Why do we care about large covariance matrices?

Paul Hale
Andrew Dienstfrey
Jack Wang
NIST, Boulder, CO

Propagate directly to parameter

Waveform is not calculated explicitly

Temperature

Contact resistance

Geometrical effects

Scaling

M sources of uncertainty α

Needs to be recalculated for each parameter

Waveform as universal intermediary

Temperature

Contact resistance

Geometrical effects

Scaling

M sources of uncertainty α

Waveform covariance is a universal factor of the uncertainty of any parameter P

1- Computational intractability

- If waveform has N elements, covariance matrix has N^2 elements
- $N \sim 2000$ works OK for $J\Sigma J^{T}$
- $N \sim 4000$ crashes my computer
- Want $N \sim 50,000$ to 1,000,000 for some problems

2 – Singularity of Σ

- We have a high dimensional problem with a low number of measured waveform vectors: rank deficient
- How do we make inferences regarding correlations in this under-determined problem when Σ^{-1} does not exist?
- Joint estimation of off diagonal elements
 - Note that diagonal elements are not a problem
 - Correlations appear that are not there

3 – Covariance modeling, parameterization, or compression

- Model large covariance matrix with a small number of the most significant parameters
- How do we test the model if we only have a few measurements?