tion and formatting, beyond understanding the message
semantics. Also, LCM-extraction software may produce
different views of themessage structure, depending on the
extraction strategy applied. For that reason, an integra-
tion engineer may be faced with an unfamiliar message
structure that differs from its original structure defined by
the message schema.

3.2 Ontological Message Metamodel

Alternatively to the LCM, the proposed novel
ontological message metamodel (MMM) form abstracts
syntax-specific concepts but faithfully captures the
message component definitions as well as the key
message information (i.e., bullets (a)–(f) in Section
3.1). The MMM form is a set of common representa-
tional concepts of different message and schema
languages, devoid of the too specific representation
rules. It intermediates between well-established message-
representation standards, such as XML, ASN.1 [5], EDI
and EXPRESS as the model for Clear Text Exchange [6].
The MMM is detailed in [7]; here, it is briefly
introduced. Conceptually, the MMM has two parts –
the message-schema metamodel concepts and the
message-instance metamodel concepts – as illustrated
in Figure 2. We use OWL to capture the MMM concepts
and their instances (individuals). So, the MMM is an
OWL T-Box, while the actual message-schema and
message-instance models are sets of MMM concept
individuals (OWL A-Box axioms). OWL representation
of the MMM is well-suited for reconciliation between
the particular message model on one side, and OWL
reference ontology on other side as well as for establish-
ing machine-processable annotation expressions.

Message-schema metamodel part defines concepts
commonly used in the schema languages, such as XML
Schema (www.w3.org/XML/Schema). The root concept
is Schema. Schemas define ContentModels
(StructuredContents and SimpleContents) and
Components (ElementModels and
AttributeModels). StructuredContents con-
tain other ContentModels. For example,
StructuredContents are XML Schema complex
types, ASN.1 sequences, and EDI segments.
SimpleContents represent datatypes, such as integer,
string, or enumeration. Value represents and stores
actual enumerated or other values. ElementModel
concept represents message element definition.
ElementModel content is defined either by
StructuredContent or SimpleContent concept.
For example, an XML element has a type that is a
complex type or simple type. AttributeModel repre-
sents an element’s attribute definition. Name concept
captures ContentModels and Components literal
names. Names are defined either in a

Semantic B2B-integration Using an Ontological MMM 221



SchemaNamespace or in a LocalNamespace. Also,
ContentModels and Components can be defined
locally in other ContentModels and Components.
(e.g., XML Schema inner complex types).
RepositorySet is a set of Schemas, for cases when
some schemas import other schemas and message defini-
tions. A message definition is an ElementModel that
defines the root message element. Message-instance
metamodel part defines the concepts typically present in
a runtime message, and their association to the modeled
schema elements. Every message is a
StructuredElement. StructuredElement con-
tains other elements, either StructuredElements or
SimpleElements, or structures of ValueItems.

SimpleElement contains a SimpleValue that is a
value treated as atomic in the message definition.
SimpleValues store the message content, in the text
attribute. The model of runtime Element is specified by
its ElementModel, which provides the element’s
naming, structural and content properties. In rare cases,
such as an XML any-type element, the ElementModel
does not actually specify the Element content, and the
datatype of the Element must be specified. Finally,
Elements may contain Attributes, and each
Attribute is identified by its AttributeModel.

Hereafter, when we refer to the MMM individuals
that represent a schema or a message, we will use a
message-schema model, message-instance model, or

Figure 2. Ontological message metamodel; message-schema metamodel concepts are coded grey, while message-instance model concepts
are coded white.

222 M. VUJASINOVIC ET AL.



message model for both. We have developed supporting
tools that transform actual schemas and messages to and
from the OWL MMM form.

4. Syntactic Ontologization of Message Schemas

The message schema syntax ontologization is a design
time transformation of the schemas into the correspond-
ing message-schema models in the OWL form. For
example, Listing 1 shows the fragments of the DELJIT
EDI (unece.org/trade/untdid) specification, while
Listing 2 shows fragments of the corresponding OWL
message-schema model.

Listing 1 A fragment of the DELJIT EDI specification  
DELJIT 
 UNH - MESSAGE HEADER Segment 
 BGM - BEGINNING OF MESSAGE Segment 
 DTM - DATE/TIME/PERIOD Segment 
 |... 
 SG1 - Segment group 1 
 | RFF - REFRENCE Segment 
 |  C506 - REFERENCE Composite 
 |    1153 - Reference code qualifier Data Element 
 |    1154 - Reference identifier Data Element 
 |    ... 
 |   DTM - DATE/TIME/PERIOD Segment 
 SG2 - Segment group 1 
 | NAD - NAME AND ADDRESS Segment 
 | LOC - PLACE/LOCATION IDENTIFICATION Segment 
 |    ... 
 SG3 - Segment group 3 
 |... 
 |UNT - MESSAGE TRAILER Segment 

RepositorySet individual repSet holds DELJIT
message-schemamodel, which is captured by the deljit
individual of the Schema concept. The root DELJIT
elementdefinition (messagedefinition) is transformed into
the elementModel2 individual of the ElementModel
concept. Its contentModel is captured by the
structuredContent1 individual that defines and
contains the elementModel2 individual, which
represents the definition of the DELJIT.SG1 segment
group. By reading the Listing 2 in this way, we see that
elementModel2 individual contains elementModel3
that represents the DELJIT.SG1.RFF reference segment,
which contains elementModel4 that represents
DELJIT.SG1.RFF.C506 composite element definition,
and so on. The elementModel3, elementModel4,
elementModel5, and elementModel6 individuals
are defined in the DELJIT schema namespace, which is
captured by:schemaNamespace1 individual, and they
are reusable building components for theotherEDIFACT
messages.

5. Syntactic Ontologization of Messages

The message syntax ontologization is the runtime
transformation of the messages into the corresponding
OWL message-instance models. Listing 4 shows the
fragment of the message-instance model that corre-
sponds to the fragments of the DELJIT EDI message
given in Listing 3.

Listing 2 A fragment of the DELJIT message-schema model in RDF TURTLE (www.w3.org/2007/02/turtle/primer) syntax 
@prefix p1: <http://local/MessageMetamodel.ecore#>. 
:repSet  rdf:type p1:RepositorySet ; 

p1:schemas :deljit;  
p1:message :elementModel1 
p1:namespaces :schemaNamespace1 . 

:deljit rdf:type p1:Schema ; 
       p1:defines :elementModel1, .. ; 
       p1:schemaNamespace :schemaNamespace1. 

:schemaNamespace1 rdf:type p1:SchemaNamespace ; 
      p1:URI  http://www.unece.un.org/EDIFACT/D05B 
      ^^xsd:string ;  

:elementModel1  rdf:type p1:ElementModel ; 
      p1:contentModel :structuredContent1 ; 
      p1:defines :structuredContent1; 
      p1:inSchema :syncBODSchema;   
      p1:modelName :name1 . 

:name1  rdf:type p1:Name ;   p1:definedIn 
:schemaNamespace1 ; 

:structuredContent1  rdf:type p1:StructuredContent ; 
      p1:contains :cu1,:cu2, :cu3 ... ; 
      p1:defines :elementModel2 ;  p1:inSchema :deljit ; 
      p1:structureKind :sequence ;  
      p1:contentKind :elements ; 
      p1:localNamespace :localNamespace1 . 

:cu1  rdf:type p1:ContentUse ;  
      p1:content :elementModel2 ; 
      p1:seqId "1"^^xsd:int . 

:elementModel2  rdf:type p1:ElementModel ; # SG1
       p1:contentModel :structuredContent2 ; 

... 
:structuredContent2  rdf:type p1:StructuredContent ; 
      p1:contains :cu5,:cu6, ; p1:inSchema :deljit ; 

:cu5  rdf:type p1:ContentUse ;  
       p1:content :elementModel3 ; ... 

:elementModel3  rdf:type p1:ElementModel ; # RFF
      p1:contentModel :structuredContent3 ; 
      p1:nameText "DELJIT"^^xsd:string ; 

:structuredContent3  rdf:type p1:StructuredContent ; 
      p1:contains :cu8, ; 

:cu8  rdf:type p1:ContentUse ;  
      p1:content :elementModel4; ... 

:elementModel4  rdf:type p1:ElementModel ; # C506
definedIn :schemaNamespace1 

      p1:contentModel :structuredContent4 ; 

:structuredContent3  rdf:type p1:StructuredContent ; 
      p1:contains :cu10, :cu11, ; 

:cu10  rdf:type p1:ContentUse ; p1:content :elementModel5 ; 
      p1:seqId "1"^^xsd:int . 

:cu10  rdf:type p1:ContentUse ; p1:content :elementModel6 ; 
      p1:seqId "1"^^xsd:int . 

:elementModel5  rdf:type p1:ElementModel ; # 1154
definedIn :schemaNamespace1 

       p1:contentModel :simpleContent1, p1:base :string; 

:elementModel6  rdf:type p1:ElementModel ; # 1153
definedIn :schemaNamespace1 

        p1:contentModel :simpleContent1,  
        p1:base :enumeration; 
...

Semantic B2B-integration Using an Ontological MMM 223



DELJIT root element is transformed into the
structuredElement1 individual of the
StructuredElement concept. Importantly, the
model links the structuredElement1 individual
with its naming, structuring, occurrences and value
representation definition, which is captured by the
elementModel1 of the DELJIT message-schema
model. All the individuals here are in fact RDF
resources, so we use rdf:id to identify them.
Further, structuredElement1 has the
structuredElement2 item. Similarly,
structuredElement2 has structuredElement3
that has structuredElement4 item. Finally,
structuredElement4 has two SimpleElement
individuals that actually capture the message data.

6. Semantic Reconciliation of B2B Messages

We developed a reconciliation rules creation tool that
provides a graphical environment to visualize OWL
message-schema models and OWL reference ontologies
as well as several predefined reconciliation rules
templates. The tool produces executable reconciliation
rules in the Jena (http://jena.sourceforge.net/) language
as Jena provides for the rule-reasoning over OWL and
RDF documents. An engineer uses only the graphical
environment (GUI) to formulate the rules and Jena

expertise is not required. In Section 7, when we explain
message semantics annotation, we will outline an
approach that uses annotation expressions as a knowl-
edge base from which most of the reconciliation rules
are derived. In [8] we provided detail theoretical
discussion of the message metamodel-based semantic
reconciliation.

6.1 Demonstration and Prototype Implementation

Consider a business process that is managed by the
Shipment Schedule message that regulates the flow of
goods from the supplier to the customer to facilitate
inventory management. Assume the customer’s message
interface is DELJIT EDI based, while the supplier’s
message interface is OAGIS SyncShipmentSchedule
XML based. Both standards define the Shipment
Schedule message. Besides syntactical, there are termi-
nological, structural and representational mismatches
between them. For example, DELJIT specifies
‘DocumentReference’ element as ‘Reference Identifier’
in the [DELJIT/SG1/RFF/C506/1154] data element’s
structure, as shown in Figure 3. On the other side, the
SyncShipmentSchedule specifies ‘DocumentReference’
as a ‘DocumentID’ in the [SyncShipmentSchedule/
DataArea/ShipmentSchedule/ShipmentScheduleHeader
/DocumentReference/DocumentID/ID] structure. To
enable interoperable DELJIT-to-SyncShipmentSchedule

Listing 3 The fragment of the DELJIT EDI message 
UNA:+.?*’ 
UNB+UNOC:… 
UNH+msg-refnum-abc+DELJIT:D:05B:UN… 
BGM+242:::DELJIT+…+5' 
DTM+137:20070709120000:204' 
RFF+CT:2008-GJ4007' 
RFF+ADZ:38-058941500' 
NAD+BY+7656615::16++General Motors.+…+.. 
…
NAD+SF+498994588::16++Acme Auto Supplier GMBH+… 
NAD+ST+964475835::16++Any Logistics Mngt, Inc+… 
…
FTX+AAR+++… 
FTX+AAA+++Cylinder Heads' 
…
UNT+31+msg-refnum-abc' 
UNZ+1+interchg-ref'

Listing 4 The fragment of  the OWL DELJIT message-instance 
model 

@prefix p1:      <http:///MessageMetamodel.ecore#> . 
…
:structuredElement1 #captures DELJIT message 
      rdf:type p1:StructuredElement ; 
      p1:items :structuredElement2 ; 
      p1:model :elementModel11 . 
:structuredElement2 # captures SG1 segment group 
      rdf:type p1:StructuredElement ; 
      p1:items :structuredElement3 ; 
      p1:inElement :structuredElement1 
      p1:model :elementModel21 . 
:structuredElement3 # captures RFF segment 
      rdf:type p1:StructuredElement ; 
      p1:items :structuredElement4 ; 
      p1:inElement :structuredElement2 
      p1:model :elementModel33 . 
:structuredElement4 # captures C506 composite 
      rdf:type p1:StructuredElement ; 
      p1:items :simpleElement1, simpleElement2 ; 
      p1:inElement :structuredElement3 
      p1:model :elementModel44 . 
:simpleElement1 # captures 1154 element 
      rdf:type p1:SimpleElement ; 
      p1:value :value1 ; 
      p1:inElement :structuredElement4 ; 
      p1:model :elementModel55 . 
:value1 rdf:type p1:SimpleValue ; 
      p1:text "2008-GJ4007"^^xsd:string . 
:simpleElement2 # captures 1153 element 
      rdf:type p1:SimpleElement ; 
      p1:value :value2 ; 
      p1:inElement :structuredElement4 ; 
      p1:model :elementModel66 . 
:value2 rdf:type p1:SimpleValue ; 

        p1:text "CT"^^xsd:string . …

224 M. VUJASINOVIC ET AL.



message exchange, we employed the proposed semantic-
mediation. As a reference ontology we used the
eKanban Ontology [9] that provides a common con-
ceptual data model for the Shipment Schedule.

6.2 Design time

First, we transformed the schemas into the DELJIT
and SyncShipmentSchedule OWL message-schema
models, respectively. Then, we used the design time
tool to create forward reconciliation rules for the
DELJIT and backward reconciliation rules for
SyncShipmentSchedule message.

Figure 3 shows the tool in a ‘reconciliation-forward’
mode for DELJIT message-schema model. An engineer
identifies DELJITmessage path(s) leading to themessage
content, then identifies corresponding reference ontology
concept(s) that message path(s) map to, and finally
instantiates a rule template. For example, we created the
Map rule for the reconciliation of the [DELJIT/SG1/

RFF/C506/1154] element into the [ShipmentSchedule/
references/DocumentReference/ids/DocumentId/identi-
fier] reference ontology entity. Also, a condition, shor-
tened as [DELJIT/SG1.RFF/C506/1153¼’CT’], was
applied to this rule to precisely specify that the mapping
executes only when DELJIT ‘Reference Code Qualifier’
element ‘1153’ has value ‘Contract Number’, which is
coded as a ‘CT’. Listing 5 illustrates the automatically
generated, executable Jena rule. So far, our implementa-
tion provides several reconciliation rule templates; One-
to-one/Map, One-to-Many/Split, Many-to-One/Merge,
SetValue and Convert.

The engineer creates backward rules for
SyncShipmentSchedule in the same manner as DELJIT
forward rules. The tool in a ‘reconciliation-backward
mode’ renders message-schema model on the right and a
reference ontology on the left panel. For example, we
created the backward Map for the reconciliation of the
[ShipmentSchedule/references/DocumentReference/ids/
DocumentId/identifier] ontology entity into the

Figure 3. The tool in a ‘reconciliation-forward’ mode for DELJIT model.

Semantic B2B-integration Using an Ontological MMM 225



[SyncShipmentSchedule/DataArea/ShipmentSchedule/
ShipmentScheduleHeader/DocumentReference/

DocumentID/ID] element.
The tool supports automated generation of most of

the backward rules for a particular message-schema
model from forward rules of that message-schema
model, by the rules inversion. This significantly reduces
the effort needed to create all the required rules.

6.3 Runtime

The semantic-mediator orchestrates the runtime
message transformations. First, the EDIFACT-
to-MessageInstanceModel tool transforms a DELJIT

message into the DELJIT OWL message-instance
model. Then, the Jena rule engine executes the forward

reconciliation rules on the DELJIT OWL message-
instance model, which produces eKanban ontology
individuals. Afterwards, the rule engine executes the
backward reconciliation rules on those ontology indivi-
duals, which produces a SyncShipmentSchedule OWL
message-instance model. Finally, from that model,
the MessageInstanceModel-to-XML transformer gener-
ates a schema-conformant SyncShipmentSchedule
message. Listings 3 and 4, and 6–8, respectively,
show the fragments of intermediate message forms
when reconciling between the DELJIT and
SyncSipmentSchedule.

Listing 5 #DELJIT_DocumentReference Rule 
(?s.201 rdf:type m:StructuredElement)  (?s.201 m:model d:elementModel11)  
(?s.201 m:items ?s.201.d.1) (?s.201.d.1 m:inElement ?s.201) (?s.201.d.1 rdf:type m:StructuredElement)   
(?s.201.d.1 m:model d:elementModel2) (?s.201.d.1 m:items ?s.205) (?s.205 m:inElement ?s.201.d.1)  
(?s.205 rdf:type m:StructuredElement)  (?s.205 m:model d:elementModel3) (?s.205 m:items ?s.344)  
(?s.344 m:inElement ?s.205) (?s.344 rdf:type m:StructuredElement)  (?s.344 m:model d:elementModel4)  
(?s.344 m:items ?s.346)(?s.346 m:inElement ?s.344) (?s.346 rdf:type m:SimpleElement) 
(?s.346 m:model d:elementModel5) (?s.346 m:value ?v1)(?v1 rdf:type m:SimpleValue) (?v1 m:text ?i_1txt) 
--condition  
(?s.344 m:items ?s.345)(?s.345 m:inElement ?s.344)(?s.345 rdf:type m:SimpleElement)(?s.345 m:model d:elementModel6) 
(?s.345 m:value ?v1000)(?v_1000 rdf:type m:SimpleValue) (?v1 m:text ?i_1000txt)  
equal(?i_1000txt , ’CT’) 
->
Map(?i_1txt ?o_1txt) (ro:ShipmentSchedule rdf:type ro:ShipmentSchedule) 
(ro:ShipmentSchedule ro:references ro:ShipmentSchedule.references.DocumentReference) 
(ro:ShipmentSchedule.references.DocumentReference rdf:type ro:DocumentReference) 
(ro:ShipmentSchedule.references.DocumentReference ro:ids    
    ro:ShipmentSchedule.references.DocumentReference.ids.DocumentId) 
(ro:ShipmentSchedule.references.DocumentReference.ids.DocumentId rdf:type ro:DocumentId) 
(ro:ShipmentSchedule.references.DocumentReference.ids.DocumentId ro:identifier ?o_1txt) 

Listing 6 Fragment of  the eKanban OWL individuals 
@prefix rdf:     
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
@prefix ro:      
<http://referenceOntology.eKanban#> . 
….
ro:e1  rdf:type ro:ShipmentSchedule; 
      ro:references ro:e2 . 
ro:e2 rdf:type ro:DocumentReference ; 
      ro:ids ro:e3 . 
ro:e3  rdf:type ro:DocumentId ; 
      ro:identifier "2008-GJ4007"^^xsd:string 
.
... 

Listing 8 Fragment of the SyncShipmentSchedule XML 
message 

<?xml version="1.0"?> 
<aiag:SyncShipmentSchedule 
xmlns:oa= 
http://www.openapplications.org/oagis/9 
xmlns:aiag=" 
http://www.openapplications.org/oagis/9/aiag/2
">
<aiag:ApplicationArea>.. 
  <aiag:DataArea>  … 
    <aiag:ShipmentSchedule>  … 
      <aiag:ShipmentScheduleHeader> … 
 <oa:DocumentReference> 
   <oa:DocumentID> 
          <oa:ID…>2008-GJ4007</oa:ID> 
           </oa:DocumentID> 
   </oa:DocumentReference> … 
      </aiag:ShipmentScheduleHeader> … 
    </aiag:ShipmentSchedule> … 
  </aiag:DataArea> … 
</aiag:SyncShipmentSchedule> 

Listing 7 Fragment of the SyncShipmentSchedule message-instance model  

@prefix p1: <http://local/MessageMetamodel.ecore#>. 
@prefix msm: http://local/ShipmentScheduleMSM.owl#  
...
:e1 #aiag:SyncShipmentSchedule 
      rdf:type p1:StructuredElement ; 
      p1:items :e2, … ; 
      p1:model msm:elementModel1 . 
:e2 #aiag:DataArea 
      rdf:type  p1:StructuredElement ; 
      p1:inElement  :e1 ; 
      p1:items :e3, … ;   p1:model msm:elementModel2. 
:e3 #aiag:ShipmentSchedule 
      rdf:type p1:StructuredElement ; 
      p1:inElement  :e2 ; 
      p1:items  :e4, … ; 
      p1:model  msm:elementModel3  . 
:e4 #aiag:ShipmentScheduleHeader 
      rdf:type p1:StructuredElement ; 
      p1:inElement :e3 ; 
      p1:items :e10, … ; 
      p1:model msm:elementModel4. 
:e10 #oa:DocumentReference 
      rdf:type p1:StructuredElement; 
      p1:inElement :e4 ; 
      p1:items :e20, …; 
      p1:model  msm:elementModel21 . 
:e20 #oa:DocumentID 
      rdf:type p1:StructuredElement ; 
      p1:inElement  :e10 ; 
      p1:items:e30, …; 
      p1:model msm:elementModel22; 
:e20 #oa:ID 
      rdf:type p1:SimpleElement ; 
      p1:inElement  :e20 ; 
      p1:model msm:elementModel22; 
      p1:items:a30, …; // attributes 
      p1:value   :v1 . 
:v1  rdf:type p1:SimpleValue ; 
     :text    "2008-GJ4007"^^xsd:string ; 
 ...

226 M. VUJASINOVIC ET AL.



7. Semantic Annotation of B2B Message Schemas

The semantic annotation is also performed on the
OWL message-schema models. Formal and machine-
processable annotation expressions link the message
component definitions captured in OWL message-
schema models with the reference ontology entities.
Using the annotation expressions, one can recognize,
assisted by an annotations-interpretation tool, when two
message components represent the same business entity
despite their different descriptions in respective message
schemas.

7.1 The Semantic Annotation Process

We developed a Message Semantics Annotation
Ontology (MSAO) that defines concepts for the
annotation of OWL message-schema models with
reference ontologies entities. In fact, the MSAO is a
closed vocabulary of annotation expressions in the
OWL form. Figure 4 illustrates the MSAO concepts.

The Annotation concept represents annotation
expressions. It has two important properties: (1)
annotatedEntity that connects to the MMMEntity
concept, which encapsulates OWL message-schema
model individuals (content models, components, and
elements/attributes); (2) annotater that connects
to the OntologyEntity concept, which encapsulates
OWL ontology concepts, data types, properties,

and individuals. Annotation can be either a
simple SingleAnnotation or more complex
MultyAnnotation that groups Annotations.
Annotations are either global or local, as message
schema defines elements globally as reusable components,
or defines them locally in other elements. For example, to
annotate the EDIFACT ‘1154’ data element semantics we
established a global SingleAnnotation expression
as shown in Listing 9. It formally expresses semantics of
the ‘1154’ element in terms of the eKanban ontology as an
identifier, which is a datatype property of Document
concept that is a domain of an object property ids of
DocumentReference concept; this is shortened as
[DocumentReference/ids/Document/identifier] path
expression. Further, Annotation may have a reconci-
liation Functor that specifies the content transforma-
tion from a message element into ontology individual(s),
and this is crucial for the runtime reconciliation. So far,
we provided support only for the transformation cases
that occur most often Map, Merge, Split, Convert and
SetValue. For the EDIFACT ‘1154’ the Functor is Map.
The functors such as currency or unit measure conver-
sions could be provided as Web Services. Each
Annotation can have alternatives annotations;
this is to express the cases when a message component
semantics is conditional. For example, if EDIFACT
‘1035’ element has value ‘ST’, the ‘NAD’ segment
semantics is ShipToParty; if the value is ‘SF’, the NAD
semantics is ShipFromParty.

Figure 4. Message semantics annotation metamodel.

Semantic B2B-integration Using an Ontological MMM 227



The annotation process is highly human intensive and
requires expert knowledge in the business domain and
message specifications. When annotating, an annotator
performs several steps: (1) message elements identifica-
tion; (2) their intended meaning identification; (3)
corresponding reference ontology entities identification;
and (4) annotation expressions definition to specify the
message elements meaning. Our tool supports the
annotation steps, hides MSAO complexity, and exports
the annotations into the OWL.

7.2 Demonstration and Implementation Status

Consider the case of the OAGIS schemas. The
OAGIS schemas define reusable message components
of three categories: (A) basic context free, such as a
Name and NameType; (B) aggregated context free, such
as PartyBaseType or LocationBaseType, that contain
the basic or other aggregated components; and (C)
business-context-specific components, such as
ShipToParty, derived from the B category. Messages
are defined by using reusable and additional message-
specific components. The UBL (Unified Business
Language; www.oasis-open.org/committees/ubl/) and
EDI specifications utilize a similar methodology. We
implemented a common annotation method, comprised
of the following three steps, for all these specifications:
I. Annotate context-free message components.

Annotation progresses from simpleContents,
attributeModels, simple elementModels,
structuredContents, to structured element
Models message components. For example, by using
the tool (Figure 5), theannotator identifiesPartyBaseType
in the SyncShipmentSchedule message-schema model,
and then identifies a related eKanban ontology entity,
which is the Party. Then, he adds a single annotation in the
tool’s Annotations table and populates ‘Message Entity’
and ‘Ontology Entity’ table fields, by dragging-and-
dropping identified correspondents. That creates the
singleAnnotation expression. Similarly, the annota-
tor annotates PartyBaseType’s containments. The anno-
tator assigns a functor to the annotations. In this step, all

reusable components are annotated; this will provide
annotations reusability as we describe in the next step.

II. Annotate context-specific components. An annota-
tor performs similarly as in the step I; however, the
annotator now can reuse the annotations of context-free
components that the context-specific components are
based on. The tool supports the annotator when such a
reuse case occurs. For example, the annotator annotates
ShipToParty ElementModel with the ShipToParty
ontology concept. As the annotator proceeds with the
ShipToParty containments annotation, the tool notifies
that the base model of the ShipToParty component –
PartyBaseType – was already annotated and that reuse
is possible for all the contained elements. The annotator
decides either to reuse the annotations or to annotate the
containments step-by-step. If he opts for reuse, the
annotator specifies/refines a subpath of the ontology
path that leads to the corresponding ontology entity; for
the ShipToParty message element a refinement is ‘add
ShipToParty.participant before the Party’. Finally, the
tool automatically generates annotations for the
ShipToParty containments by reusing the
PartyBaseType annotations. Annotations in the rows 5
and 6 in the annotation table are automatically created
from annotations in rows 2 and 3.

III. Annotate a message definition. Annotation pro-
ceeds from the root elementModel, which defines a
message. Tool identifies the ‘lower-level’ message
elements that are derived from reusable components,
and offers to the annotator to reuse the annotations
from (I) and (II) above. Such annotation expression
reusability is a very important aspect as it reduces the
time/effort for the message definition annotation. The
annotator must annotate all the elementModels and
attributeModels of message components that carry
data, and to assign functor to their respective
annotations. This is to prevent a message content loss
during the semantic reconciliation, which happens if
particular component definition is not annotated and
reconciliation rules are derived from the annotations.
Finally, the tool is used to generate the Jena reconcilia-
tion rules from the MSAO annotation expressions.

Listing 09 The single semantic annotation expression example in OWL RDF/XML syntax (some fragments of the expression are 
omitted for clarity). The expression is produced by the tool. 

<ammo:SingleAnnotation rdf:ID="a1">… 
<ammo:context…> global</ammo:context> 

  <ammo:annotatedEntity> 
    <ammo:MMMEntity rdf:ID="ae> 
     <ammo:mmmEntityURI …> 
      file:/C:/EDIFACT/DELJIT_MSM.OWL#elementModel55 </ammo:mmmEntityURI> 
      <ammo:pathExpression …> deljit/elementModel55 </ammo:pathExpression> 
      <ammo:kind rdf:resource="mmm:ElementModel" /> 
      <ammo:localName …>1154</ammo:localName> 
    </ammo:MMMEntity> 

</ammo:annotatedEntity> 
  <ammo:annotater> 
   <ammo:DatatypeProperty rdf:ID="atr1"> 
    <ammo:ontologyEntityURI …> http://nist.gov/amis2/eKanban#identifier </ammo:ontologyEntityURI> 
    <ammo:localName …> identifier </ammo:localName> 
    <ammo:ontPathExpression …>DocumentRefernce.ids.DocumentId.identifier </ammo:pathExpression> 
   </ammo:DatatypeProperty> 
  </ammo:annotater> 
</ammo:SingleAnnotation>

228 M. VUJASINOVIC ET AL.



The initial experiment showed that a rule-generation
algorithm is capable to generate reconciliation rules
from the annotation expressions. As we still work on
that algorithm, in Section 6 we chose to demonstrate
reconciliation by directly creating the reconciliation
rules. Importantly, there may be message transforma-
tion cases that annotation expressions cannot cope with.
For example, if DELJIT document has no status
element as the assumed default status is ‘Authorized’,
then such message-to-ontology relationship cannot be
described by annotations, and the integration engineer
creates DELJIT forward rule that sets status to
‘Authorized’. For such cases, an integration engineer
uses the tool in both modes, the semantics annotation
and reconciliation-rules creation.

8. Overview of Related Approaches

Alternative semantic-mediation models have been
demonstrated before. Anicic et al. [10] demonstrated

an any-to-any model that, first, merges local OWL
ontologies (LCMs), and then classifies and transforms
source ontology individuals using a description-logic
(DL) reasoner into the target ontology individuals. The
Artemis integration framework [11] used the OWLmt
ontology mapping tool (http://sourceforge.net/ projects/
owlmt) to demonstrate crosswise mappings among local
OWL ontologies. The any-to-any models employ no
reference ontology as the mediation point; that increases
the number of crosswise mappings or the size and
complexity of the merged ontology. Oppositely, the any-
to-one models, such as ours, employ reference ontolo-
gies and reduce the number of mappings. The
Harmonise project [12] demonstrated an any-to-one
model. In Harmonise, the Mafra tool (http://sourcefor-
ge.net/projects/mafra-toolkit) provided for mappings
between RDFS ontologies and RDF-to-RDF docu-
ments transformation. The ATHENA project [13]
introduced several semantic-mediation tools: Astar for
RDFS concepts annotation; Argos for RDF-to-RDF
documents reconciliation specification; and Ares for

Figure 5. The tool in a semantic annotation mode. Illustrated is PartyBaseType and ShiptToParty annotation.

Semantic B2B-integration Using an Ontological MMM 229



RDF-to-RDF reconciliation execution. Astar annota-
tions are OWL DL TBox axioms. To ontologize X12
EDI schemas (www.x12.org/), Foxvog and Bussler [14]
defined ontological metamodel specific to the X12
constructs only. Yarimagan and Dogac [15] introduced
a Component Ontology for UBL schemas. Yarimagan’s
tool transforms UBL schemas into Component
Ontology TBox form, and reconciles messages of
different customized UBL schemas by DL reasoning,
similar to [10]. The MWSAF [16] provides W3C’s
SAWSDL (Semantic Annotations for XML Schema;
www.w3.org/TR/sawsdl) annotation framework that
defines XML Schema attributes (that ‘add’ semantics
to XML components definitions) and associates them
with executable procedures that translate XML docu-
ments to and from ontology individuals. Our work
differs from Anicic et al. [10], Bicer et al. [11], Fodor and
Werthner [12], and Berre et al. [13] in that we use the
ontological MMM form for semantic-mediation activ-
ities. The DL reasoning used in Anicic et al. [10] and
Yarimagan and Dogac [15] is incapable of nontrivial
relationships computation, such as literal data conver-
sions, while the rule-based reasoning, used in this work,
supports such nontrivial transformations. In contrast to
Foxvog and Bussler [14], Yarimagan and Dogac [15],
and Patil et al. [16], our approach provides for semantic
annotation and reconciliation of any message
representations.

9. Industrial Perspective

We see a potential for use of our architecture in small
and medium-size enterprises (SMEs). The SMEs usually
have limited resources and insufficient knowledge to
understand and implement industrial standard schemas
(OAGIS, EDIFACT, etc.) into their e-business applica-
tions, which can be either developed in-house or bought
from the application providers. The problem arises when
each dominant partner that collaborates with the
particular SME mandates a particular standard. For
example, the US Walmart company mandates EDI-
based messaging for the data exchange with its suppliers
[17]. For that reason, instead of implementing and
mapping several different standards that dominant
partners mandate, the SMEs could benefit from our
architecture, which for the SMEs means only one
mapping and adoption of a single reference ontology.
However, there are three requirements. First, reference
ontologies for the business communities must be
publicly available and provided to the SMEs. We hope
that standards development organizations (SDOs) and
business experts will work together to build such
reference ontologies. Unquestionably, there will be a
significant challenge in terms of needed expertise,
ontology development tools, ontology evolution, and

in getting the consensus of participants. Second, SMEs
must annotate the proprietary message schemas used in
their applications, and must create all the reconciliation
rules for the proprietary schemas. We state, from our
experience, it will be much easier for the SMEs to deal
with their (familiar) proprietary schemas and reference
ontology entities, than with the several different
standard message specifications and implementation
guides. Third, after the SDOs accept the reference
ontologies as a common message conceptualization,
they must annotate the standard schemas, by following
the proposed annotation steps. Also, the SDOs must
provide the reconciliation rules for standard messages
publicly. Finally, the SMEs should configure the
semantic mediator to execute their proprietary-message
and provided standard-message reconciliation rules,
according to the particular B2B scenario. At runtime,
the semantic mediator will transform SME proprietary
messages to and from the standard messages – in a
manner similar to the one we demonstrated for the
DELJIT-to-SyncShipmentSchedule scenario. For
SMEs, such an infrastructure will provide for message
standards-compliant applications and flexibility to the
B2B partners change. However, to build such an
infrastructure, primarily the SDO side will have to
resolve several organizational and technical challenges,
from the agreement on the business ontologies and their
use, a repository that stores, manages and provides
access to public standard message-schema models,
annotations and reconciliation rules, to the semantic
mediators as online software services.

10. Conclusion

Our successful demonstration was indeed small scale,
but based on two real industrial schemas. For that
reason, we believe the prototyped semantic-mediation
tools would support the real e-business requirements,
although the needed infrastructure could take several
years to implement. We now plan to extend our
approach towards context-taxonomy semantic annota-
tion of the message components. This extension will add
to the efficiency of our approach by providing a
foundation for more efficient and scalable schema
customization and development, based on the reuse of
message components that are semantically described by
ontologies and context-taxonomies, and categorized and
accessed by reasoning tools. The component reuse is
crucial for the B2B integration as it reduces different
schema heterogeneities. Similarly, the semantically-
managed access and reuse could be applied in an
enterprise knowledge management context. Enterprise
ontologies should be developed and then used to
formalize the informal enterprise knowledge entities,
such as organizational, business and technical

230 M. VUJASINOVIC ET AL.



documents or best practices, by the semantic annotation.
To enable that, we believe the metamodel of various
enterprise entities as well as respective annotation
vocabularies need to be developed, in a similar fashion
to the Message metamodel and MSAO vocabulary. In
the enterprise knowledge context, our tool could provide
for XML-based enterprise document annotation.

Disclaimer: Certain companies or commercial and
open source software products are identified in this
article. This use does not imply approval or endorse-
ment by NIST, nor does it imply that these products are
necessarily the best available for the purpose.

References

1. Snack, P. (2007). Standards-based Interoperability:
The Road Ahead, AIAG Actionline, July/August 2007,
pp. 21–29

2. Gruber, T.R. (1993). A Translation Approach to Port-
able Ontology Specification, Knowledge Acquisitio-
n, 5(2): 199–220.

3. Ray, S. and Jones,A. (2006).Manufacturing Interoperability,
Journal of Intelligent Manufacturing, 17(6): 681–688.

4. Vujasinovic, M., Ivezic, N., Kulvatunyou, B., Barkmeyer,
E., Missikoff, M., Taglino, F., Marjanovic, Z. and Miletic,
I. (2010). Semantic Mediation for Standard-based B2B
Interoperability, IEEE Internet Computing, 14(1): 52–63.

5. International Standards Organization (2002). Abstract
Syntax Notation One, ISO/IEC 8824-1:2002.

6. International Standards Organization (2004). Clear Text
Encoding of the Exchange Structure, ISO/EIC 10303-
21:2004.

7. Vujasinovic, M. and Barkmeyer, E. (2009). The Message
Metamodel, NIST Internal Report, USA.

8. Vujasinovic, M., Barkmeyer, E., Ivezic, N. and
Marjanovic, Z. (2010). Interoperable Supply-chain
Applications: Message Metamodel-based Semantic
Reconciliation of B2B Messages, International Journal of
Cooperative Information Systems, 19(1&2): 31–69.

9. Barkmeyer, E. and Kulvatunyou, B. (2006). Ontology for
the e-Kanban Business Process, NIST Internal Report
7404, USA.

10. Anicic, N., Marjanovic, Z., Ivezic, N. and Jones, A. (2007).
Semantic Enterprise Application Integration Standards,
International Journal of Manufacturing and Technology,
10(2–3): 205–226.

11. Bicer, V., Laleci, G.B., Dogac, A. and Kabak, Y. (2005).
Artemis Message Exchange Framework: Semantic
Interoperability of Exchanged Messages in the
Healthcare Domain, SIGMOD Record, 34(3): 71–76.

12. Fodor, O. and Werthner, H. (2004). Harmonise: A Step
Toward an Interoperable E-Tourism Marketplace,
International Journal of Electronic Commerce, 9(2): 11–39.

13. Berre, A., Elvesæter, B., Figay, N., Guglielmina, C.
Johnsen, S., Karlsen, D., Knothe, T. and Lippe, S.
(2007). The ATHENA Interoperability Framework.
Enterprise Interoperability II, New York: Springer,
pp. 569–580.

14. Foxvog, D. and Bussler, C. (2005). Ontologizing EDI:
First Steps and Initial Experience, In: International
Workshop on Data Engineering Issues in E-Commerce,
Tokyo, Japan, pp. 49–58.

15. Yarimagan, Y. and Dogac, A. (2009). A Semantic-based
Solution for UBL Schema Interoperability, IEEE Internet
Computing, 13(3): 64–71.

16. Patil, A., Oundhakar, S., Sheth, A. and Verma, K. (2004).
Meteor-s Web Service Annotation Framework, In:
International Conference on WWW, New York, NY,
USA, pp. 553–562.

17. Walmart Corporate Suppliers Requirements. Available at:
http://walmartstores.com/Suppliers/248.aspx (accessed
June 2010).

Marko Vujasinovic

Marko Vujasinovic is
currently finishing PhD at
Department of Information
Systems, Faculty of
Organizational Sciences,
University of Belgrade.
Until recently, he was a
guest researcher at the
Enterprise Systems Group
of the National Institute of
Standards and Technology
(NIST). At NIST, he parti-

cipated in several research projects of the supply-chains
integration. His research interests are in enterprise
application integration and interoperability, semantic
web technologies, e-business, and model-driven devel-
opment. He received his MS degree in computer science
from University of Belgrade.

Nenad Ivezic

Nenad Ivezic is a staff
researcher at the Enterprise
Systems Group of the
NIST. He received his MS
and PhD degrees from
Carnegie Mellon University
and BS degree from
University of Belgrade. His
interests include artificial
intelligence, distributed sys-
tems, supply chain manage-
ment, and enterprise

systems integration. He is currently working on
advanced information systems for supply chain integra-
tion and participates actively in standards development
for e-business technical specifications.

Semantic B2B-integration Using an Ontological MMM 231



Edward Barkmeyer

Edward Barkmeyer has
an MS degree in Applied
Mathematics and 40 years
experience in the computer
sciences, covering a wide
range of topics. Since 1981,
Mr Barkmeyer has been a
principal analyst and
architect in information
interchange among manu-
facturing software systems –
engineering, planning, con-

trol, and supply-chain operations. He is currently
working on automatic translation of business rules to
information exchange tests using artificial intelligence
methods. Mr Barkmeyer represents NIST on national
and international standards bodies in the areas of
interface specification, information modeling, process
modeling, and data interchange.

Zoran Marjanovic

Zoran Marjanovic is a
full professor at Faculty of
Organizational Sciences,
University of Belgrade, and
a founder and president of
the Breza Software
Engineering company. His
research interests are infor-
mation systems develop-
ment methodologies,
databases, and semantic
enterprise application inter-

operability. Professor Marjanovic is a lead on several
on-going projects with government and commercial
entities that address design, deployment, and testing of
enterprise resource planning and other business systems.
He received his MS and PhD degrees in Information
Systems from University of Belgrade. He is a member of
ACM and IEEE.

232 M. VUJASINOVIC ET AL.


