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What are waveforms?

Physical 0

stimulus %
f (t) Transducer — /\J

Time
IEEE Standard 181-2003, IEEE Standard on transitions,
pulses, and related waveforms
— Signal: A physical phenomenon that is a function of time

— Waveform: A representation of a signal

* For example, a graph, plot, oscilloscope presentation, discrete
time series, equation, or table of values.

— A waveform is obtained by some estimation process.
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Who cares?

Physical 0
stimulus
f (1) Transducer ——
Time
Waveform generation and measurement used in all areas of science and
technology

» ~760 oscilloscopes owned by NIST in 2004
= Wireless, wired, and optical communications
= Remote sensing
» Chemical and materials properties
» ~1 oscilloscope for every 4 NIST staff

= >$1B annual market
= $500M market for high end oscilloscopes
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Waveforms in the modern world

 \Waveforms constitute the currency of
modern, data-intensive communications.

 Digital signals require time-domain
measurements




High-speed sampling oscilloscopes

 Bandwidth: 20 to
~100 GHz

- ==« Response pulse width
oL ¢ ¢ ~41t0l7ps
e
o * Need to deconvolve
— ?;:ﬁ'?ﬁ e detector/scope
o e el e response for pulses

<16 to 70 ps [3%
error, rss]




Equivalent time sampling
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Why full waveform metrology?
Oscilloscope response calibration

Old way: One number (parameter) to describe response

Bandwidth and transition duration

0
3
S | il le— Transition duration
a (10 % to 90 %)
L LN
% \\\J N
Q ?
& Shape -
-0.25 .
Time

One or only a few parameters do not uniquely describe response function
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Constructing an ‘eye’ pattern




Digital signal test

Different responses yield different results!

Forbidden
region

0
Passes test Falils test




A real measurement

Same source, two different oscilloscopes,
same bandwidth

Which measurement is correct?
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Voltage (mV)
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Full waveform metrology
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Full waveform metrology

Unified approach to
o Calibration

Calculating and comparing uncertainty in time and
frequency domains

Deliver calibrated sources and waveform measurements
Whole waveform metrology

Bit Error Ratio Tester
(BERT)

l
|
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~ asse @
iy
280 DDQ&
Pulse generator Vector signal Lightwave component
generator (VSG) < P

analyzer (LCA)
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Considerations for high-speed measurements:
Time calibration

e Sample time errors are significant

 Includes both random and systematic
contributions
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Timebase distortion

Evenly spaced time samples 123456789 10......

Actual sample timing 1 2345 6 7
8 9 10 11 12 13
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Jitter

Jitter averaged acts as lowpass filter=  Loss ~ exp(—c,°®°)

Time domain

0.15 1~
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Voltage
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Time (ns)
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True waveform

FWHM: 7.4 ps —» 7.7 ps

0.03

Power (dB)

Frequency domain
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Power @ 60 GHz: 0.7 dB error
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Timebase correction

Oscilloscope
Reference P

oscillator @ 7(SD)
f 90° ( S )‘7

w Hybrid - ()
coupler @_

(S3)
Waveform 1) T
generator >3 Sampler
drive
Samplers pulse

T(tn)

Time-base delay
generator

v

Trigger

» Measure reference sine waves simultaneously with signal
« Software fits sine wave data to model

* Find time error at each sample (horizontal lines)

« Correct for time error




Timebase correction In action
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Software available at
http://www.nist.qov/eeel/optoelectronics/sources detectors/tbc.cfm



http://www.nist.gov/eeel/optoelectronics/sources_detectors/tbc.cfm

Considerations for high-speed measurements:
Voltage calibration

« Voltage present at device terminals is a function of the load
Impedance

— Dimensions of device are greater than a wavelength
— Impedance of source and test equipment is not 50 Q
— Test fixtures and cables are lossy and may induce reflections
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Effect of Impedance on measurement

Z Reference plane

A4
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Thévenin equivalent circuit
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e =V, (a))[zl_(a)) T Zs(a))]
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Definition of source wave bg

T, a =D,

A N

U U
——2 I'=0

b, =0

b, is the amplitude of the wave that the source delivers to a matched load.

e.g., power meters are calibrated to measure P = %3| b |*
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Estimate b, from measured b,

———— — — — — — —— — —— — — — — —

b=a,=bI andb,=4a,
= b, =b, +b,I" ',

by =(1-T. T )b,

=

<1
F——————— b ———

<=

<1
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Adding instrument response

I— ———————————————————

T, a =b, +bI : b, =4, Oscilloscope :

- | > :

h’

n N TN A . |

< | < T :

), =4, : a, =b,I', - :

b=a,=bI" andb, =3 : |

I

= b, =b, +b,[' T, : |

(1-r.r,) e

b, = - b,
(1_r T ) h' = oscilloscope response function
b,=h'b, where h™ = = .
9 2 h' h = system response function

May want to solve for oscilloscope response h instead of b,
22




Echo In frequency domain

Estimate of h after

] correcting for

0 — mismatch and source
response

Note that I" is measured and we
do not have a model for any
-3 ~raw measurement functions discussed in this talk

Response (dB)
N
I

0 10 20 30 40 50
Frequency (GHz)
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Time-domain echo

Raw measurement
0.04 — " “ Estimated response (offset)
Echo is 28x
below peak
0 J ’ -
‘ Echo is reduced to 175x
below peak
-0.04 —
] I T I T I
0.6 1 14 1.8

Time (ns)

24



Dissect two repeat measurements :
Time domain

Measurement 2

0.8 — Measurement 3

No obvious differences on this scale

Voltage (normalized)
o
D
I

800 1200 1600 2000
Time (ps) 25



Dissect two measurements in the time
and frequency domains

O_

-High dynamic range
-No obvious differences
on this scale

-20 —

Response magnitude (dB)
|

-40 — Measurement 2

Measurement 3

-60 T [ T

I
0 100 200 300
Frequency (GHz)
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Discrepancy due to contact resistance

O p—

_1 —
N ~0.5 dB difference at
o resonant frequency
g .-
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Time domain expanded

. 0.04 —
Low noise

Measurement 2
Measurement 3

Voltage (normalized)

‘Stuff’ still
happening here
that’s larger than
| A\\ the noise level

-0.04 —

-0.02 —

Echoes

I ' I ' I ' I
800 1200 1600 2000
Time (ps)
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Difference between measurements

0.02 —

Difference is only ~1.4% of peak value
- but causes ~0.5 dB error at resonance
frequency.

=Small differences in one domain may
mean big differences in the other
domain.

- —=We need errors <<1 %

0.01 —

Voltage (normalized)

{

-0.01 | ' | ' | ' |

800 1200 1600 2000
Time (ps)
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Considerations for high-speed measurements:
Voltage calibration and dynamic response

e |Instrument response bandwidth is comparable to
the bandwidth of the unknown signal or system

fest
 Deconvolution of combined effects of instrument

response, loss, and reflections is typicaly required
e Deconvolution often requires regularization
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Linear systems approach

y(t)=[x*a](t)+noise

], a(s)x(t—s)ds+noise

Using Fourier transform:

y(t)=[x*a](t) < Y(f)= X (f)A(f)
— X (f)=Y(f)/A(f)
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Least squares minimization

y = AX+on
min AX—yH2
xeR"

Y X =(A*A)_1A*y “Normal equation”
= A"

Because our
system is invertible
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Convolution plus noise

r(x.)
0.4 — T( a) =2 20 —
A=System response
i S=10° - X=Input |
0.3 — Y=Output with noise
| ’”
g @ i
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LS solution: Deconvolution without regularization

A=System response
X=Input

Y=Output with noise
X =Least squares

Magnitude, dB

O T T 1T T 1

0 100 200 300 400 500
Frequency, GHz
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LS solution Is unstable

A=System response

laVal
LU N

X=Input
Y=Output with noise
X s=Least squares

H
o
|

Voltage, arb.
o

N
o
|

R B BN LI B
O 005 01 015 0.2
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Control instability

20 — A=Systemresponse e |ntroduces free parameter(s)
X=Input . :
| v=Output with noise  ®  Want systematic, rigorous theory

X  May want to automate stabilized
(.e., “regularized”) deconvolution

regularized

Magnitude, dB

0 100 200 300 400 500
Frequency, GHz
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Constrained minimization

Lagrange
min HAX— H multiplier
xLx|*<m

= min { AX —y *+ 2%||Lx 2}
min x> + 71|

\ }
f

Tikhonov framework




Resulting inverse operators

L=I> HXH2 < Ml “Energy in x(A) is bounded”
x(1)=(A'A @‘1 Ay

L=D,= HszHZ <M, HE(%J ?shggiigéd"

x(1)=(A"A )‘1 Ay

These terms serve as a low-pass noise filter.
Choice of A determines effective cut-off.
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L-curve

IogHDZA‘lyH2

|Ax(2)-y[" =0+
< |
O p—

log|[D,x()[?
D
|

-12 —

Q(ieasing

mm{HAx y|f +A%||D, XH}

1 I 1 I 1
4 -2
log||Ax()-yl[*

Balance achieved
in this region

Iog||D2x(/1)||2 -0

39



3 methods for A selection

2.4 —
- Optimal: min [x(4)- x,cH2 - This is the "gold standard"
2.6 7 in our study because we know x.. However, it can not
- be usedinameasurement context.
S . -
=1 | | Discrepancy principle:
- ' 2 2
= | HAX(Z)—yH = E(an) =No
S 37 |
|
- |
39— ! L-curve method:
| ! Maximum curvature point
b |
|
3.2 -3 2.8 2.6 2.4 2.2

log||Ax(A)-yl[?
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Simulation space

Vary ratio of durations: 7~ = (x.)

2 2

o |y
E (Jonlf)  Ne”

e Scales with 7(x. ) for fixed amplitude x.

Vary signal to noise ratio: & =

* for every 7~

e Scale x. to keep ||y.
=& = L -
No




Simulation space

Want to stress deconvolution algorithms
— System response = 4th-order Butterworth
— Input 2"d-order Bessel-Thompson

Sample rate fixed, although this might also be an
Interesting parameter

Simulated 1000 waveform instances for each (7, S)
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Conclusions from simulations

« RSSis abadidea

— Measurement can ‘speed up’ waveform

— Pulse duration relationships cannot be basis for accuracy claims
» Tikhonov framework with these selectors is stable
 Two selectors appear roughly equivalent

— L-curve slightly better, but more waveform shapes need to be
studied

— Problems with L-curve not observed
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The calibrated waveform

« A waveform is a set of ordered pairs W={(t;, x;) | J=1,..., J}
* t;and x;are subject to error

« For numerical analysis, the waveform is interpolated to a vector
X=(Xy, -, Xy)T, where x,= x(t,) and t,= t;+nAt

 Each element of X is considered a random variable

« Correlations may exist between some or all elements of X

e The calibrated waveform is a vector Y = f (X)

« How do we express the uncertainty in vector X?
« How do we propagate uncertainty from vector X to vector Y?




Transformation to X,

What is the uncertainty in Y =(y,,---y, )T =f(X) ?

Y=1(X)=X,+J(X-X,)+...

Jacobian J; = %
j

9.
OX

XO J XO

Covariance X, =E ((Y ~Y, ) (Y-Y,) )

<E((I(X-X,)(I (X-X,)) |
~JE, J'
df

2
2 2 T
O-y :(&) O'X —> ZY :JZXJ

« f(X) can be a linear transformation, some quasilinear function, or
a complicated algorithm




Covariance matrix >

COV( ) E((X E(x ))(X E( )))zaiajpij

where E

w(s)={(-£00)) -
{

= [xp(x)dx and p(x) = pdf
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Oscilloscope calibration:
Propagation of uncertainty

Stepping through oscilloscope calibration

Timebase correction
Interpolation to evenly spaced time grid

Transformation of time-domain waveform to frequency-
domain representation: V¢ = Fvq

1_FPD FS
Note: Regularization may be required for inversion
Transformation back to time domain: a = F A

Scalar pulse parameters, i.e., pulse transition duration,
pulse amplitude, etc. 62, = J .2, J,T

-1
b
Deconvolve system response: A=£ a8 j V




Correlations distribute uncertainty
where we expect it

1.5 0.012

Raw measurement (offset)
Estimated response
O—6&—6 Uncertainty due to signal noise

1 ] .
A A\ Uncertainty duc_e to system
response function | 0011
" - — Total uncertainty '
(7))
c
o
o
(73]
@
n'd

0.6 1 1.4 1.8
Time (ns)

Uncertainty
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1.
2.
3.

4.

Full waveform metrology includes:

Traceability to fundamental physics (EOS)
Calibrated time t
Calibrated voltage v(t)

Account for reflections and loss
Dynamic instrument response

Covariance matrix-based uncertainty analysis

Analysis of the waveform at each point in the
measured epoch, along with uncertainty at each
point

Allows propagation of uncertainty through a linear
transformation

Fourier transforms, pulse parameters, etc.
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