
Practical Near-Collisions for Reduced Round

Blake, Fugue, Hamsi and JH

Meltem Sönmez Turan1, Erdener Uyan2

1 Computer Security Division, National Institute of Standards and Technology, USA
2 Institute of Applied Mathematics, Middle East Technical University, Turkey

meltem.turan@nist.gov, uerdener@metu.edu.tr

Abstract. A hash function is near-collision resistant, if it is hard to
find two messages with hash values that differ in only a small number
of bits. In this study, we use hill climbing methods to evaluate the near-
collision resistance of some of the round SHA-3 candidates. We practi
cally obtained (i) 184/256-bit near-collision for the 2-round compression
function of Blake-32; (ii) 192/256-bit near-collision for the 2-round com
pression function of Hamsi-256; (iii) 820/1024-bit near-collisions for 10
round compression function of JH. We also observed practical collisions
and near-collisions for reduced versions of F-256 function used in Fugue.
Keywords: Hash functions, Near-collisions, SHA-3 Competition.

1 Introduction

Hill climbing methods are simple heuristic algorithms that aim to provide “good”
solutions to “hard” optimization problems in short running times. These algo
rithms start with a random candidate and iteratively improve the candidate
by making small changes, then terminate after converging to a local optimum.
They are successful for problems for which the value of the problem at a specific
point gives some information about “close” points. For the well known traveling
salesman problem, these methods get within approximately 10-15% of optimal
solution in relatively short time [1].

There are many hard search problems in the field of cryptography, such as
finding the secret key in symmetric cryptosystems or building efficient compo
nents with good cryptographic properties. However, the success of the simple
optimization techniques have been very limited in most of these problems.

One of the reasons of the failure is that most of the cryptographic problems
(e.g. searching for the secret key) have no “good” solutions except for the optimal
solution. Another reason is due to the discontinuity of the most cryptographic
functions, i.e. small changes in the input usually result in random looking changes
in the outputs. Clark in his PhD thesis [2] claims that these techniques might
give significant and surprising results if used in the right way. Searching for
cryptographically strong Boolean functions is one of the cryptographic problems
that benefit from these methods [3–5]. After the announcement of the SHA-3
hash competition by National Institute of Standards and Technology (NIST) [6],

mailto:meltem.turan@nist.gov

the submitted hash functions have been a prolific source of new cryptographic
problems.

Security of a cryptographic hash function is evaluated based on its resistance
to preimage, second preimage and collision attacks. Moreover, a secure hash
function is expected to be indifferentiable from a random oracle and resist other
attacks such as partial preimage and near-collision.

Truncating some of the output hash bits might be necessary for compatibility
of systems or desired for the efficiency purposes. In such cases, near-collision
results have significant importance, since the output differences may diminish
after a truncation operation and collisions may be obtained.

Hill climbing methods seems to be more promising for searching near-collisions
compared to other type of attacks, since the problem has many local optimal
points. In this study, we analyze the compression functions of some of the sec
ond round SHA-3 candidates, namely Blake [7], Fugue [8], Hamsi [9] and JH [10]
using a simple hill climbing method. We observed that for some of the reduced
versions, the method produced better results compared to the generic random
search. We practically present near-collision examples for reduced compression
functions of Blake-32, Fugue-256, Hamsi-256 and JH-256 that were obtained in
short times.

Organization of the paper is as follows. In Section 2, generic methods to
find near collisions are discussed. Then, in Section 3, the proposed hill climbing
method is described. Section 4, the results we obtained for reduced versions of
Blake, Fugue, Hamsi and JH are presented. Finally, the results are summarized
in Section 5.

2 Near-Collisions

A hash function is near-collision resistant, if it is “hard” to find two messages
with hash values that differ in only a small number of bits.

Let h be a compression function that takes a m-bit message block and an
n-bit chaining value CV as inputs and generates the n-bit next chaining value as
output. An E/n-bit near-collision on h is obtained whenever two message blocks
M1 and M2 satisfying

H W (h(M1, C V) ⊕ h(M2, C V)) = n − E (1)

are found, where H W represents the Hamming weight. Clearly, E = n corre
sponds to a collision on the compression function. A generic method to find
near-collisions for a compression function is to generate input message and out
put chaining value pairs (Mi, Ci) and compare Ci’s to find the closest pair. Since
the pairs are needed to be stored, the method is not memory-efficient.

Another approach to find near-collisions is to randomly try input chaining
values C V that minimize

H W (h(M1, C V) ⊕ h(M2, C V)) (2)

for a given M1 and M2 pair. Using this method, finding an E/n-bit near-collision s
nrequires approximately 2n/ many evaluations of the compression function C

with almost no memory requirement, only the best chaining value found so far
is stored. Table 1 shows the expected complexity to obtain E/n-bit near-collisions
for a compression function with 256, 512 or 1024-bit output.

Table 1. Approximate complexity to obtain E/n-bit near-collisions.

E/n Complexity (≈)
128/256, 256/512, 512/1024 24

151/256, 287/512, 553/1024 210

166/256, 308/512, 585/1024 220

176/256, 323/512, 606/1024 230

184/256, 335/512, 623/1024 240

191/256, 345/512, 638/1024 250

197/256, 354/512, 651/1024 260

3 Hill Climbing Method

If the compression function h has strong diffusion properties, for a randomly
chosen message M and input chaining value C V , the Hamming weight of

h(M, C V) ⊕ h(M, C V ⊕ δ) (3)

is approximately n , where δ is an n-bit vector with small Hamming weight. How2
ever if the diffusion of δ is not satisfied, h(M , C V) and h(M , C V ⊕ δ) might be
correlated, i.e., the value of h(M , C V) might provide some exploitable informa
tion about the value of h(M, C V ⊕ δ). In such cases, the hill climbing algorithms
to find near-collisions may work better than the generic approaches.

The aim of our hill climbing method is to minimize the function

fM1 ,M2 (x) = H W (h(M1, x) ⊕ h(M2, x)) (4)

where x ∈ {0, 1}n, for given message blocks M1 and M2. Let C V be a randomly
chosen chaining value. We define the set of k-bit neighbors of C V as

Sk = {x ∈ {0, 1}n|H W (C V ⊕ x) ≤ k}. (5)C V k s nClearly, the size of Sk is equal to .C V i=0 i
For message blocks M1 and M2, a chaining value C V is defined to be k-opt,

if
fM1 ,M2 (C V) = min fM1,M2 (x). (6)

x∈Sk
C V

The hill climbing method presented in this section works as follows. Given
a pair of message blocks M1 and M2, we randomly select a candidate chaining
value C V and calculate fM1,M2 (C V). Then, we search the set Sk to find a C V
better chaining value. If found, our candidate is updated. Then, a new search
is started in the k-bit neighbor of the new candidate. The algorithm terminates
whenever a k-opt chaining value is obtained. The pseudo-code of the method is
presented in Algorithm 3.1.

Algorithm 3.1: HillClimbing(M1, M2, k)

Randomly select C V ;

fbest = fM1,M2 (C V);

while (C V is not k-opt)

C V = x such that x ∈ Sk with f(x) < fbest;C V

fbest = fM1,M2 (C V);

return (C V , fbest)

Given current C V , the next candidate can be selected in two ways. In the first
way, the first chaining value that has lower f value is chosen and this approach is
known as the greedy gradient ascent. In the second way, the best chaining value
in Sk is chosen and this approach is known as the steepest ascent. After making C V
preliminary experiments, we observe that the greedy approach results in better
near-collisions in shorter times.

4 Experimental Results

Searching Sk s with larger k (> 3) values might result in better near-collisions, C V
but the method is no longer efficient. Moreover, when k is large, it is harder to
find correlated h(M, C V) and h(M, C V ⊕ δ), where weight of δ is k. For our
experiments, we use k values less than or equal to 2.

We repeat our experiments approximately 225 times and consider our method
successful, whenever we obtained an E/n-near collision with E ≥ 184 for n = 256,
E ≥ 335 for n = 512 and E ≥ 623 for n = 1024. These bounds are achievable by
generic random search with complexity of 240 as given in Table 1.

4.1 Blake-32

Blake [7] is based on the HAIFA iteration mode with a compression function that
uses a modified version of the stream cipher ChaCha. The compression function
of Blake-32 inputs 256-bit CV, 512-bit message block, 128-bit salt and 64-bit
counter and outputs 256-bit CV. The function is composed of 10 rounds and in
each round, the nonlinear function G that operates on four words is applied to
columns and diagonals of the state.

In our experiments, 1-bit difference to the input message blocks are given
and the counter and the salt are fixed to zero. For 1-round compression function
of Blake-32, we easily obtained 252/256-bit near-collisions. These near-collisions
are obtained whenever we give a 1-bit difference to the 9th, 11th, 13th or 15th
word of the message blocks. Then, we consider 1.5-round compression function in
which the half round corresponds to the applications of G to the columns of the
state. The best result we obtained for 1.5-round and 2-round Blake is 209/256
bit and 184/256-bit near collisions, respectively (See Table 2). For larger rounds,
the hill climbing method did not provide significantly better results compared
to the generic random search.

Table 2. Example Near Collisions for the Compression Function of Blake

1-Round Compression Function: 252/256-bit Near Collision

M1
8f4a6174 719e5909 41112fdc e5fa805a

6a111277 4b6ff9f9 3f210a47 67388c82

1bdea684

a54cbe2a

b491ec4a

3ac0d8e6

4deb8a83

8042a2a5

5f31cf20

c0549b9e

M2
8f4a6174 719e5909 41112fdc e5fa805a

6a111277 4b6ff9f9 3f210a47 67388c82

1bdea684

a54cbe2a

b491ec4a

3ac0d8e6

4deb8a83

8042a2a5

5f31cf20

c0549b1e

C V c34a1a90 c6955a4e c0c7e9ab cbf5b76c fbab3691 3368498b a8801cd7 20267316

h(M1, C V) ⊕ h(M2, C V) 00000000 80000000 00000000 00000080 01000000 00000000 80000000 00000000

1.5-Round Compression Function: 209/256-bit Near Collision

M1
4ffcdfb9 5429ec40 18f9d1d6 c2b5b039 09c31d11

f757e1bf 6b0acf84 6d01bd05 0ec90891 a439a1bf

18d1bc19

c8de2b0e

532edb9c

be5a524a

58e3664a

ae843e5a

M2
4ffcdfb9 5429ec40 18f9d1d6 c2b5b039 09c31d11

f757e1bf 6b0acf84 6d01bd05 0ec90891 a439a1bf

18d1bc19

c8de2b0e

532edb9c

be5a524a

58e3664a

ae843eda

C V 67134117 63e4044d 1a0bbd2b b99824e3 cb638884 8b8d284f 13977bba ad75b3a0

h(M1, C V) ⊕ h(M2, C V) 00006020 80080801 88008008 80808898 412300a1 03003810 99100081 b1008118

2-Round Compression Function: 184/256-bit Near Collision

M1
3bd4eee9 035c9cd7 d35de9f7 cd3ab897

87aa2e99 cec2210d 2fd0974b 652e8e26

6f4fc516

37acc0e7

e117aa80

5a7a7157

ff72acc8

c5bb6f9b

05c22424

7853cda1

M2

C V

3bd4eee9 035c9cd7 d35de9f7 cd3ab897

87aa2e99 cec2210d 2fd0974b 652e8e26

c25dd2cd 2030a7b6 0fc043e8 5a0b5096

6f4fc516

37acc0e7

f084c81f

e117aa80

5a7a7157

1f90d7d6

ff72acc8

c5b96f9b

af48e019

05c22424

7853cda1

34cd3554

h(M1, C V) ⊕ h(M2, C V) 01c40003 180ac188 20818018 31442186 13309080 0858600b 143a4041 7f3144d0

The results presented in this paper are obtained by giving input difference to
only the message bits. Giving additional differences to input chaining value, salt
and counter as in [11] increases the flexibility of the attacker. Another flexibility
for the attackers is to start the attack on a middle round, instead of the first
round of the compression function as in [11, 12]. To compare the available results,
we run our algorithm for 4-round compression function for a couple of days.
Comparison of near-collision attacks on Blake-32 is given in Table 3.

It is possible to extend the result on the compression function to a a semi-
free start near-collision attack on reduced round Blake-32, by choosing short
messages such that the padding and the message fits one message block, i.e. the
length of the padded message is 512-bits.

Table 3. Comparison of results on reduced-round compression function of Blake
32

Paper Rounds Complexity Type Difference

. 1 21 252/256-bit near-collision Message

< 226. 1.5 209/256-bit near-collision Message

< 226. 2 184/256-bit near-collision Message

221[12] 4 (4-7) 152/256-bit near-collision Message, CV

237.39. 4 182/256-bit near-collision Message

256[11] 4 (3-6) 232/256-bit near-collision Message, CV, Salt, Counter

4.2 Fugue

Fugue, designed by Halevi et al. [8], is a sponge-like design inspired by Grindahl.
Fugue is based on the F -256 function that uses a large internal state of thirty
32-bit words. F -256 operates 32-bit message blocks using a round transformation
that consists of the following operations; (i) TIX(I) that loads the 32-bit message
blocks to the state, (ii) ROR3 that rotates the state by three columns, (iii)
CMIX that mixes columns and (iv) SMIX that applies a nonlinear substitution
to the first four columns of the state. The pseudocode of F -256 is given in
Algorithm 4.1. The default value of (r, g1, g2) is (2, 10, 13).

Algorithm 4.1: F-256(M1, . . . , Mm, I V0, . . . , I V7, r, g1, g2)

for i ← 0 to 21

Si = 0;

for i ← 22 to 29

Si = I Vi−22;

for i ← 1 to m

T I X (Mi);

for j ← 1 to r

ROR3; C M I X ; SM I X ;

for i ← 1 to g1

ROR3; C M I X ; S M I X ;

for i ← 1 to g2

S4+ = S0; S15+ = S0; ROR15; S M I X ;

S4+ = S0; S16+ = S0; ROR14; S M I X ;

return (S1, S2, S3, S4, S15, S16, S17, S18.)

In our experiments, we selected 32-bit random messages without considering
the padding scheme. We made our experiments on 260 (= 2 × 10 × 13) various
versions of F -256 based on the selection of r, g1 and g2. For each version, we
repeat the experiment 210 times and the results better than 184/256-bit near-
collisions are summarized in Table 4. Table 5 gives examples for three of these
cases.

Table 4. Summary of best results for different reduced versions of F -256

(r, g1, g2) Best Near-collision result

(1,1,1),(1,1,2),(1,2,1),(1,2,2),

(1,2,3),(1,2,4),(1,2,5),(2,1,1),

(2,1,2),(2,1,3),(2,1,4),(2,1,5)

Collision

(1,1,3),(1,2,6),(1,3,1),(1,3,2),

(1,3,3),(1,3,4),(1,3,5),(1,3,6),

(1,3,7),(1,3,8),(2,1,6),(2,2,1),

(2,2,2),(2,2,3),(2,2,4),(2,2,5),

(2,2,6),(2,2,7),(2,2,8)

≥ 231/256-bit near-collision

(1,1,4),(1,1,5),(1,2,7),(1,2,8),

(1,3,9),(1,3,10),(2,1,7),(2,1,8),

(2,2,9),(2,2,10)

≥ 184/256-bit near-collision

Table 5. Example near-collisions for Fugue

(r,g1 ,g2)=(2,1,5): Collision

M1 bce97e99

M2 e60cdffb

C V abc6c947 328bc6cd 24f38ca6

2bad9edc 1a87407e 263df40e

92ec7e0d

08e04f24

h(M1, C V) ⊕ h(M2, C V) 00000000 00000000 00000000

00000000 00000000 00000000

00000000

00000000

(r,g1 ,g2)=(2,2,8): 233/256-bit near-collision

M1 689bbd81

M2 8190b5d7

C V 6ed96b2e 2ae5c7ab 0d8d69cb

eec2db5a ac01de5f e9a8c177

c5e7b6a7

9586f645

h(M1, C V) ⊕ h(M2, C V) 00000000 00000000 a3483006

00000000 00000000 00000000

60810025

05800910

(r,g1 ,g2)=(2,2,10):184/256-bit Near collision

M1 dfabff02

M2 190f9aae

C V ebe94b66 2317fc47 2e6fdd25

ba370a60 bae80646 24704d9d

639b599d

c422d075

h(M1, C V) ⊕ h(M2, C V) 1070011a 104182c0 f0513849

b1645436 20240251 00000000

474e0448

45088e35

4.3 Hamsi

Hamsi, designed by Küçük [9], is based on the concatenate-permute-truncate
design strategy. The compression function of Hamsi-256 inputs a 32-bit message
block and a 256-bit chaining value and outputs a 256-bit chaining value. The
compression function acts on a state of 512 bits, which can be considered as a
4x4 matrix of 32-bit words.

First, 32-bit message block is expanded to 256 bits using a linear code
(128,16,70) over F4. Then, the expanded message and the chaining value, each of
being eight 32-bit words is loaded to the state of Hamsi-256. Then, the state is
XORed with the predefined constants and a round counter and each of the 128
columns of the state goes through a 4x4 s-box. Finally, a linear transformation L,
is applied to the four independent diagonals of the state. The compression func
tion has 3 rounds, and a round transformation contains addition of constants,
substitution and diffusion operations.

Nikolic [13] found 231/256-bit pseudo near-collisions for the compression
function of Hamsi-256 for fixed message blocks. Wang et al. [14] improved the
attack and practically showed 233/256-bit pseudo near-collisions for the com
pression function of Hamsi-256. In both attacks, the message block is fixed and

the difference is given to the input chaining value. It should also be noted that
the weight of the input differences on chaining values is smaller than the weight
of the output difference that makes it harder to use the near-collisions to attack
the hash function.

In our experiments, no input difference is given to the chaining values and
two random 32-bits message blocks are chosen as input. Giving a small-weight
differences to the message does not provide better results, since input differences
are expanded by the linear code. The near-collision results obtained for 1 and
2 round compression function are provided in Table 6. For 3-round compression
function, the hill climbing method did not provide results significantly better
than the generic random search.

Table 6. Example Near-collisions for the Compression Function of Hamsi

1- Round Compression Function: 232/256-bit Near-collision

M1 22e20185

M2 dd1dfe7a

C V f6bf6de4 13429c65 b149b61a af8ed58d

e3068bc8 e0397375 22866132 a8c5d4d3

h(M1 , C V) ⊕ h(M2, C V) 00042000 80040000 28040100 10000000

40080802 c8080000 00040000 0801004b

2- Round Compression Function: 192/256-bit Near-collision

M1 cf15a470

M2 2287860c

C V 5b0ef41a f6933669 9d50a0b1 f3a0d239

63d65d26 fdca6f81 1509bfea f6e73e66

h(M1 , C V) ⊕ h(M2, C V) 8810058e 00021462 c330a008 7224440b

02008812 31040d80 8a9c0060 0c028448

4.4 JH

JH, defined by Wu [10], is an iterated hash function with a compression function
structure as seen in Figure 1. In the compression function of JH, the 1024-bit
chaining value and the 512-bit message block are compressed into the 1024
bit chaining value. Initially, the lower half of the state is XORed with the input
message block and then the bijection function E is applied. Then, the upper half
of the state is XORed with the input message block (See Figure 1). The bijective
function includes a grouping function, the round function (run 35 times), an
additional substitution layer together with a de-grouping function. Basic building
blocks of the compression function are two 4 × 4 s-boxes and (4, 2, 3) Maximum
Distance Separable (MDS) code over GF (24).

In [15], Rijmen et al. found 1008/1024-bit semi-free-start near-collision for 19
rounds of JH for all hash sizes with 2156.77 compression function calls and 2143.70

Fig. 1. Compression function of JH

byte memory complexity, and 768/1024-bit semi-free-start near-collision for 22
rounds with 2156.56 compression function calls and the same memory complexity,
employing the rebound attack [16].

In our experiments, we choose two 512-bit random messages with 1-byte
difference, and without considering the padding block, the attack is successful
up to 10 rounds of the compression function of JH (out of 35) and the best
results are summarized in Table 7.

Table 7. Near-collisions for the compression function of JH

Rounds Near-collision Complexity

1

2

3

4

5

6

7

8

9

10

1023/1024

1020/1024

1019/1024

1013/1024

1005/1024

991/1024

942/1024

907/1024

816/1024

820/1024

220.31

218.57

219.20

219.80

225.01

227.57

220.71

224.24

219.77

223.24

Table 8 provides example near-collisions for 9 and 10 round compression
function of JH.

Table 8. Example near-collisions for 9-round and 10-round compression function
of JH

9- Round Compression Function: 816/1024-bit Near Collision

M1 7b6d6a9e 464d09e1 86410000 35aeff35 db02a693

9847eb69 ab7422cd efa4d5ed eb7c248f c09f84f4

1da2914e

8e71652f

0e340511

c8af1bed

4bb9b2df

911a8de6

M2 9b6d6a9e 464d09e1 86410000 35aeff35 db02a693

9847eb69 ab7422cd efa4d5ed eb7c248f c09f84f4

1da2914e

8e71652f

0e340511

c8af1bed

4bb9b2df

911a8de6

C V 64cdd586 e453fbab 60c0a125 a596b15e 22735167 8d69b439 b8039dd3 327bacbb

55685b28 5a717a0b e1cc05c8 fc607792 fc31f4cb 49ff1ca2 be3aba98 1618e6a3

da5021d9 895c668b ab40f1c5 6526e807 4074d5b1 e8141140 63bc2df1 8f738ba6

5def4921 0385997f da7b308d 30f64dd7 56a7301e 64bc927a da94cded 3ede8236

h(M1, C V) ⊕ h(M2, C V) 54504100 45114010 50045455 40400101 41444001 15450001 00554501 11041044

44004114 10004501 10455441 04115401 40551514 14105014 01500441 01501004

b0010405 04010514 44511000 54001541 05100545 04144510 10040144 00514404

11445500 45005400 01000400 01100014 44040455 44440000 05000405 45441440

10- Round Compression Function: 820/1024-bit Near Collision

M1 2dcdeb76 ed262d2f 16c56a55 90cb76fa 59e71f06

aaa28629 918fea7f da88deba 87110630 ca28d5ed

765a5e59

83465471

6aa1ba10

be02a361

24fe14b1

2df6564f

M2 2bcdeb76 ed262d2f 16c56a55 90cb76fa 59e71f06

aaa28629 918fea7f da88deba 87110630 ca28d5ed

765a5e59

83465471

6aa1ba10

be02a361

24fe14b1

2df6564f

C V faa3c300 af6a90ae b49356e2 6994afd8 ef1a1119 5a43864d d2a9b5f1 bcc08129

468a89c5 df2c42eb 8abe5884 f3688af1 98978ec7 b63c05a3 5af13a34 43c52bc2

2313f9b7 e8013174 2a3389ff 439c0432 ad4ab2e8 23934359 33a12345 52a427f7

bbae8074 2bf65083 ec04ee67 21e2e376 20760866 ad6f586e 97837de8 22c7c119

h(M1, C V) ⊕ h(M2, C V) d0848cda 80b0560d 00000000 00000000 00000000 00000000 24981865 56b25240

4a83359e 400c1b6b 00000000 00000000 00000000 00000000 13709c6e db64dc89

06e12007 4490779e 00000000 00000000 00000000 00000000 e417dc75 f465014e

44496142 3105c9a0 00000000 00000000 00000000 00000000 5404400f a8013ca8

5 Conclusion

In this study, we consider simple hill-climbing methods to find near-collisions
for the reduced round compression functions of some of the round two SHA-3
candidates. The hill-climbing methods produced better results compared to the
generic random search, when the diffusion of chaining value bits is not fully
satisfied.

We run the algorithms approximately 225 times and compared the best ob
tained near-collision to the one obtained with 240 complexity with generic ran
dom search.

We practically obtained (i) 184/256-bit near-collision for the 2-round com
pression function of Blake-32; (ii) 192/256-bit near-collision for the 2-round com
pression function of Hamsi-256; (iii) 820/1024-bit near-collisions for 10-round
compression function of JH. For Fugue, it is possible to define 260 different re
duced versions by the selection of the parameter (r, g1, g2). We obtained collisions
for 12 reduced cases near-collisions with distance less than 25 for 19 cases and
near collisions with distance less than or equal to 72 for 10 cases.

The results obtained in this study do not affect the security of the hash
functions against preimage, second preimage and collision attacks, but rather
give a security margin of the compression functions against near-collision attacks.
Since Fugue, Hamsi and JH process an additional message block including the
padding, the results cannot be directly extended to the hash function. For 2
round Blake-32, by selecting message blocks that include the padding, the results
can be extended to a semi-free start near-collision attack.

References

1.	 David S. Johnson and Lyle A. Mcgeoch. The Traveling Salesman Problem: A Case
Study in Local Optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Local
Search in Combinatorial Optimization, pages 215–310, 1997.

2.	 John Andrew Clark. Metaheuristic search as a cryptological tool. PhD thesis,
Department of Computer Science, University of York, 2001.

3.	 William Millan and Andrew Clark. Smart hill climbing finds better boolean func
tions. In In Workshop on Selected Areas in Cryptology 1997, Workshop Record,
pages 50–63, 1997.

4.	 William Millan and Andrew Clark. Boolean function design using hill climbing
methods. In 4th Australian Conference on Information Security and Privacy, pages
1–11. Springer-Verlag, 1999.

5.	 Yuriy Izbenko, Vladislav Kovtun, and Alexandr Kuznetsov. The design of boolean
functions by modified hill climbing method. Information Technology: New Gener
ations, Third International Conference on, 0:356–361, 2009.

6.	 National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm
(SHA-3) Family. Federal Register, 27(212):62212–62220, 2007. Available at:
http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf.

7.	 Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan.
Sha-3 proposal BLAKE. Submission to NIST, 2008.

http://csrc.nist.gov/groups/ST/hash/documents/FR

8. Shai Halevi, William E. Hall, and Charanjit S. Jutla. The Hash Function Fugue.
Submission to NIST (updated), 2009.

¨
 9. Ozgül Küçük. The Hash Function Hamsi. Submission to NIST, 2008.

10.	 Hongjun Wu. The Hash Function JH. Submission to NIST (updated), 2009.
11.	 Jean-Philippe Aumasson, Jian Guo, Simon Knellwolf, Krystian Matusiewicz, and

Willi Meier. Differential and invertibility properties of blake. In Seokhie Hong and
Tetsu Iwata, editors, FSE, volume 6147 of Lecture Notes in Computer Science,
pages 318–332. Springer, 2010.

12.	 Bozhan Su, Wenling Wu, Shuang Wu, and Le Dong. Near-collisions on the reduced-
round compression functions of skein and blake. Cryptology ePrint Archive, Report
2010/355, 2010.

13.	 Ivica Nikolic. Near Collisions for the Compression Function of Hamsi-256.
CRYPTO rump session, 2009.

14.	 Meiqin Wang, Xiaoyun Wang, Keting Jia, and Wei Wang. New Pseudo-Near-
Collision Attack on Reduced-Round of Hamsi-256. Cryptology ePrint Archive,
Report 2009/484, 2009.

15.	 Vincent Rijmen, Deniz Toz, and Kerem Varici. Rebound Attack on Reduced-
Round Versions of JH. In Seokhie Hong and Tetsu Iwata, editors, Fast Software
Encryption, FSE 2010, Lecture Notes in Computer Science, page 18, Seoul,Korea,
2010. Springer-Verlag.

16.	 Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr
Dunkelman, editor, FSE, volume 5665 of LNCS, pages 260–276. Springer, 2009.

