
Testing Interoperability Standards – A Test
Case Generation Methodology

Nenad Ivezic* — Jungyub Woo*

*100 Bureau Drive
Gaithersburg, MD 20899
United States
nenad.ivezic@nist.gov
jungyub.woo@nist.gov

ABSTRACT: Over many years, National Institute of Standards and Technology (NIST) built test
beds to support interoperability standards development and their implementation within
software applications. A general test framework has been proposed to enhance new test bed
development and reuse of existing test components and materials. Currently, the test
framework is undergoing a validation effort within a healthcare domain to develop a test case
generation facility.
KEY WORDS: interoperability, standards, testing, test bed, test framework, NIST.

1. Introduction

National Institute of Standards and Technology (NIST) built numerous test beds
to support interoperability standards development and their implementation within
software applications for industries such as automotive, construction, and healthcare.

Currently, individual test beds are being built almost from scratch with very
limited reuse of existing test materials and components. This is not cost effective
and is problematic from the perspective of advancing knowledge of testing.
Existing testing approaches and frameworks do not address the issue of reuse to any
significant extent (IIC, 2010; RosettaNet 2004; TTCN-3, 2010; TaMIE, 2010).

For that reason, NIST started to develop a general test framework to provide a
vehicle for generalization and accumulation of knowledge of testing while providing
a platform for management and reuse of test materials and test components.

Presently, we are validating the test framework on a number of industrial test
cases. In this paper, we describe an application of the test framework to establish a
unified test case generation methodology and to design an architectural solution for
a supporting test case generation tool.

2

2. A General Test Framework: Test Case Design

A key consideration when developing a test framework is that it should support a
variety of alternative testing modes including independent document validation,
individual application conformance, and peer-to-peer (or interoperability) testing.
Also, the test framework should allow easy adaptation of test materials to any one of
the above testing scenarios.

The NIST-proposed test framework allows capture of test materials from the
underlying domain and business perspectives and without reference to a specific
testing configuration or role that test components and system under test (SUT) may
assume (Ivezic et al., 2010). This is in contrast to most existing test case designs
that depend on both a standard specification and a specific test bed implementation
or testing configuration.

Additionally, to allow easy adaptation of the test materials, the test framework
includes a test case architecture containing two layers: an abstract test case and
executable test case. An abstract test case is derived, in general, from standard
specifications and the intended usage patterns for the system under test. Its purpose
is to specify the validation rules and testing procedure at an abstract level.
Validation rules are written using logical conditions; that is, they describe the
normative requirements based on the standard specifications. The testing procedure
describes the usage patterns that are simulated for the SUT.

Abstract test cases are intended for human consumption and may be thought of
as a meta-model for the executable test cases. This implies that the abstract test case
is independent of a specific test bed implementation and testing configuration. On
the other hand, an executable test case is an implementation of the abstract test case
that executes the validation process. Consequently, the executable test case contains
machine-readable content that reflects a specific test bed and test configuration.

Another key issue for existing test frameworks is that a typical test case design
embeds verification rules as an integral part of the testing procedure. These
verification rules are used to ascertain whether the test items are true with respect to
the test requirements. In this way, these two parts of the test case are closely coupled,
because the verification rules will be executed at a specific point in time within the
testing procedure. This approach, however, gives rise to two types of problems.
First, test cases tend to be monolithic, large, and difficult to maintain. Also, test case
design is difficult to modify when the underlying standards change. The second
problem is low reusability. Since verification rules are based on the SUT test
requirements and testing is based on the business scenarios in which the SUT
participates, numerous combinations are possible. The tight coupling means that
each such combination will require significant changes to the test cases.

To overcome these problems the NIST-proposed test framework contains a
modular design for test cases, in which the test cases consist of procedural contents
and verification rules. Each test case (either the abstract or executable test case) is

Testing Interoperability Standards 3

composed of two scripts. One script contains procedural content: a usage script for
the abstract test case and a procedure script for the executable test case. The other
script contains verification content: an assertion for the abstract test case and a
verification script for the executable test case.

The two procedural scripts are distinguished by their intent and time of
specification. The usage script in the abstract test case represents the testing-related
business process, which includes the partners’ life cycles and actions during testing.
Actions are abstract descriptions and contain no message instances. For example, the
usage script may say “Buyer sends a purchase order message to a Supplier.” The
specific buyer, purchase order, and supplier instances are not yet specified. On the
other hand, the procedural script in the executable test case represents a business
transaction that will be executed and contains specific instances and references to
the actors in the business process.

Verification scripts contain event-driven conditions, which must be satisfied
before the verification script is activated (triggered). When the activation condition
is satisfied, a test item, such as a document or a message, is verified against an
assertion. These activation conditions render the verification rule independent of the
testing procedure, since the rule is not activated at a specific step of testing
procedure. Consequently, verification scripts may be reused readily within a new
testing procedure because the verification script is independently executed by the
events during the test procedure.

Verification scripts are distinguished by their intent and time of specification.
The assertion script in the abstract test case is human-, not machine-, readable
because a specific verifier may be unknown at development time. When that verifier
is known, the Test Case Developer can add assertion codes using an executable
language. This assertion code is the verification script in the executable test case.

3. A Test Framework Validation: Test Case Generation Tooling

Test generation, within any realistically complex domain, is a complex task that
involves management of evolving testing requirements, capturing correct intent of
these requirements, and efficient management of change in any aspect of the testing
process. Within the healthcare domain, NIST is developing a test case generation
methodology that can span numerous healthcare sub-domains and interoperability
profiles. The NIST framework is used to architect the test case generation tooling.

The essential goal for a test case generation tool is to facilitate specification,
generation, and traceability of test cases. Specification entails representation of
testing requirements in an abstract form that enables computational assessment
whether a system under test has met the requirements. Generation entails
transformation of an abstract test form into an executable form that may be run on a
specific computational platform. Traceability entails capturing relationships among

4

requirements, decisions made in the testing execution environment, the resulting
abstract test forms, and executable forms of test cases. Additional usability and
operational requirements for the facility include maintenance of complete
specifications in a so called intermediate form. This form maintains complete
information required to create executable test cases.

Figure 1 illustrates the workflow that the facility will support and its three
operational stages. At Stage 1, the facility enables interactions with users in support
of test case specification. Here, test case requirements are captured through
interaction with the Test User to obtain Test Case Setup information and with the
Test Case Developer to identify key Test Events from the underlying Test
Requirements materials. As a result of this stage, the Abstract Test Case Repository
is populated for the testing objectives at hand. In addition to the previously
introduced Usage Script and Assertion Script test artefacts, the Message Template
artefact is introduced with the role to provide schema-type constraint information for
the test messages to be created. Since the Abstract Test Case does not consider test
specifics, the message template has no specific values assigned and will be used to
generate a message instance or validation context file at Stage 2.

Figure 1 . Test Case Generator Facility and Its Operational Stages

Testing Interoperability Standards 5

At Stage 2, the facility enables interactions with users in support of additional
specification of the test execution environment. The run-time information is
captured through interaction with the Test User’s additional setup information as
well as the Test Specifics, e.g., test model or test message data definition. The test
harness configuration and role assignments of the test modules, such as validation
service or message handling, and SUT(s) are specified through interaction with the
Test Bed Manager. The Procedure Scripts identify required message instances that
will be sent during testing. Additionally, the facility provides a graphical user
interface for Test Users to generate message instances from the message templates.
To validate a message from a SUT, the Test Case Developer uses the message
template to create a validation context file with expected values for the test object
sent by the SUT. The outcome of this stage is the Intermediate Test Case collection
with sufficient information about test cases and execution environment to support
automated generation of Executable Test Cases at Stage 3.

To be successful, the framework and the test generation facility will have to be
supportive of a wide range of testing use cases across the different industries. An
iterative prototype-evaluate-refine approach to the validation of test generation
facility is adopted with an initial focus on the healthcare industry.

4. Impacting Testing Interoperability Standards

When testing interoperability standards, an organization utilizes different modes
of testing including independent document validation, individual application
conformance, and peer-to-peer/interoperability testing. The exact testing strategy
for interoperability standards will depend on many factors such as the complexity of
applications, size of the community, the time horizon for implementing,
management of the standards, and so on.

Traditionally, the underlying test materials were captured within procedural
statements tied to a specific testing mode as well as a specific testing configuration.
This approach has proven to be unwieldy and hard to manage because the logical
definitions of correctness of an implementation are buried within the testing
procedures that deal with run-time testing issues such as test bed configuration and
test material execution.

With the proposed test framework facility and the test case design in place, the
logic of testing is not encumbered by the specific testing mode, configuration, and
execution concerns any more. As a consequence, it is much easier to move from
one mode of testing to another, from one test bed configuration to another (e.g.,
from a single simulation node to multi-simulation node test bed), and from one type
of execution environment to another (e.g., from one configuration of Web services
to another).

6

From the perspective of advancing the knowledge of testing interoperability
standards, the proposed testing framework and test case design are initial steps in the
direction of abstracting and organizing the testing knowledge for greater efficiency
and transparency. Without a concentrated effort to agree on conceptualizations in
the testing space, the ability to share and reuse test components and test beds for
interoperability standards testing will continue to be very limited.

5. Conclusion

Presently, test case designs give rise to closely coupled, monolithic, and
difficult-to-maintain test cases. Since test cases are difficult to modify when the
underlying standards change, low reusability of test materials follows. To overcome
these problems, the proposed test framework contains a modular test case design
where the test cases consist of procedural content and verification rules. Also, the
framework introduces the notion of abstract test case, which is independent of a
specific test bed implementation. In the first validation of the test framework, the
test framework methodology is assessed in the context of health care scenarios and
the requirements to support specification, generation, and traceability of test cases.

Acknowledgements

Certain commercial software products identified in this paper were used only for
demonstration purposes. This use does not imply approval or endorsement by NIST,
nor does it imply these products are necessarily the best available for the purpose.

6. Bibliography

Ivezic, N., Woo, J., Cho, H., “Towards Test Framework for Efficient and Reusable Global e-
Business Test Beds”, In Proceedings of I-ESA 2010 Conference, Coventry, UK, 2010.

IIC ("ebXML IIC Test Framework Version 1.0." OASIS), on line at http://www.oasis-
open.org/committees/download.php/1990/ebXML-TestFramework-10.zip, accessed
March 2010.

RosettaNet (RosettaNet Ready Self-Test Kit (STK) User’s Guide Release Version 2.0.7).
RosettaNet, 2004.

TTCN-3 site, on line at http://www.ttcn-3.org, accessed March 2010.

TaMIE Site, on line at http://www.oasis-open.org/committees/tamie, accessed March 2010.

http://www.oasis-open.org/committees/download.php/1990/ebXML-TestFramework-10.zip�
http://www.oasis-open.org/committees/download.php/1990/ebXML-TestFramework-10.zip�
http://www.ttcn-3.org/�
http://www.oasis-open.org/committees/tamie�

	Testing Interoperability Standards – A Test Case Generation Methodology
	*100 Bureau Drive

