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We present a neutron-diffraction, small-angle scattering, and magnetometry study of the narrow bandwidth
perovskite cobaltite Pr1−xCaxCoO3, demonstrating an unusual form of magnetoelectronic phase separation
where long-range ordered ferromagnetism coexists spatially with short-range ferromagnetism. The two phases
have very different coercivities and, remarkably, are strongly exchange coupled. The electronic phase separa-
tion thus leads to spontaneous formation of a hard-soft nanocomposite, exhibiting prototypical exchange-spring
behavior in the absence of chemical interfaces.
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After several years of intensive studies of complex oxides
such as manganites and cuprates, it is now clear that com-
peting interactions in these correlated systems lead to a deli-
cate competition between ground states.1–3 This has many
interesting consequences, including colossal response to ap-
plied fields,1–3 stabilization of new states at interfaces �e.g.,
Refs. 4 and 5�, and an instability toward magnetoelectronic
phase separation.1–3 The latter effect, where multiple
electronic/magnetic phases coexist spatially, in the absence
of gross chemical segregation, is now well established1–3 and
is supported by several models.3,6,7 Detailed work has eluci-
dated several complex phenomena, including preformation
of clusters above long-range-ordering �LRO� temperatures,3,8

field- and temperature-dependent phase competition,3,9,10 and
electronic inhomogeneity over a range of length scales3,8–12

and morphologies.3,8–15

One aspect of the behavior of electronically phase-
separated oxides that remains unclear is the issue of coupling
between phase-separated regions. Spatial coexistence has
been observed for a variety of local orders �e.g., ferromag-
netic �FM�, antiferromagnetic �AF�, and charge/orbitally
ordered�,1–3,8–15 but evidence of coupling between them is
scarce. In magnetic systems clear signatures exist for ex-
change coupling between common forms of order, e.g. ex-
change bias at AF/FM interfaces16 and exchange-spring be-
havior at hard/soft FM interfaces.17 Nevertheless, exchange
bias is observed only sporadically in bulk electronically
phase separated oxides �it is often ascribed to complex glassy
interactions �e.g., Refs. 18 and 19� rather than direct AF/FM
coupling20,21� while intrinsic exchange-spring magnetism re-
mains elusive. It is unclear why these observations are scarce
and under what conditions strong exchange coupling can be
established between coexisting phases. Here, we study a per-
ovskite cobaltite, Pr1−xCaxCoO3, using smaller ionic radius to
suppress LROFM and promote phase competition. We find
that a weak LROFM phase coexists with short-range-ordered
�SRO� FM, the two phases possessing different coercivities.
This unusual form of magnetic phase separation thus leads to
formation of a hard/soft FM composite, exhibiting classic
exchange-spring behavior, analogous to artificial systems.

These results provide evidence of coupling between coexist-
ing FM regions �thus generating exchange-spring magne-
tism�, create a potential means to probe the spin structure of
the interface region, and underscore the ability of electronic
phase separation to produce nanostructured properties with-
out chemical interfaces.

Polycrystalline Pr1−xCaxCoO3−d �0.00�x�0.40� was
synthesized from Pr6O11, CoC2O4·2H2O, and CaCO3 by
solid-state reaction in flowing O2 at 1000 °C, followed by
cold pressing, sintering �1200 °C in O2�, and slow cooling
�0.5 °C /min�. Rietveld refinement of neutron powder dif-
fraction �NPD� indicated single-phase material in the Pnma
space group �as in Refs. 22 and 23� while scanning transmis-
sion electron microscopy revealed no indication of secondary
phase clusters. Thermogravimetric analysis revealed small O
deficiency to x=0.30−0.40 ��=0.04�, beyond which it in-
creases quickly. Measurements are thus restricted to x
�0.40. NPD and small-angle neutron scattering �SANS�
were performed at the NIST Center for Neutron Research
�BT-1, BT-9, and NG7�, at wavelengths of 1.54 Å and
5.00 Å, respectively. Figure 1 shows a magnetic phase dia-
gram �from NPD, SANS, transport, magnetometry, and heat
capacity that will be published elsewhere�, to provide a glo-
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FIG. 1. �Color online� Magnetic phase diagram of
Pr1−xCaxCoO3. TSST, TC, and T� are the onset spin-state transition
temperature, Curie temperature, and temperature at which short-
range ferromagnetism occurs. PMI is paramagnetic insulator and
FMM is ferromagnetic metal. The fields are labeled with the spin
state of the �Co3+ /Co4+� ions.
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bal picture of the magnetic properties. These are rather dif-
ferent than La1−xSrxCoO3 �LSCO�,24 due to the smaller A-site
cations. This results in �a� increased deviations from 180°
Co-O-Co bond angle, �b� a reduction in tolerance factor,
which is expected to suppress FM, and �c� increased stability
of low-spin �LS� Co3+ due to the larger spin gap arising from
the narrower eg-derived band.25 This results in two unique
situations. First, suppression of FM order promotes compe-
tition with competing ground states, enhancing phase sepa-
ration. Second, we are provided with an opportunity to study
the interplay between phase separation and spin state. These
features are clearly visible in Fig. 1. At x=0 the onset tem-
perature of the spin-state transition �TSST� is almost 200
K,25,26 increased from 30 K in LSCO. TSST�x� marks the
transition from an LS/LS state for Co3+ /Co4+ to a state with
finite spin Co3+. Based on prior work, intermediate spin
�IS�/LS is expected.22 As x is increased, TSST decreases due
to stabilization of IS Co3+, although above 0.10 the signature
of TSST is obscured by paramagnetic Co4+.27 Remarkably, but
in agreement with recent work,22 between x=0.20 and 0.25 a
LROFM state abruptly appears. Given this, we speculate that
TSST extrapolates to zero at this x �dotted line�, i.e., FM oc-
curs as soon as finite spin Co3+ ions are stabilized to suffi-
ciently low T. Note that TC ��70 K� is suppressed com-
pared to LSCO �TC=230 K at x=0.3�.24 At higher T, we find
clear evidence of a temperature scale, T� ��250 K�, where
short-range FM spin correlations begin. Below, we will focus
on a single x representative of the FM phase �0.30�, illustrat-
ing the behavior in detail.

The T dependence of the magnetization, M �measured in a
field, �0H=1 mT after field cooling �FC� and zero FC
�ZFC�� is shown in Fig. 2�d�. A sharp increase in the FC
M�T� is observed at 70 K, along with an increase in rem-
nance �MR, Fig. 2�e��. NPD confirms FM,23 with TC
�70 K. Figure 2�a� shows the T dependence of the reso-
lution limited FM �101� reflection, confirming LRO. Hyster-
esis loops at 10 K �Fig. 3�a�� have a large high H slope and
an FM magnetization, MS, of only 0.2 �B /Co, suggesting
that, although the FM is LRO, its volume fraction is �1, i.e.,
the material is not in a single LROFM phase. Crude esti-
mates based on comparison to the expected MS suggest vol-
ume fractions �10%. Additional evidence for multiple mag-
netic phases is provided below. Figure 2�d� also shows a tail
in the FC M�T� well above 70 K, which joins the ZFC curve
at 250 K �see inset�. As shown in Fig. 2�e�, this is accompa-
nied by finite MR and coercivity �HC�, which disappear at
250 K. The origin of this high-T magnetism is clarified by
the magnetic SANS cross section, d� /d��T�, which is plot-
ted in Fig. 2�b� at q=0.005 Å−1 �a length scale of �1000 Å�
and q=0.08 Å−1 �tens of angstrom�. The low-q d� /d� turns
on at 70 K, consistent with the LROFM �Figs 2�a�, 2�d�, and
2�e��. At such low q, d� /d��q� adheres to the Porod law,
d� /d��q−4 �due to scattering from LROFM domains�, as
discussed in detail in Ref. 28. The high-q d� /d� �Fig. 2�b��
is distinctly different from the critical scattering behavior in
conventional single-phase LROFM systems. First, it exhibits
a long high-T tail, to temperatures far in excess of TC. The
high-T region is magnified in the inset, to illustrate the simi-
larity to M�T� �inset to Fig. 2�d��. This indicates that short-
range spin correlations begin at a well-defined temperature,

T�. Given that these correlations are accompanied by en-
hanced M, and finite MR and HC, we identify them as FM. At
lower T we observe a peak in the high-q d� /d��T� �not at
TC� but d� /d� does not fall to zero as T is further lowered.
This is in sharp contrast to a fully long-range ordered FM,
demonstrating that this system does not exhibit phase pure
LROFM. There is in fact a wide range, below 70 K, where
LROFM and SROFM spin correlations occur simulta-
neously. In the high-q range, d� /d��q� is Lorentzian �see
Ref. 28�, providing a magnetic correlation length, 	, of
around 10 Å at T
70 K �independent of T�, increasing to
�80 Å at lower T �Fig. 2�c��.28 Above 110 K the scattering
is too weak to extract 	.

We interpret the data of Fig. 2 within a picture illustrated
in Fig. 3�c�. At T�, FM spin correlations emerge with a cor-
relation length of 2–3 Co-O-Co lengths, accompanied by fi-
nite MR and HC. Given this short range, we believe that small
spin clusters, or polarons, are responsible.29 In LSCO there is
accumulating evidence for seven-site spin-state polarons,
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FIG. 2. �Color online� Temperature dependence �at x=0.30� of
�a� the intensity of the �101� neutron-diffraction peak, �b� the mag-
netic small-angle neutron scattering absolute cross section at high q
�0.078 Å−1, right axis, after subtraction of the Porod component�
and low q �0.005 Å−1, left axis�, �c� the magnetic correlation
length, �d� the 1 mT magnetization after field cooling and zero field
cooling, and �e� the coercivity �left axis� and remnant magnetization
�right axis�. In �b� and �e� the insets are closeups around 250 K.
Dotted lines are guide to the eyes; the solid line in �a� is a mean-
field order parameter. Vertical dotted lines mark TC and T�. Error
bars are based on one standard deviation.
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where a Co4+ ion stabilizes six nearest-neighbor IS Co3+

ions, the doped hole being delocalized within the cluster.30–32

The expected spatial extent of such a polaron �two Co-O-Co
lengths in the absence of any interpolaron correlations� is
quite consistent with our data �2.6 Co-O-Co distances at the
highest T�, although the spin excitons believed to form
around O defects in LCO are also possible.33 As T is lowered
the cluster density increases down to 70 K, at which point
longer range FM clusters emerge and form a network, pro-
viding the LROFM detected by NPD and SANS. As in
LSCO, it is likely that the nucleation of this network is in-
fluenced by local doping fluctuations.34 Due to the sup-
pressed FM exchange the volume fraction of the LROFM
phase is low, resulting in a state below 70 K �Fig. 3�c��
where an LROFM network exists within a non-FM matrix
containing SRO clusters/polarons. The situation is analogous
to LSCO at intermediate x �i.e., 0.17–0.22�, where a LROFM
network of coalesced clusters coexists with a non-FM matrix
exhibiting incommensurate magnetism ascribed to spin-state
polarons.31 At still lower T the LROFM phase fraction grows
at the expense of the SROFM phase and the high-q d� /d�
drops. As discussed below, M�H� loops at sufficiently low T
�2 K� are dominated by the LROFM phase.

The most interesting behavior is shown in Figs. 2�e�, 3�a�,
and 3�b�. As touched upon above, close inspection of M�H�
at T
70 K reveals significant HC. Figure 2�e� shows that
HC turns on at 250 K, increasing with decreasing T to about
0.8 T at 100 K. The finite MR and HC indicate that the
SROFM clusters/polarons possess magnetocrystalline aniso-
tropy �MCA�. Although this is perhaps surprising, note that

�a� the range of the spin correlations, though short, is suffi-
cient to sample the crystal structure and �b� spin excitons in
LCO are thought to acquire finite MR via interaction with the
matrix.33 Remarkably, as T is further lowered, and the
LROFM phase orders, HC falls by an order of magnitude in
a T interval of only 50 K. As T is further reduced, deep into
the LROFM phase, HC increases again, reflecting the ther-
mally activated nature of the reversal. It is clear from these
data that the LROFM phase has considerably lower HC than
the high-T SRO regions. This could reflect a weaker MCA
�possible, given the importance of the surface for small
clusters/polarons� or reduced HC due to domain formation in
the LROFM network. The latter is analogous to the single
domain to multidomain crossover in FM nanoparticles and
the percolation-induced HC reduction in FMs.24

The highly unusual region from 50 to 100 K, where
dHC /dT
0, is reminiscent of thermal exchange-spring be-
havior in coupled hard/soft systems with distinct TC’s,35

where the ordering of the lower HC low-T phase lowers the
overall HC via exchange coupling to the high-HC phase.
M�H� loops where the high-H slope has been subtracted and
M is normalized to its high-H value �Fig. 3�b��, add weight
to this argument. At both 10 K �the LROFM region� and 100
K �the SROFM region� we find relatively featureless loops,
albeit with rather different HC and MR /MS. At intermediate T
�i.e., 50 K�, M�H� is very different, exhibiting the character-
istic “split-loop” appearance of hard/soft composites. A rapid
reversal occurs at low H, followed by a gradual response to
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high negative H. Minor loops �Fig. 4�b�� were obtained by
applying +7 T, reducing H to a series of values from +1
down to −7 T, then sweeping back to +7 T. Remarkably,
there exists a large region over which M�H� is completely
reversible. In fact, H can be reduced to values as low as
−2 T �Fig. 4�b�� before the recoil M�H� deviates from the
major loop. At field values �−2 T, the minor loops open,
indicating an abrupt onset of irreversibility. This is clearer in
the inset, where the normalized minor loop area
�Aminor /Amajor� is negligible down to −2 T, above which it
increases rapidly. This is prototypical exchange-spring
behavior.17 The reversibility arises from field-induced wind-
ing of an exchange spring in the relatively large soft regions
�i.e., the LROFM cluster network in Fig. 3�c��, leaving the
spins at the magnetic interface pinned by exchange coupling
to the hard region �the SROFM clusters/polarons�. In es-
sence, a partial domain wall forms in the soft regions, being
compressed toward the interface as H is decreased. As H is
increased back to +7 T, the recoil is highly reversible due to
unwinding of the exchange spring. If H decreases beyond
−1.5 T however, the spring “breaks” and reversal of the hard
regions occurs, leading to strong irreversibility �Fig. 4�b��.
This is completely absent in minor loops at 2 and 100 K
�Figs. 4�a� and 4�c��, where the hard/soft coexistence no
longer occurs. These loops reveal strong irreversibility at all
H, i.e., conventional coercive mechanisms. Although the
above provides unequivocal evidence for exchange coupling
between phase-separated regions, the mechanism for the cou-
pling is far from clear. The reversal of the soft regions at
H�0 indicates that this is predominantly FM �AF interac-

tions lead to reversal at H
0� while the observation of such
clear exchange-spring behavior indicates that the coupling
must be of significant strength. This is quantified by the data
on the right axis of the inset of Fig. 4�b�, which show the
exchange shift �HE, the displacement of the minor loop from
zero field� vs minor loop final field. HE is negative, shows a
significant maximum value of 15 mT, then decreases rapidly
as the irreversibility field of the hard loop is exceeded, as
expected for a coupled hard-soft system. Development of a
reasonable understanding of the mechanisms by which the
LROFM cluster network can couple to the SRO clusters/
polarons, hinges on an understanding of the interaction with
the non-FM matrix however, which is in its infancy.33

In summary, we have shown that Pr1−xCaxCoO3 exhibits
an unusual form of magnetic phase separation where short-
range ferromagnetic order coexists with long-range ferro-
magnetism. This leads to the observation of spontaneous for-
mation of a hard/soft composite displaying prototypical
exchange-spring magnetism, a rare example of strong cou-
pling between magnetically phase-separated regions in a
complex oxide. In addition to providing a potential means to
improve our understanding of the interface region between
coexisting phases, these results highlight the ability of elec-
tronic phase separation to access nanostructured magnetism,
in the absence of chemical interfaces.
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