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What are waveforms?

Transducer
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Physical 
stimulus

f (t)

IEEE Standard 181-2003, IEEE Standard on transitions, 
pulses, and related waveforms
– Signal: A physical phenomenon that is a function of time
– Waveform: A representation of a signal

• For example, a graph, plot, oscilloscope presentation, discrete 
time series, equation, or table of values.

– A waveform is obtained by some estimation process.
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Who cares?

Waveform generation and measurement used in all areas of science and 
technology

~760 oscilloscopes owned by NIST in 2004
Wireless, wired, and optical communications 
Remote sensing
Chemical and materials properties
~1 oscilloscope for every 4 NIST staff

>$1B annual market
$500M market for high end oscilloscopes

Transducer

Time

Physical 
stimulus

f (t)
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Waveforms in the modern world

• Waveforms constitute the currency of 
modern, data-intensive communications.

• Digital signals require time-domain 
measurements
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High-speed sampling oscilloscopes

• Bandwidth: 20 to 
~100 GHz

• Response pulse width 
~ 4 to17 ps

• Need to deconvolve 
detector/scope 
response for pulses 
<16 to 70 ps [3% 
error, rss]
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Equivalent time sampling

Input to 
sampler:

TSampling 
period     
T > 10 μs

~ ~~ ~ ~ ~ ~ ~
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Why full waveform metrology? 
Oscilloscope response calibration

Old way: One number (parameter) to describe response

Bandwidth and transition duration
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(10 % to 90 %)

Shape?

One or only a few parameters do not uniquely describe response function



0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Constructing an ‘eye’ pattern
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Time
0

1

Digital signal test 
Different responses yield different results!

Forbidden 
region

Passes test
0

1

Fails test
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A real measurement

Generator passed Generator failed

Same source, two different oscilloscopes, 
same bandwidth

Which measurement is correct?
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Full waveform metrology
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Full waveform metrology

Vector signal 
analyzer (VSA)

Large-signal network 
analyzer (LSNA)OscilloscopeBit Error Ratio Tester 

(BERT)

Pulse generator Vector signal 
generator (VSG) Lightwave component 

analyzer (LCA)

Whole waveform metrology

Unified approach to
• Calibration
• Calculating and comparing uncertainty in time and 

frequency domains
• Deliver calibrated sources and waveform measurements



Considerations for high-speed measurements: 
Time calibration

• Sample time errors are significant 
• Includes both random and systematic 

contributions
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Timebase distortion
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Evenly spaced time samples

Actual sample timing



Jitter
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2 21
2~ exp( )JLoss σ ω−Jitter averaged acts as lowpass filter⇒
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Waveform 
generator

Reference
oscillator

90° 
Hybrid 
coupler

S1

S2

S3

Time-base delay 
generator

Sampler
drive
pulseSamplers

 τ(1)
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 τ(tr)

 τ(S1)

 τ(S2)

 τ(S3)

f

Oscilloscope

D

• Measure reference sine waves simultaneously with signal
• Software fits sine wave data to model
• Find time error at each sample (horizontal lines)
• Correct for time error

Trigger

Timebase correction
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Timebase correction in action
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Software available at 
http://www.nist.gov/eeel/optoelectronics/sources_detectors/tbc.cfm

http://www.nist.gov/eeel/optoelectronics/sources_detectors/tbc.cfm


Considerations for high-speed measurements: 
Voltage calibration

• Voltage present at device terminals is a function of the load 
impedance
– Dimensions of device are greater than a wavelength 
– Impedance of source and test equipment is not 50 Ω
– Test fixtures and cables are lossy and may induce reflections
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Thévenin equivalent circuit
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Effect of impedance on measurement
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Definition of source wave bg

• bg is the amplitude of the wave that the source delivers to a matched load.

• e.g., power meters are calibrated to measure P = ½| bg |2

gΓ

1 0b =

1 ga b=

0Γ =
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Estimate bg from measured b2
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Adding instrument response
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May want to solve for oscilloscope response h instead of bg
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Dissect two repeat measurements : 
Time domain
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Dissect two measurements in the time 
and frequency domains
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Discrepancy due to contact resistance
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~0.5 dB difference at 
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Time domain expanded

800 1200 1600 2000
Time (ps)

-0.04

-0.02

0

0.02

0.04

V
ol

ta
ge

 (n
or

m
al

iz
ed

)
Measurement 2
Measurement 3

Low noise

Echoes

‘Stuff’ still 
happening here 
that’s larger than 
the noise level
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Difference between measurements
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Difference is only ~1.4% of peak value 
but causes ~0.5 dB error at resonance 
frequency.
⇒Small differences in one domain may 
mean big differences in the other 
domain.
⇒We need errors <<1 %
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Considerations for high-speed measurements: 
Voltage calibration and dynamic response

• Instrument response bandwidth is comparable to 
the bandwidth of the unknown signal or system
– Δftest /Δfsignal ~1/2 to 5

• Deconvolution of combined effects of instrument 
response, loss, and reflections is typicaly required

• Deconvolution often requires regularization
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Linear systems approach
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Least squares minimization
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⇒ “Normal equation”

Because our 
system is invertible
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LS solution: Deconvolution without regularization
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LS solution is unstable
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Control instability

• Introduces free parameter(s)
• Want systematic, rigorous theory
• May want to automate stabilized 

(i.e., “regularized”) deconvolution
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Constrained minimization
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Resulting inverse operators
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These terms serve as a low-pass noise filter.
Choice of λ determines effective cut-off.



L-curve
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Simulation space
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Simulation space

• Want to stress deconvolution algorithms
– System response = 4th-order Butterworth
– Input 2nd-order Bessel-Thompson

• Sample rate fixed, although this might also be an 
interesting parameter

• Simulated 1000 waveform instances for each (T , S)
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Conclusions from simulations

• RSS is a bad idea
– Measurement can ‘speed up’ waveform
– Pulse duration relationships cannot be basis for accuracy claims

• Tikhonov framework with these selectors is stable
• Two selectors appear roughly equivalent

– L-curve slightly better, but more waveform shapes need to be 
studied

– Problems with L-curve not observed
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The calibrated waveform

• A waveform is a set of ordered pairs W={(tj , xj ) | j=1,…, J}
• tj and xj are subject to error

• For numerical analysis, the waveform is interpolated to a vector 
X=(x1 , … , xN )T, where xn = x(tn ) and tn = t1 +nΔt

• Each element of X

 

is considered a random variable
• Correlations may exist between some or all elements of X
• The calibrated waveform is a vector Y

 

= f (X)

• How do we express the uncertainty in vector X?
• How do we propagate uncertainty from vector X to vector Y?
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Transformation to ΣY

2
2 2 T    y x

df
dx

σ σ⎛ ⎞= → =⎜ ⎟
⎝ ⎠

Y XΣ JΣ J

What is the uncertainty in                                     ?( )1, ( )T
Ny y f= =Y XL

( ) ( )
( )

( )( )( )
( )( ) ( )( )( )

i i
ij

j j

T

T

T

f

f yJ
x x

E

E

= ≈ + − +

∂ ∂
= =

∂ ∂

= − −

≈ − −

≈

0 0

0 0

X X

Y 0 0

0 0

X

Y X X J X X

X

Σ Y Y Y Y

J X X J X X

JΣ J

K

Jacobian    

Covariance   

• f (X) can be a linear transformation, some quasilinear function, or 
a complicated algorithm
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Covariance matrix Σ
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Stepping through oscilloscope calibration
• Timebase correction
• Interpolation to evenly spaced time grid
• Transformation of time-domain waveform to frequency- 

domain representation: VS = FvS

• Deconvolve system response:

• Note: Regularization may be required for inversion
• Transformation back to time domain: a = F -1A
• Scalar pulse parameters, i.e., pulse transition duration, 

pulse amplitude, etc. σ2
P = JP

 

ΣA

 

JP
T

1

S
PD S1-
PDb

−
⎛ ⎞

=⎜ ⎟Γ Γ⎝ ⎠
A V

Oscilloscope calibration: 
Propagation of uncertainty



Correlations distribute uncertainty 
where we expect it
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Full waveform metrology includes:

1. Traceability to fundamental physics (EOS)
2. Calibrated time t
3. Calibrated voltage v(t)

– Account for reflections and loss
– Dynamic instrument response

4. Covariance matrix-based uncertainty analysis
– Analysis of the waveform at each point in the 

measured epoch, along with uncertainty at each 
point

– Allows propagation of uncertainty through a  linear 
transformation

– Fourier transforms, pulse parameters, etc.
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