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High-resolution superconducting gamma-ray sensors show potential for the more accurate analysis
of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers
based on transition edge sensors �TESs� that have two distinct thermal bodies. We derive the time
domain behavior of the current and temperature for compound TES devices in the small signal limit
and demonstrate the utility of these equations for device design and characterization. In particular,
we use the model to fit pulses from our gamma-ray microcalorimeters and demonstrate how critical
damping and electrothermal stability can be predicted.
�doi:10.1063/1.3486477�

Gamma-ray microcalorimeters based on transition-edge
sensors �TESs� have already demonstrated energy resolution
more than ten times better than the high-purity germanium
�HPGe� detectors presently used for the nondestructive
analysis of nuclear materials.1,2 Further, the collecting area
of arrays of microcalorimeters has increased to a few square
centimeters, similar to that of planar HPGe sensors. At these
performance levels, microcalorimeter arrays can have an im-
pact on nuclear safeguards by resolving isotope-specific
gamma-ray lines and enabling more accurate measurement
of the quantities of important isotopes in nuclear samples.3

A TES consists of a thin superconducting film that is
voltage-biased in its resistive transition. An absorbed particle
or photon heats the film; the resistance of the film increases
and the bias current flowing through the device decreases.4

For TES microcalorimeters, the current change takes the
form of a downward pulse proportional to the deposited en-
ergy that is measured by an inductively coupled supercon-
ducting quantum interference device �SQUID� ammeter.

A microcalorimeter optimized for gamma-ray detection
in the 100 keV range and above requires a separate, bulk
absorber in order to stop energetic photons. The finite ther-
mal conductance between the bulk absorber and the thin film
TES makes it likely the absorber will have a temperature
different from that of the TES after the absorption of a pho-
ton. The explicit two-body nature of these devices necessi-
tates moving beyond the simple, one-body thermoelectric
model.4

Two-body models for microcalorimeters and bolometers
have been solved in the frequency domain,5,6 but until now,
only numerical solutions were available in the time domain.
Here, we derive an analytic solution that includes the full
complexity of the electrical and thermal circuits and demon-
strate the utility of this solution in understanding the com-
plex behavior of these devices.

A crucial design choice is the inductance that is added to
the TES electrical circuit as a Nyquist filter and to slow the
leading-edge of photon-induced pulses. If the inductance is
too large, the TES temperature and current oscillate, and the

device cannot be used. If the inductance is too small, current
pulses will evolve more quickly than the feedback response
time in practical SQUID readout schemes. This problem is
particularly severe when time-domain SQUID multiplexing
is used, where the data stream for individual pixels is
sparsely sampled as each readout channel sequentially
samples multiple pixels.2 A proper choice of inductance can
preserve pulse fidelity and energy resolution, increase the
number of pixels that can be combined in a single readout
channel, and maintain electrothermal stability. Further, as we
will show, the circuit inductance affects the fall time of the
sensors and therefore can be used to increase the maximum
counting rate.

A simple, one-body microcalorimeter shown in Fig. 1�a�
consists of a monolithic sensor and a weak thermal link to
the heat bath described by the thermal conductance G1. The
one-body TES is modeled by the use of two coupled differ-
ential equations describing the two state variables, the
change in temperature �T=T−T0 and the change in current
�I= I− I0 in the TES, where T0 and I0 are the equilibrium
values.4 To obtain an analytic solution, the differential ther-
mal conductance is linearized and the resistance and Joule
power are expanded to first order in �T and �I.

Here, we extend the approach of Irwin4 and include the
absorber of Fig. 1�b� as a separate heat capacity C2 with
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FIG. 1. �Color online� Schematic representation of the coupled electrical
and thermal circuits of �a� one-body and �b� two-body TESs. The thermal
conductances are shown as resistors. For comparison between models, the
simple TES is assumed to have the combined heat capacity C1+C2 of the
TES and absorber.
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thermal conductance to the TES G2. After this change, the
electrical and thermal differential equations describing the
TES and absorber system are

�İ = −
1

�el
�I −

LIG1

I0L
�T1,
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I0R0�2 + �I�

C1
�I − � 1
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+
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��T1 +

G2
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G2

C2
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G2

C2
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with the standard notation LI= I0
2R0�I / �G1T0�, �=C1 /G1, �I

=� / �1−LI�, and �el=L / �RL+R0�1+�I��. The superconduct-
ing transition is described by the equilibrium resistance R0
and its logarithmic derivatives with respect to temperature
�I= �T0 /R0���R /�T� �I0

and current �I= �I0 /R0���R /�I� �T0
.

The remainder of the electrical circuit is described by a series
inductance L and a Thevenin equivalent resistance RL that is
the sum of the bias resistor Rsh and any other series resis-
tance.

This system of differential equations can be solved ana-
lytically via an extension of Lindeman’s approach7 for the
one-body TES by writing the equations in matrix form and
diagonalizing to find the eigenvalues and eigenvectors. For
the two-body case, the time constants are given by the roots
of a cubic equation, and direct integration gives the solution
as the sum of three exponentials. Since the initial photon
strike of energy E is effectively instantaneous, the starting
temperature of the absorber is �T2�0�=E /C2=�T0, and the
remaining initial conditions are �I�0�=0 and �T1�0�=0. The
resulting solution to Eq. �1� is
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The time constants �x and amplitudes Ax take a more com-
pact form if the TES parameters are grouped as
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We can further group parameters by defining q= �3c−b2� /9,
r= �9bc−27d−2b3� /54, and �=q3+r2. For ��0,
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The amplitudes can then be calculated from the correspond-
ing eigenvectors and the initial conditions as
An= �c+ �2b /�n�+ �3 /�n

2��−1, AT1,n=An��1 /�el�+ �1 /�n��, and
AT2,n=AT1,n��G2 /C2�+ �1 /�n��−1.

The extra time constant and amplitude give additional
degrees of freedom that make it possible for compound mi-
crocalorimeters to produce pulses with very complex behav-
ior that is not present in one-body models. Averaged pulses
measured for our standard Mo/Cu gamma-ray devices with
Sn absorbers1 are shown in Fig. 2 at three bias points �20%,
40%, and 60% Rn� for three different but nominally identical
devices with different series inductances �0.05, 1.25, and
1.75 
H�. The lines are best fits to the first 3 ms of pulse
data by use of Eq. �2�. The heat capacities C1 and C2 are
constrained by the microfabrication process and thus were
fixed between devices, resulting in shared fit values of 3.4
pJ/K and 13.2 pJ/K, respectively. The thermal conductance
G1 and the transition temperature Tc were obtained from
separate measurements of current-voltage curves versus bath
temperature, resulting in common values for the three de-
vices of 3.2 nW/K and 127 mK, respectively. The thermal
conductance G2 is determined by a glue joint and was there-
fore allowed to vary between devices when fitting the pulses.
The derivatives of resistance described by �I and �I are
known to change with bias point and device. The parameter
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Device A: L=50 nH

αI=64(20% Rn), 53(40% Rn), 48(60% Rn)

Device B: L=1.25 μH

Device C: L=1.75 μH
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FIG. 2. �Color online� Measured pulses at R0=20%, 40%, and 60% Rn �gray
circles, magenta squares, and blue triangles� and corresponding best fits to
Eq. �2� �black solid, magenta dashed, and blue dotted lines� for three nomi-
nally identical microcalorimeters with different series inductances �0.05,
1.25, and 1.75 
H� at Tb=90 mK.
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�I was determined from separate complex impedance mea-
surements to be 1.7, 0.6, and 0.3 at 20%, 40%, and 60% Rn.
Values for �I were determined from the pulse fits and are
noted in Fig. 2.

Pulses from our microcalorimeters with attached bulk
absorbers typically show long tails, known as “athermal
tails,” that are not consistent with reasonable thermal
models.8 Athermal tails are present in these data and can be
identified most clearly at times greater than 6 ms �not
shown�. These tails are not included in our model and are the
largest source of error in extracting device parameters from
the data of Fig. 2. However, at times less than a few milli-
seconds, the athermal tails have a small effect and Eq. �2�
reproduces the data both qualitatively and quantitatively.

The time constants of Eq. �4� lead to a more intuitive
understanding of the two-body microcalorimeter. For ex-
ample, if the real part of all three time constants is negative
then the device is stable. Figure 3 shows regions of stability
as a function of L and �I for both the one-body and two-body
models using device parameters extracted from the data in
Fig. 2 at 20% Rn. The plot illustrates the potential for insta-
bility if the two-body nature of the compound microcalorim-
eter is not taken into consideration during device design. The
time constants provide further information about the nature
of stable pulses. If �	0, then all three time constants are
real, the system is overdamped, and one of the time constants
represents the rise time while the other two give multiple
decay times. If ��0, then one time constant is real, the
other two are the complex conjugates of each other and the
system is underdamped. In this case, the three exponentials
in Eq. �2� can be rewritten as the sum of a damped oscillation
and a decaying exponential.

The dashed �dotted� line in Fig. 3 corresponds to �=0
and divides the overdamped region below the line from the
underdamped region above for the two-body �one-body�
model and is defined as critical damping. The points labeled
a, b, and c correspond to the pulses from Fig. 2 at 20% Rn
and L=0.05 
H, 1.25 
H, and 1.75 
H, respectively.
Points b and c are well into the underdamped region and
point a is close to critical damping.

For the one-body microcalorimeter, the optimal compro-
mise between the fastest overall pulses and the smallest slew
rate occurs at critical damping where the rise time and fall
times are equal. However, critical damping is more compli-
cated for the two-body case due to the three time constants.
In the two-body case, the optimum L and �I occur at point Y
where all three of the time constants are equal, the pulse is
approximately symmetric, and the fastest pulse decay is
achieved, unlike in the one-body case where higher �I al-
ways gives a faster response as long as the device is critically
damped. To the right of Y on the critical damping line, the
rise time is equal to the longer of the two decay times while
to the left of Y �still on the critical damping line� the rise
time is equal to the shorter of the decay times. Although
there are points to the left of Y, i.e., X, that satisfy our defi-
nition of critical damping, they are not optimal, because the
rise time is not equal to the dominant decay time and the
pulse recovery is unnecessarily extended. If the device is not
operated at Y, we consider two cases. For �I	�I,Y, the fast-
est response is achieved on the critical damping line to the
right of Y. For �I��I,Y, the fastest response is achieved
when �1= �R�1 /�2,3��−1 so that the time constant of the de-
caying exponential equals the decay time of the damped os-
cillations denoted by the dashed dotted line.

The previous examples are a subset of the possible ap-
plications of Eqs. �2�. Our model is exactly applicable to the
treatment of a simple calorimeter with a dangling heat capac-
ity such as the anomalously large contribution from an un-
derlying SiN membrane. Our method of solution can also be
applied to related two-body models such as an intervening
heat capacity between a TES and the heat bath.

As the applications of TES devices grow and TES arrays
are pushed to their limits in scale, speed, and energy reso-
lution, understanding the multibody nature of these devices
will be critical. Where possible, analytic solution such as the
one presented here give the best chance for optimization and
characterization of TESs.
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partment of Energy through the Office of Nonproliferation
Research and Verification.
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FIG. 3. �Color online� Regions of electrothermal stability for compound and
simple microcalorimeters as a function of series inductance and �I. The
dashed �dotted� line divides underdamped behavior above the line from
overdamped behavior for a two-body �one-body� TES. The dashed-dotted
line denotes the line of optimal bias where the shortest pulse is achieved.
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