
Algorithmica (2014) 68:916–939
DOI 10.1007/s00453-012-9703-x

Fast Sequential Importance Sampling to Estimate
the Graph Reliability Polynomial

David G. Harris · Francis Sullivan · Isabel Beichl

Received: 23 September 2011 / Accepted: 17 October 2012 / Published online: 8 November 2012
© Springer Science+Business Media New York (outside the USA) 2012

Abstract The reliability polynomial of a graph counts its connected subgraphs of
various sizes. Algorithms based on sequential importance sampling (SIS) have been
proposed to estimate a graph’s reliability polynomial. We develop an improved SIS
algorithm for estimating the reliability polynomial. The new algorithm runs in ex-
pected time O(m logn α(m,n)) at worst and ≈ m in practice, compared to Θ(m2)

for the previous algorithm. We analyze the error bounds of this algorithm, including
comparison to alternative estimation algorithms. In addition to the theoretical analy-
sis, we discuss methods for estimating the variance and describe experimental results
on a variety of random graphs.

Keywords Reliability polynomial · Graph · Fully-polynomial relative
approximation scheme · fpras · Network reliability · Sequential importance
sampling · On-line algorithm · Incremental algorithm

1 Introduction

Let G be a connected undirected graph with vertex set V and edge set E, with |E| =
m, |V | = n. We define Rel(p), the all-terminal reliability polynomial of G, to be the
probability that the graph remains connected when edges are removed independently

D.G. Harris (�)
United States Department of Defense, Washington DC, USA
e-mail: davidgharris29@hotmail.com

F. Sullivan
IDA/Center for Computing Sciences, Bowie MD, USA

I. Beichl
National Institute of Standards and Technology, Gaithersburg MD, USA

mailto:davidgharris29@hotmail.com

Algorithmica (2014) 68:916–939 917

with probability p. This function is a polynomial which can be factored as

Rel(p) =
m∑

i=0

Ni(1 − p)ipm−i

where Ni is the number of connected subgraphs of G with i edges. Note that Ni = 0
for i < n − 1. This polynomial has various physical applications, for example deter-
mining the reliability of a computer network or power grid.

It will be more convenient to work with a factored form of the reliability polyno-
mial. We define the reverse reliability generator

rG(x) =
m∑

i=0

Nm−ix
i

This polynomial has degree K = m−n+1. (This notation is not standard, but makes
exposition of our algorithms which compute in turn from Nm down to Nm−n+1, much
simpler.)

In particular, we use the terms “low” and “high” order coefficient to refer, respec-
tively, to ways of removing just a few edges from G and to graphs that have a few
edges added to a spanning tree of G. In this paper, we develop algorithms to estimate
the coefficients Ni individually. The reverse reliability generator can then be used to
evaluate the reliability polynomial itself via

Rel(p) = (1 − p)mr
(p

1 − p

)
.

Exactly computing the reliability polynomial is known to be #P-complete [12].
A variety of algorithms have been proposed to estimate the reliability polynomial,
or fragments of it, for a graph. Some of these algorithms seek to compute Rel(p0)

for a fixed probability p0, such as [5] or [9]. The problem of estimating Rel(p0) is
related to the problem of estimating the reliability polynomial coefficients Ni , but
they are not equivalent especially in terms of evaluating the relative error. For exam-
ple, Karger’s algorithm [9] gives a fully-polynomial relative approximation scheme
(fpras) for the problem of estimating 1 − Rel(p0). As we will discuss, this does not
provide a fpras for the coefficient Ni themselves and in fact no fpras for these is
known.

There is no known polynomial-time algorithm to estimate arbitrary coefficients,
but a variety of special cases have been considered. Reference [2] has described an
algorithm to transform a given dense graph G into a relatively sparse graph G′, with
only O(n logn) edges, which has approximately the same reliability. An algorithm of
[10] computes the high-order coefficients of planar graphs in polynomial time; this
is of limited application for more general graphs. References [12] and [13] describe
polynomial-time algorithms for computing low-order coefficients (corresponding to
small cutsets) exactly. These algorithms, while polynomial time, are still quite expen-
sive as they require multiple network flow computations; for very large-scale graphs
they may not be practical.

918 Algorithmica (2014) 68:916–939

Conversely, algorithms such as [3] estimate high-order coefficients accurately and
low-order coefficients poorly. This algorithm also computes Nn−1, the number of
spanning trees of G, exactly in polynomial time. However, the time complexity of
that algorithm is again super-linear, which means that on very large-scale graphs it
may not be feasible.

In this paper, we will examine an algorithm of [1] to estimate the generator co-
efficients using sequential importance sampling (SIS). This algorithm emphasizes
accuracy in low-order coefficients. (For many physical problems, such as computer
networks or electrical grids, the low-order coefficients—which correspond to most
of the edges remaining present—are the most relevant.) This algorithm, which we
denote Algorithm 1, produces an estimate r̂ as follows:

Algorithm 1

1. Set m0 ← 1.
2. For k = 1, . . . ,K do

3. Determine D, the set of non-bridges of Gk .
4. Set mk ← mk−1|D|
5. Choose an edge ek ∈ D uniformly.
6. Set G ← G − ek

7. Return the estimate

r̂(x) = 1 + m1x + m2

2! x2 + · · · + mK

K! xK

This algorithm returns a single estimate F1(G). We emphasize that we are estimat-
ing the entire polynomial, not simply evaluating the polynomial at a particular value
of x, and so our estimate actually consists of all K coefficients. Since the algorithm is
randomized, for any fixed G the resulting estimate r̂ = F1(G) is a random variable.
Each estimate is a polynomial; we use the notation r̂[k] to mean the kth coefficient of
this polynomial. The estimated r̂[j] and r̂[k] are, in general, statistically dependent.

Since the estimates F1(G) are unbiased, the variance can be reduced by taking T

independent samples and averaging the results. Let us denote this average F 1; this
statistic F 1 remains unbiased while the variance decreases as 1/T . This procedure is
embarrassingly parallel; hence we will focus on the single-processor time complexity
of F1 without any attempt to parallelize it; all of the timings will scale perfectly with
multiple processors.

Note that the probability distribution of F1(G) may be complicated, but we can
bound the relative error of F1(G) by the Chebyshev bound in terms of the relative
variance. As we take T samples, the relative variance decreases as 1/T . For this
reason, we will summarize the accuracy of these algorithms in terms of a single pa-
rameter, the relative variance of a single sample

rvk = V[F1(G)[k]]
E[F1(G)[k]]2

.

Algorithmica (2014) 68:916–939 919

This estimate r̂ can be used, in turn, to provide an unbiased estimate of the relia-
bility polynomial at an arbitrary value of p:

R̂el(p) = (1 − p)mr̂
(p

1 − p

)
.

The main cost of Algorithm 1 is step (3), the search for bridges (also known as
cut-edges): at each iteration, this costs a full Θ(m) work, for a total cost of Θ(m2).
Note the use of Θ bounds here; there is no hope that on typical graphs the cost will
be any less than the worst case.

Ideally, we would detect all bridges in total time O(m). Unfortunately, this top-
down algorithm modifies the graph by removing edges, and in general it is difficult to
maintain graph structures, such as bridges, under edge deletion. Certain algorithms,
such as [6] and [8], can in fact maintain such structures relatively efficiently. These
algorithms, though polylogarithmic, still have high complexities (as many O(log4 m)

operations per query).
In contrast, when edges are added, various algorithms (known as “incremental

algorithms”) can keep track of many graph properties very efficiently. These incre-
mental algorithms tend to have sublogarithmic or even constant time complexity per
operation, which is much better than the decremental algorithms.

In this paper, we will discuss how to transform Algorithm 1 (and variants), which
appear to require deleting edges, into an effectively incremental algorithm with ex-
pected running time O(mα(m,n) logn). With some heuristics, we achieve very fast
run time of ≈ m in practice. This makes this algorithm much faster, both asymptot-
ically and practically, than prior approaches such as [1, 5, 9]. This algorithm should
be practical on truly large-scale graphs.

Rather than attempt to describe a single monolithic “master algorithm,” we will
break this down into a series of relatively smaller improvements, which we can dis-
cuss and analyze separately.

In addition to analyzing the algorithm theoretically, we also developed a C imple-
mentation which we applied to various types of random graphs. We will frequently
discuss the “practical” performance of these algorithms, both in terms of variance
and timing, based on these experiments. These experiments are discussed in Sect. 8.
We believe that both the empirical and theoretical points of view are necessary to
understand the behaviors of this algorithm.

2 Allowing Bridges

The first alternative to Algorithm 1 ignores bridges entirely, and focuses solely on
graph connectivity instead. It simply removes edges one by one from G until arriv-
ing at a disconnected graph. We will describe this as Algorithm 0, estimating the
reverse reliability generator in time O(mα(m,n)) where α is the inverse Ackermann
function. This is based on efficient algorithms for disjoint sets, a classical computer-
science topic [14].

920 Algorithmica (2014) 68:916–939

Algorithm 0

1. ChooseK edges e1, . . . , eK uniformly without replacement from
G.

2. Remove e1, . . . , eK . Traverse the resulting graph to find its
connected components; this can be represented as a par-
tition of the vertex set V .

3. For k′ = K, . . . ,1 do the following:
4. If there is a single vertex-class remaining, terminate

the loop.
5. Let ek = 〈v,w〉. Merge the vertex-classes [v] and [w].

6. Return the estimate

p̂(x) = 1 +
(

m

1

)
x +

(
m

2

)
x2 + · · · +

(
m

k′

)
xk′

By using appropriate disjoint-set data structures, we can implement step (5) in at
most O(mα(m,n)) ≈ m operations [14].

Note that this algorithm tracks graph connectivity, and it does so in reverse order.
The obvious way of implementing Algorithm 1 is to check that the graph remains
connected as each edge is successively removed. Algorithm 0 turns this around, how-
ever, re-inserting edges and checking when the graph becomes connected. As such,
this algorithm behaves like an incremental graph algorithm.

Although Algorithm 0 is much faster than Algorithm 1, its variance is also much
worse. Essentially, Algorithm 0 is a Monte Carlo sampling among all subgraphs with
k edges removed, counting how many are connected. For high-order coefficients it is
extremely improbable to reach a connected subgraph and the resulting estimates have
exponentially high variance. As we will see, this increase in variance completely
counteracts the decrease in runtime. However, Algorithm 0 is a proof of concept
demonstrating how incremental algorithms may be used to compute Algorithm 1.

A simple induction on G shows that, for any graph G and any coefficient k, we
have

V[F0(G)[k]] ≥ V[F1(G)[k]].
This gives another important role to Algorithm 0: as Algorithm 0 is particularly

simple to analyze, it will allow us to easily upper-bound the variance of Algorithm 1.

3 Backtracking to Avoid Bridges

Algorithm 0 removes edges one by one. When a bridge is selected, the graph becomes
disconnected. In this case, Algorithm 0 estimates the corresponding coefficient of
the reliability polynomial to be zero, which inflates variance. There is an alternative
when this occurs: to back-track to the last iteration k at which the graph became
disconnected and select a different edge ek .

This back-tracking Algorithm 2 has two phases. In the first Phase, we choose
a series of edges e1, . . . , eK with the same probability distribution as Algorithm 1.
Namely, the edges are chosen so that ei is uniformly distributed among the non-
bridges of G−e1 −· · ·−ei−1. (To simplify the notation, we write Gi = G−e1 −· · ·−

Algorithmica (2014) 68:916–939 921

ei−1.) Note that, while this process samples spanning trees, the resulting distribution
on spanning trees is far from uniform. Hence algorithms such as Wilson’s algorithm
will not be suitable for this task [16].

Instead of explicitly listing the non-bridges of the graphs, as in Algorithm 1, we
employ a kind of batch rejection sampling. We select edges ei uniformly among all
possible edges, and only later do we test if these edges were bridges. Edges which
turned out to be bridges are rejected and sampled again. This process ensures that
ei is still uniformly distributed among the non-bridges. In the second Phase, once all
the edges have been chosen, we count the number of non-bridges available at each
graph Gi .

The Algorithm 2 Phase I involves rather complex looping and data structures. Be-
fore explaining the full, efficient version of this algorithm, we give an (inefficient)
sketch of the process. To begin, we select edges e1, . . . , eK ∈ G uniformly with-
out replacement. If the resulting graph GK is a spanning tree, then these edges were
valid, and were selected with the desired probability distribution. Otherwise, for some
k1 < K , the edge ek1 was a bridge of Gk1 . In this case, the edges e1, . . . , ek1−1 were
selected with the desired probability distribution, so we can output them. We still
need to select a valid ek1, . . . , eK . We now backtrack to the graph Gk1 and mark edge
ek1 as a bridge — so we will not select it henceforth. We repeat this process, choosing
new edges ek1, . . . , eK from the graph Gk1 . If this gives a spanning tree, we are done.
Otherwise, we backtrack to some k2 > k1, and so on.

This process can be efficiently implemented as follows:

Algorithm 2 Phase I

1. Set k = 1. Set the FOUND-TREE flag to be FALSE.
2. Repeat the following steps while the FOUND-TREE flag

is FALSE:
3. Choose edges ek, . . . , eK ∈ Gk uniformly without replace-

ment among the edges which have not been marked as
bridges of Gk .

4. Enumerate the connected component structure of GK ,
which can be regarded as a partition on the vertex
set.

5. If GK is connected, set FOUND-TREE flag to be true.
Output e1, . . . , eK and terminate Algorithm 2 Phase I.

6. Otherwise, for k′ = K, . . . ,1 do the following:
7. If there is a single vertex-class remaining, ter-

minate the loop.
8. Merge the vertex-classes corresponding to the

end-points of ek′ .
9. At this point, we have found the k′ ≤ K which is maxi-

mal such that Gk′ is connected.
10. Perform a depth-first search of Gk′ , detecting any

bridges (note that ek′ must be a bridge of Gk′ by max-
imality of k′).

11. Set k ← k′ and continue the loop.

922 Algorithmica (2014) 68:916–939

Although we have stated this algorithm as if each iteration k had its own separate
graph Gk , in reality we maintain a single data structure which stores Gk for the cur-
rent iteration k alone. This requires a data structure which remembers all the changes
made to the graph and can reverse them.

The second Phase of this algorithm counts how many non-bridges were available
at each iteration. We do this starting from the spanning tree T = GK and using an
incremental algorithm to keep track of its 2-edge-connectivity. Reference [11] de-
scribes an incremental algorithm for maintaining this information. The basic idea of
this algorithm is to keep track of a partition V of the vertex set. Initially, every vertex
is in its own class. When an edge e = 〈i, j 〉 is added, the vertices along the tree-path
from i to j are merged.

Algorithm 2 Phase II

1. Let T = GK , and interpret this graph as a rooted tree on
V (i.e. each vertex but the root node has a parent). We
will keep track of a related vertex structure V , which
is a partition of V , and an associated tree-structure T
on V .
Initially, V consists of singleton sets, and T is the

tree corresponding to T .
2. Set dK ← 0. This records the number of non-bridges avail-

able at each iteration.
3. For k = K, . . . ,1 do the following:

4. Let ek = 〈i, j 〉.
5. Determine [i], [j], the classes in V containing i and j .
6. Find [v1], . . . , [vl], the tree-path in T connecting [i], [j]

through their nearest common ancestor. Merge [v1], . . . , [vl]
and update T appropriately.

7. Set dk−1 ← dk + l.
8. For k = 0, . . . ,K set mk = ∏

i<k di

9. Return the estimate

p̂(x) = 1 + m1x + m2

2! x2 + · · · + mK

K! xK

Each iteration of the loop in Phase I steps (3)–(11) takes O(m) time. If step (5)
does not terminate the loop, then a bridge has been detected; since there are at most
n bridges, the maximum number of iterations is n and the maximum runtime of the
entire Phase I is O(mnα(m,n)). The Phase II costs O(mα(m,n)).

4 Expected Complexity of Algorithm 2

In this section, we demonstrate that the expected run-time of Algorithm 2 is
O(m logn α(m,n)), which is essentially linear time. This is much better than the
worst-case complexity O(mnα(m,n)). We have already seen that Phase II has worst-
case time O(mα(m,n)), so it suffices to show this expected time bound for Phase I
alone.

Algorithmica (2014) 68:916–939 923

Before introducing the formal proof of the run-time of Algorithm 2 Phase I, we
describe the intuitive reason for its surprising speed. The critical step is in step (10),
where we perform a full depth-first search. This way, whenever a bridge is removed
from the graph, eventually causing back-tracking, we search for other bridges (other
than the one which caused the back-tracking). If there are few bridges compared to
the number of edges, then we will not be likely to choose a bridge. Hence if we
choose an edge at random and it turns out to be a bridge, this likely means there
are many bridges present. Although in the worst case we might back-track once for
each bridge, it is more likely that the bridges are detected in large clusters. Hence the
expected number of back-trackings is more like O(logn).

This is a completely combinatorial phenomenon; in the analysis of this algorithm,
it is essentially irrelevant that we are dealing with graphs with bridges. The key to
the analysis is that, conditional on selecting an edge uniformly from the graph which
turns out to be a bridge, it is likely there are many other bridges also present.

Theorem 1 For any graph G, the expected run-time of Algorithm 2 is O(m logn α(m,

n)).

Proof To simplify the analysis of Algorithm 2 Phase I, we introduce a slightly mod-
ified algorithm, which is deliberately inefficient but easier to analyze.

As before, we start with the initial graph G. We keep track of two classes of
edges: the tree edges T , which will ultimately form the resulting tree; and the marked
edges M , which have been detected to be bridges but not removed from eligibility
for future selection. Note that in Algorithm 2 Phase I itself, these two classes are not
distinguished: as soon as a bridge is detected it is immediately removed. This is much
more efficient, as all marked edges will be removed eventually, but it also introduces
unwanted dependencies between the edges.

1. To begin, set k ← 1, Tk ← ∅,Mk ← ∅. Set FOUND-TREE to be
FALSE:

2. Repeat the following while FOUND-TREE is FALSE:
3. Repeat while Gk �= TK :

4. Select an edge e ∈ Gk − Tk uniformly at random.
5. If this edge e ∈ Mk , set Tk ← Tk ∪ e and continue the

loop.
6. Otherwise, set ek ← e,Tk+1 ← Tk,Mk+1 ← Mk . Set k ← k + 1.

7. At this point, Gk = Tk . Test if the resulting graph Gk is
connected. If so, we have the found desired tree Tk . Set
FOUND-TREE to be TRUE, output e1, . . . , eK , and terminate.

8. Otherwise, re-insert edges to find the maximal k′ such
that Gk′ is connected. Traverse the graph Gk′ , searching
for bridges. Set Tk′ ← Tk′ ∪ ek′ . Any other bridges of Gk′
which are not already in Tk′ are marked (added to Mk′) but
not added to Tk′ . Set k ← k′.

This algorithm generates edges e1, . . . , eK with the same probability distribution
as Algorithm 1. Furthermore, it is always slower than Algorithm 2. So it will suffice
to bound the running time of this modified algorithm.

924 Algorithmica (2014) 68:916–939

Let T denote the final spanning tree produced by this algorithm, T = G − e1 −
· · · − eK . The key difference that makes this algorithm easier to analyze is that, at
the end of this process, for each tree-edge t ∈ T , there is a unique k such that t ∈
Tk+1 − Tk . We call this the selection time s(t) for t . Note that there are two ways
such an edge can be selected. If the edge t was marked and chosen as the edge of
step (5), then no back-tracking cost was incurred. If the edge t was discovered to be
the disconnecting edge in step (8), then a back-tracking cost of O((m − s(t))α(m −
s(t), n)) was incurred. In this latter case we say that this edge t caused back-tracking.

It suffices to analyze the run-time of this algorithm conditional on a fixed choice
of outputs e∗

1, . . . , e∗
K . In this case, let T ∗ be the corresponding tree-edges, which

are also fixed. For each edge t ∈ T ∗, denote the available time a(t) as the minimal
k such that t is a bridge of G − e∗

1 − · · · − e∗
k . Sort the tree-edge t∗1 , . . . , t∗n−1 ∈ T ∗

in increasing order of their available time, so that a(t∗1) ≤ a(t∗2) ≤ · · · ≤ a(t∗n−1). To
simplify the notation we write ai for a(t∗i).

Note that, again conditional on the fixed outputs e∗, the available times a are also
fixed. However, the selection times si = s(t∗i) remain random variables. The selection
times are almost the sole remaining sources of randomness, and determine the run-
time of this algorithm. We must have si ≥ ai for all i; for if t∗i is removed earlier
than ai , the algorithm would include t∗i among the eventual outputs instead of e∗.
For each i ≤ n − 1, si is uniformly distributed among ai, . . . ,m and these si are
independent.

There is one remaining source of randomness which is not captured by the selec-
tion times. This is if two edges have identical selection times, there is still uncertainty
as to which was selected first. Note that, among edges selected at any given time, the
precise ordering of the edges is uniformly distributed among all possible permuta-
tions of those edges. Dealing with edges with identical selection time would require
keeping track of this ordering, which is notationally cumbersome. To simplify the
exposition, we will assume that all selection times s are distinct.

We now claim that if for some i > j we have si < sj , then edge t∗j will not incur
back-tracking. There are two ways the edge t∗i was selected. In the first case, edge t∗i
itself incurred back-tracking. Then in step (8) of this algorithm, we would perform a
depth-first search of the graph Gsi . Because the edges t∗ are sorted by their available
times, t∗j is a bridge of Gaj

and hence of Gsi as well. So edge t∗j becomes marked
(if it was not already), and when it is actually selected will not incur back-tracking.
In the second case, suppose that edge t∗i was already marked when it was selected.
Then, it must have been marked by selection of edge t∗k for k < i. At this point, edge
t∗i must have been a bridge of the resulting graph Gsk , so sk ≥ ai ≥ aj . Hence, again
edge t∗j would be marked by edge t∗k .

For any position �, let n� denote the number of tree-edges t with a(t) ≤ �. Now,
for any i and � ≥ ai , the probability that si ≥ � is m−�+1

m−ai+1 . Conditional on this event,

the probability of si < min(si+1, . . . , sn�
) is at most 1

n�−i+1 . These are both necessary
conditions for edge t∗i to incur back-tracking with si ≥ �. If back-tracking does occur
at si = �, then the cost of this back-tracking is α(m − �,n)(m − �).

Hence the expected back-tracking incurred by selecting edge ti is

E[Back-tracking due to ti] ≤
∑

�≥ai

α(m − �,n)(m − �)P (si = �, si < si+1, . . . , sn�
)

Algorithmica (2014) 68:916–939 925

≤ α(m,n)
∑

�≥ai

P (si ≥ �, si < si+1, . . . , sn�
)

≤ α(m,n)
∑

�≥ai

m − � + 1

m − ai + 1

1

n� − i + 1

Summing over all i and l ≥ ai we have

E[backtracking work] ≤ α(m,n)

n∑

i=1

m∑

�=ai

m − � + 1

m − ai + 1

1

n� − i + 1

= α(m,n)

m∑

�=1

n�∑

i=1

1

n� − i + 1

= α(m,n)
∑

�

log(n� + 1)

= O(α(m,n)m logn)

Note that these constant terms are all independent of e∗. Hence, conditional on any
fixed e∗

1, . . . , e∗
K being output by this algorithm, the expected run-time is bounded by

some universal constant times mα(m,n) logn. Integrating over e∗, we see that the
expected run time of this algorithm is O(mα(m,n) logn). �

5 Heuristics for Finding Easy Bridges

Although Algorithm 2 has near-linear worst case behavior, in practice it wastes a lot
of work back-tracking and removing bridges. We can avoid much of this work, in
practice, by searching for some easy-to-find bridges (bridges which can be found in
just O(1)), while avoiding the complete graph traversal. The key idea of these heuris-
tics is that many types of disconnections occur for local reasons, and do not require
a full traversal of the graph. This is especially true for Erdős-Rényi random graphs,
which have no global structure, but occurs also in more structured types of random
graphs such Barabasi-Albert graphs. For example, a graph becomes disconnected
when a vertex has degree zero. If we focus solely on this local structure, which does
not require a search of the full graph, then we can find nearly all of the bridges. If we
fail to detect a bridge, we will still have our O(mα(m,n) logn) worst-case behavior.

Our experiments with random graphs show that the single most common type of
bridge occurs when a vertex has degree one. These bridges may be easily detected;
whenever we remove an edge 〈v,w〉, we simply check whether the degrees of vertices
v,w have been reduced to one. If so, we contract the resulting singleton edge (and
check whether this produces any other degree-one vertices, and so forth). This O(1)

check detects the vast majority of bridges.
Another easy method of detecting bridges is to remove degree-two vertices. With

regards to graph connectivity, a vertex v connected to w1 and w2 is equivalent to a
single edge connecting w1 to w2. We must keep track of the fact that the new edge

926 Algorithmica (2014) 68:916–939

has “weight two”, i.e. that it represents two simple edges. The main advantage of this
technique is that it can discover loops: if w1 = w2, then the new edge is a free-floating
loop, which has no effect on the graph connectivity. This free-floating loop can, in
effect, be treated as an edge without vertex endpoints; this simplifies the graph and
leads to new bridges.

A final method for detecting bridges, which is somewhat more expensive than
these other techniques, performs a breadth-first search of the graph starting at a given
vertex, limiting the search to radius two. To ensure that this step remains bounded,
we only perform this check for vertices of degree ≤ dmax; a good choice seems to be
dmax = 5. Such vertices with low degree are more likely to have bridges, while also
being faster to search. See Appendix A for more details.

As we have noted, there are decremental algorithms such as [8] that are capable
of detecting all bridges, without heuristics, in time O(log4 m) per edge deletion. We
have not considered such algorithms for two reasons. First, these algorithms are quite
complicated and expensive, much worse than the O(1) time for heuristics. Second,
if the heuristics fail and a bridge is selected, our algorithm will maintain a good
asymptotic run time of O(m logn α(n)), which is better than could be obtained using
the algorithm of [8].

It would be cumbersome to describe a combined algorithm, which simultaneously
performs the back-tracking of Algorithm 2 and the bridge-heuristics. Rather, we de-
scribe the bridge heuristics as a kind of oracle which is accessed during Algorithm 2.
We then discuss what conditions are needed of this oracle to ensure it preserves the
run-time guarantees of Algorithm 2.

We suppose we have a data structure B (for bridge-detection) that supports inser-
tion and deletion of edges. This data structure may identify certain edges of G as
being bridges. If B identifies an edge e as a bridge, then e must be indeed a bridge;
however, B need not discover all bridges. B may also identify G as being discon-
nected.

Algorithm 2a Phase I

1. Set k = 1. Initialize the data structures for B .
2. For i = k, . . . ,K repeat the following:

3. Select an edge ei ∈ Gi uniformly among the edges which
have not been marked as bridges of Gi . Update B .

4. If B identifies G as disconnected, terminate this loop
prematurely.

5. Use disjoint-set structures, find k′ maximal such thatGk′
is connected. Each time an edge is re-inserted, update B .

6. If k = K , terminate the loop.
7. Otherwise, perform a depth-first search of Gk , detecting

any bridges (note that ek+1 must be a bridge ofGk by max-
imality of k). Contract any bridges found. Update B .

Algorithm 2a Phase I maintains correctness, as B is guaranteed to have only false
negatives. Furthermore, as long as B is fast enough, it maintains the optimal running
time.

Algorithmica (2014) 68:916–939 927

Theorem 2 Suppose B is a data structure whose running time, over any sequence
of n edge deletions, is O(m + nα(m,n)). Then Algorithm 2a Phase I has expected
running time O(m logn α(m,n)), the same as Algorithm 2 Phase I.

Proof First, note B , as given, supports only edge deletions. However, by using the
rollback method, we can also support edge re-insertions. That is, given e1, . . . , ek , B

updates its data structure as ei are successively removed. If the edges ek, ek−1, . . . , et

are re-inserted, we simply undo all the changes that were made between ek and et .
With appropriate journaling, this can also be done in time O(mα(m,n)).

In each iteration of step (2), Algorithm 2a performs a depth-first search of the
graph, removes k edges, and back-tracks k′ < k edges. The cost of these operations
is O(mα(m,n)). The cost of the B data structure is also O(mα(m,n)), including
edge re-insertions. Hence, the entire cost of each iteration remains O(mα(m,n)).
The proof of Theorem 1 remains valid of Algorithm 2a as well as Algorithm 2.

It is important to note that this proof works only with true upper bounds on running
time, not amortized bounds. (Because the costly operations may be replayed multiple
times during the rollback, while the operations that payed for them are not replayed.)
Hence data structure B must repay all its amortizations within the sequence of n

edge deletions. However, these costs may be hidden by step (7), which entails a full
traversal of the graph. �

We will now describe a concrete data structure B which detects easy bridges and
has run-time O(mα(m,n)) for a sequence of edge deletions and re-insertions.

This data structure B maintains a stack of vertices which must be checked for
adjacent bridges. Every time an edge is transformed, the incident vertices are added
to this active vertex stack. This data structure may be considered to manipulate a
“shadow graph” H , which is essentially a labeled copy of G. Every edge e ∈ H

corresponds to a set of edges e ∈ G. We maintain a disjoint-set structure on the edges
of G to their corresponding edge of H ; we let [e] denote the edge of H corresponding
to the appropriate edge-class containing e ∈ G.

Data structure B

0. Suppose e is removed from G. Update the structure as fol-
lows;

1. Remove [e] from H . Push its endpoints v,w onto the stack.
2. While the vertex stack is non-empty, do:

3. Pop the top-most vertex x from the stack.
4. If x has degree zero inH , output DISCONNECTED and halt.
5. If x has degree one in H , with incident edge t = 〈x, y〉,

contract t ∈ H and push y onto the stack.
6. If x has degree two in H , connected to two edges ti =

〈x, yi〉, do the following:
i. Remove these edges t1, t2 from H .

ii. Insert a new edge t into H with endpoints 〈y1, y2〉.
iii. Merge the edge-classes of t1, t2, and let t ∈ H be the

edge of H which corresponds to this merged class.

928 Algorithmica (2014) 68:916–939

iv. Push y1, y2 onto the stack.
v. If y1 = y2, then this new edge t is inserted with null
vertices (i.e. as a free-floating loop).

7. If deg(x) ≤ dmax, search the radius-two neighborhood of x.
Contract any bridges found and push their endpoints

onto the stack.

There are two ways vertices can be added to the stack: when an edge is removed,
and when a contraction occurs. The first type of insertion occurs at most O(m) times.
Whenever the second type occurs, a vertex becomes contracted from the graph, hence
the second type occurs at most O(n) times. Hence steps (3)–(7) collectively occur at
most O(m) times. Each iteration of these steps costs at most α(m,n), as it requires
a disjoint set operation. Hence, data structure B satisfies the requirements of Theo-
rem 2.

Note that once the graph G is fixed, the choice of algorithm for detecting bridges
in Algorithm 2a is a purely pragmatic one. Any bridge-detection method leads to the
same probability distribution. Hence there is ultimately a single metric, total expected
run-time (which includes the run-time of the bridge detection plus the time for back-
tracking when bridge-detection fails). We can use heuristics of various complexity,
exact decremental algorithms such [6] and [8], or any other scheme. Furthermore
asymptotic bounds on the run-time of algorithms are not relevant—we simply sample
various algorithms and use the one that is fastest for G.

In practice, we have found that searching the radius-two neighborhood usually
costs more time than it saves in Algorithm 2a. For certain graphs, such as Erdős-
Rényi random graphs, merging degree-two vertices is also not cost-effective in Algo-
rithm 2a. We have omitted this heuristic because it complicates the code significantly
and the advantage is relatively minor even in the best case.

6 Bounds on Relative Variance

In this section, we examine upper bounds on the relative variance of Algorithms 0
and 1. We will make a few remarks about our approach. First, all of these bounds
are reported in terms of a single structural parameter m. If one develops formulas
in terms of other parameters such as n,m together or n alone, the resulting relative
variance has a relatively complicated form, and can exhibit super-exponential growth
or non-monotonicity. However, the bounds in terms of m are simply exponential.

Second, we will focus solely on the ultimate coefficient r̂[K], which is the estimate
for the number of spanning trees κ(G). As we have noted, algorithms such as [3] can
compute the high-order coefficients with polynomial relative variance, and in fact can
compute κ(G) exactly in polynomial time. Hence the algorithms of this paper are not
the method of choice for estimating κ(G).

In general, for Algorithm 0, for any graph G the ultimate coefficient r̂[K] always
has the highest relative variance. For Algorithm 1, the relative variance of coefficient
i tends to increase with i, and also the gap between Algorithms 0 and 1 increases
with i. It is possible to develop bounds on the relative variance of coefficient i. If i

remains fixed, then these bounds are no longer exponential. If i is allowed to grow

Algorithmica (2014) 68:916–939 929

asymptotically, then the exact form of these bounds depends on the growth rate of i,
for example, if i = Θ(n),Θ(m),K − Θ(m),K − Θ(n). To simplify the discussions,
we will focus on the worst case, namely i = K .

These decisions allows us to summarize the behavior of the algorithm in terms of
a single simple parameter, which is the rate of this exponential growth. To describe
this we use O∗ bounds, which ignore sub-exponential functions.

Theorem 3 The relative variance of coefficient of Algorithm 0 on any graph G is
O∗(2m).

Proof Algorithm 0 is a Bernoulli random variable. Its relative variance is 1/p, where
p is the probability of selecting a spanning tree of the original graph. As Algorithm 0
chooses its n − 1-edge subgraphs uniformly, this probability is

p = κ(G)(
m

n−1

) .

where κ(G) denotes the number of spanning trees of G.
For a fixed value of m = m, this is minimized at n = m/2, yielding 1/p = (

m
m/2

) =
O∗(2m). �

Although in practice Algorithm 1 tends to have exponentially lower variance than
Algorithm 0, in theory it is possible for it to have relative variance Θ∗(2m) as well.
Thus, the estimate of 2m relative variance is tight for Algorithms 0 and 1.

Theorem 4 There exists a family of simple graphs G for which the relative variance
of Algorithm 1 is Θ∗(2m).

Proof Consider the following graph on 2n edges and n vertices. We take a complete
graph on k = √

n distinguished vertices, and a loop connecting the remaining n − k

vertices. (We ignore any quantization effects if
√

n is non-integral; the error commit-
ted is polynomial.) See Fig. 1.

We call the first class of vertices “complete vertices” and the second “loop ver-
tices.” To estimate the relative variance, we need to estimate

Ee1,...,eK
1/p

where p is the probability of choosing edges e1, . . . , eK and the expectation is taken
over the uniform distribution on e1, . . . , eK such that the resulting GK is connected.

Fig. 1 Graph includes a
complete graph on k vertices
and a loop connecting n − k

vertices

930 Algorithmica (2014) 68:916–939

Fig. 2 Spanning trees involving all n − k loop vertices, and which include exactly k/2 complete vertices
on each end of the chain

We only seek to estimate the relative variance up to polynomial bounds. Hence
it suffices to show that there is a subset E0 of all possible 〈e1, . . . , eK〉 such that
EE0 1/p = O∗(2m) and

(
m
K

)
K!/|E0| is bounded by a polynomial.

Consider the choice of 〈e1, . . . , eK 〉 such that the resulting spanning tree contains
all of the loop-edges. The resulting spanning tree contains two clusters of complete
vertices at each end of a long chain. We further restrict our attention to trees such that
there are exactly k/2 complete vertices at each end of this chain. (See Fig. 2). The
number of spanning trees of this form is

(
k

k/2

)
((k/2)k/2−2)2, which is a polynomial

fraction of the total number of spanning trees ∼ nkk .
Now, consider any tree T of this form. For this fixed tree, let us analyze

E e1,...,ek
such that Gk=T

1/p = Eσ

1

P(σ(1))
. . .

1

P(σ(K)|σ(1), . . . , σ (K − 1))

where σ ∈ SK is a permutation of the edges e1, . . . , eK .
All of the edges ei connect a complete vertex to another complete vertex. Suppose

that the edge σ(K) connects one of the distinguished vertices on the left of the tree
to one on the right of three. In fact half of such edges have this form, so this event
has polynomial probability. In this case, all of the loop vertices are non-bridges of
G1, . . . ,GK−1. In this case, P(σ(i)|σ(1), . . . , σ (i − 1)) ≥ 1/(2n − k − i + 1), so

rv Algorithm 1 = 1

κ(G)
Eu(1/p)

= Ω∗
(

1

nkk

1

P(σ(1)) · · · 1
P(σ(K)|σ(1),...,σ (K−1))

)

≥ Ω∗(1

nkk

1

2n − k
· · · 1

n
)

= Ω∗ 1

nkk

n!
(2n − k)!

= Ω∗(4n)

= Ω∗(2m)

as claimed.
This shows that Algorithm 1 has relative variance Θ∗(2m). �

Algorithmica (2014) 68:916–939 931

7 The Karger fpras for Failure Probability

In [9], Karger introduced a fpras for estimating the unreliability 1 − Rel(p0). Note
that this is a point estimate, given a fixed value of p0, rather than an estimate for
the entire polynomial. Karger’s scheme essentially consists of two unrelated algo-
rithms, depending on the size of Rel(p0). When Rel(p0) is small, we use Algorithm
K1, which simply draws a random subgraph of G in which edges are removed in-
dependently and identically with probability p0, and test if the resulting graph is
connected. When Rel(p0) is big, we use an alternate Algorithm K2 which counts the
near-minimal cut-sets of G.

Although the values 1−Rel(p) are linear combinations of the coefficients Ni , this
does not give a fpras for counting the number of connected subgraphs. The reason is
that obtaining Ni from 1 − Rel(p) would require inverting a Vandermonde matrix,
which is exponentially ill-conditioned [7]. Hence, to obtain polynomial precision in
Ni would require exponential precision in 1 − Rel(p), which in turn would require
exponential time-complexity.

We can use our SIS algorithm to improve Karger’s scheme however. Although
Algorithm K1 is polynomial-time, in practice it has two main problems. First, to
estimate Rel(p0) using K1 requires drawing many random subgraphs in which edges
fail with probability p0. If we wish to estimate Rel(p1) for p1 �= p0, we need a
completely new set of samples. In practice, it is common to seek Rel(p) for multiple
value of p, for example if we seek to estimate a value of p at which Rel(p) = 1/2.
Hence, if we seek to evaluate T samples of Rel(pi) at i = 1, . . . , k we incur time
O(kT E).

When we run Algorithm 1 for T samples, we obtain in time O(T m logn α(n)) an
estimate R̂el for the entire reliability polynomial. This estimated R̂el can be evaluated
at any value of p in O(m) time. Hence, the total time complexity of evaluating mul-
tiple points reduces to O(T m logn α(n) + mk), which can be significantly smaller
when k is large. In fact, the probability pi need not be available initially; we have
O(T m logn α(n)) precomputation, after which we may estimate, for any p, Rel(p)

in time O(m).
The second main problem with Karger’s scheme is that each sample of K1 draws

a single random subgraph H , in which the number of edges actually removed is bi-
nomially distributed. Hence each sample uses information about Ni for only a single
value of i. Algorithm 1 removes multiple edges sequentially, and obtains information
about all the coefficients Ni . Hence, on a sample by sample basis, Algorithm 1 is
more accurate than Algorithm K1. In fact, we can state this even for Algorithm 0:

Theorem 5 Let G any graph and p ∈ [0,1]. Then Algorithms 0 and K1 are both
unbiased estimators of R̂el(p). Algorithm 0 has variance which is no greater than
Algorithm K1.

Proof First, consider the expected square of Algorithm K1. With probability
Nm−ip

i(1 − p)m−i , Algorithm K1 obtains a connected subgraph, in which case it
estimates 1; otherwise it estimate 0. Hence the expected square of K1 is

E[K1(p)2] = 1 −
∑

i

Nm−ip
i(1 − p)m−i = Rel(p)

932 Algorithmica (2014) 68:916–939

Next, consider the Algorithm 0. Algorithm 0 removes edges in turn until the result-
ing subgraph becomes disconnected. We abuse notation so that F0(p) is the estimated
R̂el(p) when R̂el(x) is estimated by Algorithm 0.

Let Xi denote the event that graph obtained after removing i edges remains con-
nected, so that

F0(p) =
∑

i

(
m

i

)
pi(1 − p)m−iXi

Note E[XiXj] = E[Xmax i,j]. This allows to expand the sum

E[F0(p)2] =
∑

i,j

(
m

i

)
pi(1 − p)m−i

(
m

j

)
pj (1 − p)m−j E[XiXj]

=
∑

i

(
m

i

)
pi(1 − p)m−i

(
∑

j≤i

(
m

j

)
p[j]E[Xi]

+
∑

j>i

(
m

j

)
pj (1 − p)m−j E[Xj]

)

=
∑

i

(
m

i

)
pi(1 − p)m−i

(
∑

j≤i

(
m

j

)
pj (1 − p)m−jNm−i/

(
m

i

)

+
∑

j>i

Nm−jp
j (1 − p)m−j

)

=
∑

i

Nm−ip
i(1 − p)m−i

(
∑

j≤i

(
m

j

)
pj (1 − p)m−j

+
∑

j>i

Nm−j

Nm−i

(
m

i

)
pj (1 − p)m−j

)

≤
∑

i

Nm−ip
i(1 − p)m−i

(
∑

j≤i

(
m

j

)
pj (1 − p)m−j

+
∑

j>i

(
m

j

)
pj (1 − p)m−j

)

=
∑

i

Nm−ip
i(1 − p)m−i

= Rel(p) = E[K12] �

Hence Algorithm 1 has better variance than Algorithm K1 and in addition it can
be precomputed without specifying an exact value of p.

Algorithmica (2014) 68:916–939 933

Fig. 3 Average runtime. Note
the logarithmic scale for times.
Key:
solid square = Algorithm 0;
solid triangle = Algorithm 1;
solid circle = Algorithm 2;
open circle = Algorithm 2a

8 Results

To test these algorithms empirically, we generated random graphs of various sizes and
types. For each graph, we ran our various algorithms for a large number of iterations,
tabulating the running time and program outputs.

Let us begin with the running times of these algorithms. We generate Erdős-Rényi
random graphs with average edge density 10 but varying vertex counts. Figure 3
depicts the running times of the algorithms on these graphs, as a function of the edge
count. Similar dynamics are seen on other types of random graphs.

All these timings must be taken with a grain of salt, as the different codes have very
different profiles and could all be optimized to a greater or lesser extent. Nevertheless,
we can reach some conclusions. Algorithm 0 is fastest, about three times faster than
the others. The runtime of Algorithm 2a appears to scale linearly in m. Algorithm 2,
while much faster than Algorithm 1, is also much slower than the heuristic algorithms
Algorithm 2a. Its rate of growth appears to be slightly super-linear. Algorithm 1,
implemented in the Θ(m2) method, is as expected much slower than the incremental
algorithms.

The running time is only half of the story, however. The other half is the accuracy
of the estimates produced by these algorithms. To determine this, we analyzed a vari-
ety of test cases—random graphs generated according to various schemes. Note that
straight-forward extraction of sample means and variances is not suitable for these
types of statistics, which have exponentially large variance. Appendix B describes the
statistical methodology used to estimate the relative variances of these algorithms.

Our first test case is a Barabasi-Albert random graph, with 100 vertices and 491
edges. We chose this type of random graph because it roughly approximates the dy-
namics seen in real-life graphs. Figure 4 depicts an experiment measuring the vari-
ance of Algorithms 0 and 1 as described in Appendix B.

Despite the fact that they have the same worst-case behavior, in practice Algo-
rithm 1 is much better than Algorithm 0.

Test Case 2 is a sparse Erdős-Rényi random graph with 50 vertices and 238 edges.
Figure 5 depicts the variance of Algorithms 0 and 1.

We observe the same type of behavior: Algorithm 1 has much better variance than
Algorithm 0.

To investigate the way in which these algorithms scale with n, we generated
Barabasi-Albert random graphs, of average degree 10, and computed the relative vari-

934 Algorithmica (2014) 68:916–939

Fig. 4 Relative variance on a
Barabasi-Albert random graph.
Key: dotted = Algorithm 0;
solid = Algorithm 1

Fig. 5 Relative variance on an
Erdős-Rényi random graph.
Key: dotted = Algorithm 0;
solid = Algorithm 1

Fig. 6 Relative variance on
Barabasi-Albert graphs of
degree 10. Key:
dotted = Algorithm 0;
solid = Algorithm 1

ance of the ultimate coefficient, the number of spanning trees. Note that the number
of spanning trees can be counted in polynomial time using the Matrix-Tree theorem,
so this is not an appropriate use of these algorithms. However, this illustrates the
scaling behavior as shown in Fig. 6.

Both of these algorithms have relative variances which increases exponentially,
but for Algorithm 1 the rate of increase is far lower than for Algorithm 0.

For our final test case, we examined a real-world network, a representation of the
power grid of the Western United States [15]. After removing bridges, this graph
contained 3330 vertices and 4984 edges. Figure 7 shows the relative variance of Al-
gorithms 0 and 1 on this graph.

Algorithmica (2014) 68:916–939 935

Fig. 7 Relative variance on the
Western Power Grid data. Key:
dotted = Algorithm 0;
solid = Algorithm 1

Both of these algorithms are essentially useless for the highest-order coefficients,
but it is clear that Algorithm 1 has dramatically lower variance than Algorithm 0. If
we set a threshold of say 109 samples as the upper end of feasible, and we wish to
attain a relative error of approximately 1, then we set a threshold of roughly 109/2

for the maximum relative variance of a coefficient. In this case, Algorithm 0 allows
us to estimate up to coefficient ∼ 180, while Algorithm 1 allows us to estimate up to
coefficient ∼ 250.

9 Conclusion

We have improved the SIS algorithm of [1] for estimating the graph reliability poly-
nomial. The runtime has been dramatically reduced from Θ(m2) to O(m lognα(m,n))

in the worst case and with appropriate heuristics ≈ m in practice. On even
moderately-sized graphs, this translates into orders of magnitude speedup. We be-
lieve that this is the first usable linear-time algorithm for estimating the reliability
polynomial.

We have also described a method for estimating the accuracy of these algorithms
on a specific graph. This is important both theoretically (allowing us to analyze these
algorithms in a wide range of settings) and practically (allowing us to quantify our
uncertainty, especially in cases where the uncertainty hugely outscales the estimate
itself.)

We have demonstrated that, in the worst case, these algorithms may exhibit rela-
tive variance up to 2m for high-order coefficients of the reliability polynomial. Em-
pirically as well we see these algorithms exhibit exponentially increasing relative
variance (though at a much smaller rate). This means that this algorithm is not the ul-
timate solution for the reliability polynomial in general. Nevertheless, the advantages
of this algorithm, particularly its dramatically fast runtime, mean that this should be
the method of choice in many cases, including physical problems in which the early
coefficients of the generator are most relevant. The linear runtime allows estimates
on much larger-scale graphs than previously possible—this should scale well into
thousands of edges or more.

Acknowledgements Thanks to Antonio Possolo, for helpful conversations about the measurements of
the algorithms’ probability distributions, and for supporting Mr. Harris’s research at NIST. Thanks to Brian
Cloteaux for helping to edit and revise this paper.

936 Algorithmica (2014) 68:916–939

Appendix A: Radius-Two Search for Bridges

In addition to detecting degree-one and degree-two vertices, Algorithm 2 conducts, in
some circumstances, a breath-first search around a modified vertex v to find any easy
bridges. The key idea of the search is that we assume that, if the vertex v is connected
to a radius-two vertex, then it is connected to the entire graph. We search for edges
which disconnect v from the radius-two vertices.

To begin, we let V1 be all vertices connected to v, and let V2 = V − V1 − v.
A bridge can arise if there is a unique w ∈ V1 that is connected to V2. If furthermore
this w is not connected to any vertex in V1 and if w is connected by a single edge
to v, then the edge 〈v,w〉 is a bridge. If, on the other hand, w has a unique edge e

connecting it to V2, then e is a bridge.
The following algorithm finds such bridges:

1. Initially set w = ∅
2. For each x ∈ V1:

3. For each distinct vertex y connected to x:
4. If y ∈ V2 and w = ∅, set w = x and continue with the

next x.
5. If y ∈ V2 and w �= ∅, we find no bridges. Halt.

6. If w = ∅, then the graph is disconnected. Return.
7. If there is a single edge connecting v to w, it is a

bridge. Contract it and return.
8. If there is a single edge 〈w,u〉 with u ∈ V2, then it is a

bridge; contract it and return.
9. No bridges have been found. Terminate.

This code requires a data structure which supports efficient enumeration of distinct
vertices. A mere list of edges (which may be multi-edges) is not enough. With this
data structure, this code runs in time O(V 2

1). Because Algorithm 2 only conducts this
search if the degree of v is bounded by a constant dmax, the total cost of these searches
can be regarded as O(1). In practice, we did not implement this data structure; this
abandons the guarantee on maximum running time but in practice is faster.

There is one further improvement we can make here. If in either step (8) or (9)
there is a double edge e1, e2 such that simultaneously removing e1 and e2 disconnects
the graph, then we can simplify the graph by contracting the two edges e1 and e2 and
inserting a loop of weight w(e1) + w(e2).

Appendix B: Estimating Variance

In Sect. 6, we examined worst-case variance across all possible graphs of a given
size. In this section, we consider variance from a different angle. Suppose we are
given a graph G and use the algorithms we have described to estimate its reliability
generator. How reliable are these estimates? In this section, we describe a method for
estimating relative variance.

To begin, let us consider top-down algorithms such as Algorithm 0 or 1. In such
algorithms, we may remove an edge e with probability P(e); if the edge is removed,

Algorithmica (2014) 68:916–939 937

then the corresponding estimate is multiplied by 1/P (e). P(e) is essentially the im-
portance function attached to each edge. For Algorithm 0, P(e) = 1/m for all edges;
for Algorithm 1, P(e) = 1/|D(G)| if e is a non-bridge, and P(e) = 0 otherwise.

In such cases, the straight-forward way to estimate E[F(G)] and E[F(G)2] would
be to take T samples F(G) and extract the sample mean and variance. Let μ̂ and σ̂ 2

be the sample estimates obtained in this way. We have that

V[μ̂] = σ 2

T

V[σ̂ 2] = σ 4
(

2

T − 1
+ κ

T

)
κ = kurtosis of F(G)

so these estimates may be very inaccurate when σ is large. For the high-order co-
efficients of the reverse reliability generator, this makes it exponentially expensive
to estimate μ,σ accurately. This is a very dangerous situation: when the estimates
F(G) are very inaccurate, it is also very difficult to determine how inaccurate they
are.

A better method of estimating accuracy is to estimate E[F(G)] and E[F(G)2] us-
ing importance sampling. Instead of choosing the edge e to remove with the indicated
probability P(e), we use an alternative importance-sampling probability distribution

P ′(e) = # of spanning trees of G − e

E − V + 1
.

We emphasize that there are two distinct probability distributions in play here.
P(e) is the probability distribution used by algorithm F itself; P ′(e) is the probability
distribution we are imposing in order to measure algorithm F .

This gives us the following SIS algorithm F (d) for estimating E[F(G)d]:

Algorithm F(d)

1. Set m0 = 1
2. For k = 1, . . . ,K

3. Choose an edge e ∈ G with probability P ′(e).
4. Set mk ← mk−1

1
P(e)d−1P ′(e) . Set G ← G − e.

5. Return the estimate

r̂ (k) =
K∑

k=0

mkx
k

(k!)d

It is easy to verify that E[F (d)(G)] = E[F(G)d].
The importance function P ′(e) ensures that algorithm F (1) estimates the high-

order coefficient of E[F(G)] (the number of spanning trees of G) exactly (variance
zero), although the estimates for the lower-order coefficients have higher variance.
The estimate of the high-order coefficients of E[F(G)]2 also has greatly improved
variance, although the low-order coefficients are worse. We believe it is much safer
to have an error estimate which is accurate when the error is large.

938 Algorithmica (2014) 68:916–939

The estimate of σ 2 provided by F (2) is typically the right order of magnitude,
but for low-order coefficients it is not very precise. The sample variance is a better
estimator for these low-order coefficients. To use the sample variance safely, we first
estimate σ 2 using F (2) for all coefficients. For those coefficients for which σ̂ 2 is
sufficiently small, we replace our estimate of σ 2 with the sample variance.

Note that to use this method, we must compute the importance function P ′(e) for
all edges e ∈ G at every stage of the recursion. To describe how this is done, we begin
by recalling the Kirchoff matrix-tree theorem used to count the number of spanning
trees of a graph G. Let AG be the adjacency matrix of G, and let D be a diagonal
matrix whose ith entry is the degree of vertex vi . The Kirchoff formula states that
κ(G) = detL, where L = (D − AG)11 denotes the minor of D − AG obtained by
removing the first row and column.

The SIS algorithm F (d) would appear to be very expensive if it computed κ naively
from the Kirchoff formula. There are m iterations, in each of which we must κ(G−e)

for each edge. Evaluating a determinant costs O(n3) work and O(n2) memory. In all,
naive computations would cost O(m2n3) work and O(n2) memory.

Reference [4] describes a variety of algorithms to compute κ and to update this
structure as edges of G are removed. We will discuss one variant of those algorithms.
The main idea is to keep track of λ(e) = κ(G − e)/κ(G) for each edge e ∈ G. These
are precomputed for the original graph G. Next, when we update G by removing
an edge e, we must update λ to the new λ′. We will find the following notation
convenient. If e = 〈i, j 〉 is any edge in G, we define the column vector δe to be the
vector which is +1 in coordinate i, is −1 in coordinate j , and is zero elsewhere.
Observe that when edge e is removed from G, the matrix L changes by δeδ

T
e :

LG−e = LG + δeδ
T
e

Now let us examine how to update λ′:

λ′(d) = κ(G − e − d)/κ(G − e)

= det(LG−e−d)/det(LG−e)

= det(LG + δdδT
d + δeδ

T
e)/det(LG + δeδ

T
e)

= det
(
I + (LG + δeδ

T
e)−1δdδT

d

)

= 1 + δT
d (LG + δeδ

T
e)−1δd

= 1 + δT
d

(
L−1

G − uuT

1 − δT
e u

)
δd where u = L−1

G δe

= 1 + δT
d L−1

G δd − (δT
d u)2

1 − δT
e u

= λ(d) − (δT
d u)2

λ(e)

As described in [4], this leads to the following technique for updating λ. When-
ever we remove edge e from G, we use a sparse matrix inversion algorithm such as

Algorithmica (2014) 68:916–939 939

conjugate gradient to compute u = L−1
G δe . We then update λ(d) for each edge d ∈ G

by

λ(d) ← λ(d) − (δT
d u)2/λ(e)

In total, this technique allows to reduce the memory requirement to O(m) and the
complexity to O(mn). Furthermore, in practice the conjugate gradient method needs
far less than mn iterations to compute an adequate approximation, so in practice
the work requirement per iteration is more like ≈ m logn. This is still much more
expensive than computing F itself, however it allows us to achieve accurate estimates
for E[F(G)] and E[F(G)2] on graphs of interest. In many cases, straightforward
sampling of F itself would have required infeasible computation to obtain accurate
results.

References

1. Beichl, I., Cloteaux, B., Sullivan, F.: An approximation algorithm for the coefficients of the reliability
polynomial. Congr. Numer. 197, 143–151 (2010)

2. Chechik, S., Emek, Y., Patt-Shamir, B., Peleg, D.: Sparse reliable graph Backbones. In: ICALP, pp.
261–272 (2010)

3. Colbourn, C., Debroni, B., Myrvold, W.: Estimating the coefficients of the reliability polynomial. In:
Proceedings of the Seventeenth Manitoba Conference on Numerical Mathematics and Computing,
Congressum Numerantium, vol. 62, pp. 217–223 (1988)

4. Colbourn, C., Myrvold, W., Neufeld, E.: Two algorithms for unranking arborescences. J. Algorithms
20, 268–281 (1996)

5. Fishman, G.: A Monte Carlo sampling plan for estimating network reliability. Oper. Res. 34, 581–594
(1986)

6. Galil, Z., Italiano, G.: Fully dynamic algorithms for 2-edge connectivity. SIAM J. Comput. 21, 1047–
1069 (1992)

7. Gautschi, W., Inglese, G.: Lower bounds for the condition number of Vandermonde matrices. Numer.
Math. 52, 241–250 (1988)

8. Henzinger, M., King, V.: Fully dynamic 2-edge connectivity algorithm in polylogarithmic time per
operation. SRC Technical Note (1997)

9. Karger, D.: A randomized fully polynomial time approximation scheme for the all terminal network
reliability problem. SIAM J. Comput. 29, 11–17 (1996)

10. Myrvold, W.: Counting k-component forests of a graph. Networks 22, 647–652 (1992)
11. La Poutre, J.: Maintenance of 2- and 3- connected components of graphs, Part II: 2- and 3-edge-

connected components and 2-vertex-connected components. Tech. Rep. RUU-CS-90-27, Utrecht Uni-
versity (1990)

12. Provan, J., Ball, M.: The complexity of counting cuts and the probability that a graph is connected.
SIAM J. Comput. 12, 777–788 (1983)

13. Ramanathan, A., Colbourn, C.: Counting almost minimum cutsets with reliability applications. Math.
Program. 39, 253–261 (1987)

14. Tarjan, R.: Efficiency of a good but not linear set union algorithm. J. ACM 22, 215–225 (1975)
15. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)
16. Wilson, D.: Generating random spanning trees more quickly than the cover time. In: Proceedings of

the Twenty-Eighth Annual ACM Symposium of Theory of Computing, pp. 296–303 (1996)

	Fast Sequential Importance Sampling to Estimate the Graph Reliability Polynomial
	Abstract
	Introduction
	Allowing Bridges
	Backtracking to Avoid Bridges
	Expected Complexity of Algorithm 2
	Heuristics for Finding Easy Bridges
	Bounds on Relative Variance
	The Karger fpras for Failure Probability
	Results
	Conclusion
	Acknowledgements
	Appendix A: Radius-Two Search for Bridges
	Appendix B: Estimating Variance
	References

