
System Builders Manual for Version 2.2.1 of the
NIST DMIS Test Suite

(for DMIS 5.2)

Thomas R. Kramer (thomas.kramer@nist.gov, phone 301-975-3518)
John Horst (john.horst@nist.gov, phone 301-975-3430)

Intelligent Systems Division
National Institute of Standards and Technology

Technology Administration
U.S. Department of Commerce

Gaithersburg, Maryland 20899, USA

NISTIR 7715
October 25, 2010

System Builders Manual NIST DMIS Test Suite 2.2.1
Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied.

Acknowledgements
Funding for the work described in this paper was provided to Catholic University by
the National Institute of Standards and Technology under grant Number
70NANB9H9131.
ii

System Builders Manual NIST DMIS Test Suite 2.2.1

iii

Table of Contents

1 Introduction. 1
1.1 Overview. 1
1.2 Arrangement of this Manual. 1
1.3 Use of Fonts . 2
1.4 Compiling the Tutorials . 2

2 C++ Classes Representing DMIS . 3
2.1 Overview. 3
2.2 Anatomy of the C++ Classes . 4
2.3 Naming C++ Classes and Attributes . 7
2.4 Automatically Generated C++ Attribute Names . 8
2.5 Automatically Generated C++ Class Names . 8
2.6 Using the C++ classes. 9
2.7 The isA Function . 11
2.8 Parse Tree . 12

3 Namespaces NDTS and NDTU . 13
3.1 Namespace NDTS . 13
3.2 Namespace NDTU . 14

4 The “makeBound” Tutorial Program . 15
4.1 What the Program Does . 15
4.2 How to Run the Program . 15

5 The “Generate” Tutorial Program. 17
5.1 What the Program Does . 17
5.2 How to Run the Program . 17

6 The “Analyze” Tutorial Program . 18
6.1 What the Program Does . 18
6.2 How to Run the Program . 18

Appendix A Compiling Tutorials from Source Code in Windows .20

System Builders Manual NIST DMIS Test Suite 2.2.1
1 Introduction

1.1 Overview

This is a system builders manual for the NIST DMIS Test Suite, version 2.2.11. The purpose of
this manual is to help system builders use software provided in the test suite for building systems
that implement DMIS (the Dimensional Measuring Interface Standard).

The test suite and this manual were prepared at the National Institute of Standards and
Technology (NIST). There are also a “Users Manual for Version 2.2.1 of the NIST DMIS Test
Suite (for DMIS 5.2)” and a “Maintainers Manual for the NIST DMIS Test Suite Version 2.2.1”.
The users manual should be read (or scanned, at least) before reading this system builders manual
because this manual assumes the reader understands things like “parser” that are explained in the
users manual. Also, the users manual has information about DMIS 5.2. The test suite, which
includes all three manuals, may be downloaded from

http://www.isd.mel.nist.gov/projects/metrology_interoperability/dmis_test_suite.htm

In addition, since the test suite is very large (so that prospective users may want to look at the
manuals before deciding whether to download it), the manuals may be downloaded separately
from the same site.

This manual includes descriptions of three sets of example source code. The first set,
“makeBound”, focuses on the core of a DMIS generator implementation. The second set,
“generate”, is a template for a DMIS generator implementation. The third set, “analyze”, is a
template for a DMIS consumer application. The descriptions are given at the level of detail
appropriate for someone who already knows C++ (including inheritance) and is comfortable
writing C++ programs. The manual contains no exercises or problems for the reader to work.
However, there are instructions for compiling the tutorial programs that could be followed as an
exercise. Also, the reader may find it helpful to experiment by changing the source code of the
tutorials, recompiling them, and running them.

1.2 Arrangement of this Manual

The remaining sections of this manual are:

• Section 2 (C++ Classes Representing DMIS) - describes the C++ classes that represent
DMIS.

• Section 3 (Namespaces NDTS and NDTU) - describes how two C++ namespaces are
used to help avoid naming conflicts.

• Section 4 (The “makeBound” Tutorial Program) - describes the C++ program named
“makeBound” that shows how to use the C++ classes to generate one line of DMIS code.

• Section 5 (The “Generate” Tutorial Program) - describes the C++ program named
“generate” that shows how to use the C++ classes to build a system that generates DMIS
input files.

• Section 6 (The “Analyze” Tutorial Program) - describes the C++ program named
“analyze” that shows how to use the parser and the C++ classes to build a system that
reads DMIS input files and processes them.

1. In the remainder of this manual “the test suite” means the NIST DMIS Test Suite, version 2.2.1.
1

System Builders Manual NIST DMIS Test Suite 2.2.1
1.3 Use of Fonts

In this manual:
• DMIS code is shown in this font.
• File and directory names are shown in this font.
• C++ code is shown in this font.
• Commands typed in a command window are shown in this font.
• DEBNF1 code is shown in this font.

1.4 Compiling the Tutorials

The tutorial programs may be compiled using any modern C++ compiler. The tutorials are already
compiled for Linux, SunOS, and Windows, so it is not necessary to recompile them unless they
will not run on your system. If you want to recompile them on your system, continue reading this
section.

1.4.1 Linux

For Linux, edit the Makefile in tutorials/linuxSun so that LINCOMPILE and LINLINK are set
to point to your C++ compiler. Then the tutorials can be recompiled from the tutorials/linuxSun
directory with the following commands.

make binLinux/makeBound

make binLinux/analyze

make binLinux/generate

1.4.2 Sun

For SunOS, edit the Makefile in tutorials/linuxSun so that SUNCOMPILE and SUNLINK are
set to point to your C++ compiler. Then the tutorials can be recompiled from the tutorials/
linuxSun directory with the following commands.

make binSun/makeBound

make binSun/analyze

make binSun/generate

1.4.3 Windows

For Windows, the tutorials (and all other C++ code) have been compiled using the Microsoft
Visual C++ 2008 Express Edition, which may be downloaded from http://www.microsoft.com/
express/vc and used with no charge. This compiler must be run using its graphical user interface.

To rebuild an already-built executable:
• Start Visual C++.
• From the File menu, select Open.
• In the Open Project popup window that appears, use the browser to choose the project

you want. Projects have a “.sln” suffix (analyze.sln, for example). Then press the Open
button. The popup will disappear.

• From the Build menu, select Rebuild Solution.
• Select Save All from the File menu, then select Exit from the File menu.

1. DMIS Extended Backus-Naur Form
2

System Builders Manual NIST DMIS Test Suite 2.2.1
Instructions for compiling the tutorials in Windows starting from source code are given in
Appendix A. If all you want do is change existing source code and then recompile, the
instructions above should work.

2 C++ Classes Representing DMIS

2.1 Overview

The C++ classes represent full DMIS. They may be found in the dmis.hh and dmis.cc files in the
utilityComponents/linuxSun/source directory or in the dmis.h and dmis.cpp files in the
utilityComponents\windows\source directory. There are a lot (1993) of C++ classes for DMIS.

If you are building a DMIS generator, you use the classes by populating them in a program which
eventually calls a single printSelf function to generate a file of DMIS code. If you are building a
DMIS consumer, you use the classes in a program that, near the beginning, calls a single parse
function to read in a file of DMIS code. The parsing automatically builds a parse tree consisting of
instances of the C++ classes. Then the rest of your program traverses and processes the parse tree
to do whatever you want with it.

Section 9.5 of the users manual for the test suite describes DEBNF in detail. Briefly:
• A DEBNF file is a formal description of part or all of the DMIS language.
• A DEBNF file is a list of productions.
• A production sets a name to be equivalent to any of a list of definitions.
• Each definition is a list of expressions1.
• An expression is a name (of a fixed symbol or a production), or a single character, or an

optional list of expressions (or a couple other things less frequently).

The C++ classes for DMIS were built automatically from the DEBNF file for DMIS. All the C++
names of classes and attributes are derived from names given in the DEBNF either as names of
productions or as comments. Section 2.3, Section 2.4, and Section 2.5 give details on how classes
and attributes are named.

The rules for determining whether a class will be defined to represent something are simple.

First, a class is defined for every production in the DEBNF that does not
• define a list,
• give a dummy definition for a terminal, or
• give the spelling of a token name.

Second, if a DEBNF production has two or more definitions, an additional class is defined for
each definition, and the class for the production is the parent of each additional class.

The DEBNF tends to be in a deep hierarchy with short definitions rather than in a shallow
hierarchy with long definitions. Since the C++ class hierarchy follows the DEBNF hierarchy, it is
deep, too.

1. In formal DEBNF, the expressions are separated by commas. In this manual, the separating commas are
omitted to make the DEBNF easier to read.
3

System Builders Manual NIST DMIS Test Suite 2.2.1
2.2 Anatomy of the C++ Classes

When a class is constructed from a production that has more than one definition, it has the form
shown in Figure 1. There is a single class, dmisCppBase, from which all other classes are
derived. It exists in order to introduce the virtual function printSelf. It also has the form shown in
Figure 1 except that it does not have the public parentClass line.

When a class is constructed from a production that has a single definition, the class has the form
shown in Figure 2. The names in bold type in Figure 1 and Figure 2 will change from class to
class. All other characters in those figures outside of comments are the actual characters that are
used.

class aClass :
 public parentClass
{
public:
 aClass(); // constructor with no arguments
 ~aClass(); // destructor
 void printSelf() = 0; // virtual printSelf method
};

Figure 1. Archetype C++ Parent Class

class aClass :
 public parentClass
{
public:
 aClass(); // constructor with no arguments
 aClass(// constructor with arguments
 firstType * firstTypeIn, // first argument to constructor
 lastType * lastTypeIn); // last argument to constructor
 ~aClass(); // destructor
 void printSelf(); // printSelf method
 firstType * get_firstType(); // get function for first attribute
 void set_firstType(firstType * firstTypeIn); // set function for first attribute
 lastType * get_lastType(); // get function for last attribute
 void set_lastType(lastType * lastTypeIn); // set function for last attribute
private:
 firstType * a_firstType; // first attribute
 lastType * a_lastType; // last attribute
};

Figure 2. Archetype C++ Class
4

System Builders Manual NIST DMIS Test Suite 2.2.1
The printSelf function declared in Figure 2 is implemented for all such classes in dmis.cc (for
Windows, dmis.cpp). The printSelf functions print the DMIS code represented by the classes.
The printSelf functions are powerful because the printSelf function for each class, in addition to
printing whatever DMIS is needed for the class itself, calls the printSelf functions for the
attributes of the class. Thus, an entire DMIS file can be printed by a single call to
inputFile::printSelf(). The “generate” tutorial provides an example of this.

There is only one function that prints DMIS that is not a printSelf function. That is the
printDouble function. It prints a double with the default number of decimal places (six, usually)
but it suppresses trailing zeros. For example, it prints 3.65 rather than 3.650000.

The constructor that takes no arguments does not set any attribute values.

The constructor that takes arguments takes one argument for each attribute, and the type of that
argument is the same type as the type of the attribute. The constructor sets the value of each
attribute to the value given in the arguments.

The destructor does not free any memory for attributes that may have been allocated.

The archetype in Figure 2 is shown with two attributes, but in general, there may be zero to many
attributes. For each attribute there is:

• a private attribute,
• a public get_attribute function that returns the value of the attribute,
• a public set_attribute function that sets the value of the attribute,
• an argument to the constructor that takes arguments.

The names used for arguments in the constructor and the set functions are formed by adding the
suffix In to the base names of the attributes. The names used for attributes are formed by adding
the prefix a_ to the base names of the attributes.

When there are no attributes, there is no constructor that takes arguments, and there are no
get_attribute or set_attribute functions.

Only one type of aggregate is used; that is list. Every list is of the form std::list<something>. All
of the standard C++ list manipulation functions will work with every list.

The value of every attribute is a pointer of some sort except when an attribute of a class is a bool
or a non-optional int or double. When an attribute is optional and its type is int or double, the
value of the attribute is a pointer.

Only those items that can differ between instances of a class are represented as attributes of the
class. Items such as statement names and commas that are always the same in every instance of a
class are not represented as attributes of the class. Figure 3 shows the definition of the boundStm
class as given in dmis.hh. As shown in Figure 3, a boundStm has the DEBNF definition BOUND
’/’ boundMinor #. The only thing in a boundStm that varies between instances is the
boundMinor, so only the boundMinor is represented in the boundStm class. It is represented
by the attribute a_boundMinor, which is a pointer to a boundMinor. The class name boundStm
is obtained by using the production name boundStm from the DEBNF. The production name is
not shown on Figure 3; only its definition is shown.
5

System Builders Manual NIST DMIS Test Suite 2.2.1
When part of a DMIS statement is optional and contains items that can differ between instances of
the statement, there is an attribute (which is a pointer) for each of those items. If an instance of the
statement does not include the optional part, then in the class instance representing the statement,
the pointers for the items in the optional part are null pointers (i.e. the value of the pointer is 0).

When part of a DMIS statement is optional but contains only items such as keywords and commas
that do not differ between instances of the statement that have the optional part, there is a boolean
attribute for the optional part. In class definitions, this is a bool with the usual allowed values of
true and false.

The callMacro class shown in Figure 4 provides an example of the points in the preceding two
paragraphs. The optional [’,’ CHARSTRING] at the end of the DEBNF text represents a string
consisting of the arguments to the macro being called. If a DMIS CALL statement has a comma
and string such as ,’3, 2.5’ at the end, then the value of the a_string attribute of the instance
of the callMacro class representing the statement will be a pointer to the string “3, 2.5”. If not, the
value will be null. If the statement has EXTERN,DMIS, at the beginning, then the value of the
has_EXTERN attribute of the class instance will be true. If not, the value will be false.

/* boundStm

This is a class for the single definition of boundStm. It represents the following items:

BOUND ’/’ boundMinor #

*/

class boundStm :
 public dmisFreeStatement,
 public dmisStatement
{
public:
 boundStm();
 boundStm(
 boundMinor * boundMinorIn);
 ~boundStm();
 void printSelf();
 boundMinor * get_boundMinor();
 void set_boundMinor(boundMinor * boundMinorIn);
private:
 boundMinor * a_boundMinor;
};

Figure 3. boundStm C++ Class
6

System Builders Manual NIST DMIS Test Suite 2.2.1
2.3 Naming C++ Classes and Attributes

The method of naming attributes is intended to make the meaning of the attributes clear to anyone
who knows DMIS. When the names of productions used in the DEBNF file for DMIS convey
what they mean intuitively, the production names are used to make C++ names. In many cases, the
production names or names derived from them are not very good. In the last release of the test
suite, it was necessary to live with bad names.

This release, however, implements a method of ensuring that good names are used. To assign a
base name to an attribute, an EBNF comment of the form (*A=name*) may be inserted
immediately after any expression in an EBNF definition. The C++ generator then assigns the
name to the attribute derived from the expression. About 800 attribute names have been assigned
that way. To assign a name to a class, an EBNF comment of the form (*C=name*) may be
inserted immediately after an EBNF definition. The C++ generator then assigns the name to the

/* callMacro

This is a class for the single definition of callMacro. It represents the following items:

[EXTERN ’,’ DMIS ’,’] mLabel [’,’ CHARSTRING]

*/

class callMacro :
 public callMinor
{
public:
 callMacro();
 callMacro(
 bool has_EXTERNIn,
 mLabel * mLabelIn,
 char * stringIn);
 ~callMacro();
 void printSelf();
 bool get_has_EXTERN();
 void set_has_EXTERN(bool has_EXTERNIn);
 mLabel * get_mLabel();
 void set_mLabel(mLabel * mLabelIn);
 char * get_string();
 void set_string(char * stringIn);
private:
 bool has_EXTERN;
 mLabel * a_mLabel;
 char * a_string;
};

Figure 4. callMacro C++ Class
7

System Builders Manual NIST DMIS Test Suite 2.2.1
class derived from the definition. About 270 class names have been assigned that way. If a name
has not been inserted manually, then the automatic methods described in Section 2.4 and Section
2.5 are used.

2.4 Automatically Generated C++ Attribute Names

The names of automatically generated C++ attributes are formed by concatenating the prefix a_
with the type of the data. For example, in Figure 4, the attribute name a_mLabel is used where
the data type is mLabel.1

When the data type is char *, the attribute name is a_string, since a_char sounds like a single
char.

In the case of an attribute whose value is a list, the name of the attribute is taken from the name of
the list in DEBNF, with the a_ prefix added as described above. In most cases this means that the
name (before the prefix or suffix is added) is made by concatenating the type of thing listed with
List. For example, an attribute of type std::list<dmisItem *> has the name a_dmisItemList. In
some cases, the DEBNF name was not formed by concatenating, so the attribute name is irregular.
For example, a boundFeat has an attribute named a_featureList which is a list of featureLabel,
not a list of feature.

When the data type is bool, the attribute name is made by concatenating the prefix has_ with the
first name in the optional items being represented. For example, in Figure 4, the attribute that
indicates whether EXTERN,DMIS, is used is named has_EXTERN.

2.5 Automatically Generated C++ Class Names

The automatically generated name of each class corresponding to an entire production is the same
as the name of the production. When the production has only one definition, only one class is
defined.

When there are two or more definitions for a production, an additional class is defined for each
definition. If possible, the name for the class for each definition is given the form
productionName_itemName, where itemName is the name of one of the expressions in the
definition.

That form is possible when any of the following three conditions holds.

(1) Every definition has exactly one expression and each of those expressions has a name (not all
expressions have names). In this case, itemName is the name of the expression.

For example, if the DEBNF is
callType = WAIT | CONT | ATTACH ;
then the class names will be callType_WAIT, callType_CONT, and callType_ATTACH.

(2) Every definition starts with a keyword or a nonterminal and no two definitions start with the
same thing. In this case itemName is the name of the first expression in the definition.

1. If there are two or more occurrences of the same type of data in a class, this method does not work. An
automatic method has been implemented for these cases that forms the name by adding _1, _2, etc. Since
this always makes bad names, however, in every case where the method would be used, a name has been
assigned using a comment, so no names of that sort will be found in the C++.
8

System Builders Manual NIST DMIS Test Suite 2.2.1
For example, if the DEBNF is
sensorMltprbItem = stringVal ’,’ sensorProbeGeometry
 | intVal ’,’ sensorProbeGeometry ;

 then the class names will be sensorMltprbItem_stringVal and sensorMltprbItem_intVal.

(3) Every definition is identical, except for one term that is either a keyword or a nonterminal. In
this case itemName is the name of the distinguishing term.

For example, if the DEBNF is
constArc = ARC ’,’ fLabel ’,’ bfConst
 | ARC ’,’ fLabel ’,’ projctConst

| ARC ’,’ fLabel ’,’ trConst ;

then the class names will be constArc_bfConst, constArc_projctConst, and
constArc_trConst.

In all cases in which none of the three conditions above holds, a class name has been assigned in
the EBNF file, and that is used. If none of the above conditions held and the EBNF file did not
provide a class name, then an automatic method using suffixes _1, _2, etc. for constructing class
names would be called, and it would make a poor name; in this version of the test suite, that never
happens.

2.6 Using the C++ classes

You need to understand C++ and DMIS in order to use the C++ classes that represent DMIS.
Once you understand as much of DMIS as you plan to implement, using the C++ classes is not
difficult. To find the class or classes required to deal with a particular DMIS statement, however,
two documents are needed: (1) a copy of the DMIS 5.2 standard (electronic or paper) and (2) an
electronic copy of the header file defining the classes. Since there are a lot of classes (1993 for full
DMIS, covering over 50,000 lines in the header file), looking through the header file manually
will not work.

The quickest way to find the classes needed to deal with a particular DMIS statement is to begin
by searching the header file for class statementStm, where statement is the name of the
statement in lower case letters. For example, if you want to find the classes for the BOUND
statement, search for class boundStm. That will get you very quickly to the class for the
statement. In a few cases, that is all you need to do. In most cases, however, the class for the
statement has attributes that are other classes, and you will need to look at those classes, and they,
in turn, may have attributes, and so on through perhaps five or six levels.

For example, instances of six classes are used in constructing the DMIS BOUND statement
BOUND/F(f1),F(f2),F(f3). They are: boundStm, boundFeat, fLabel, labelNameCon,
labelNameConst, and featureLabel. The C++ code (from dmis.hh) for the first two of these
(and boundMinor) is shown in Figure 5.
9

System Builders Manual NIST DMIS Test Suite 2.2.1
/* boundStm - represents: BOUND ’/’ boundMinor # */
class boundStm :
 public dmisFreeStatement,
 public dmisStatement
{public:
 boundStm();
 boundStm(

boundMinor * boundMinorIn);
 ~boundStm();
 void printSelf();
 boundMinor * get_boundMinor();
 void set_boundMinor(boundMinor * boundMinorIn);
private:
 boundMinor * a_boundMinor; };

/* boundMinor - This is a parent class. */
class boundMinor :
 public dmisCppBase
{public:
 boundMinor();
 ~boundMinor();
 void printSelf() = 0; };

/* boundFeat - represents: fLabel ’,’ featureList */
class boundFeat :
 public boundMinor
{public:
 boundFeat();
 boundFeat(

fLabel * fLabelIn,
std::list<featureLabel *> * featureListIn);

 ~boundFeat();
 void printSelf();
 fLabel * get_fLabel();
 void set_fLabel(fLabel * fLabelIn);
 std::list<featureLabel *> * get_featureList();
 void set_featureList(std::list<featureLabel *> * featureListIn);
private:
 fLabel * a_fLabel;
 std::list<featureLabel *> * a_featureList;};

Figure 5. C++ Some Classes for BOUND/F(f1),F(f2),F(f3)
10

System Builders Manual NIST DMIS Test Suite 2.2.1
The boundStm class has one attribute, a_boundMinor, and its value is a boundFeat. The C++
code and the attribute name show that the value of the attribute a_boundMinor is a boundMinor.
boundMinor, however, is a parent type that is not intended to be instantiated. boundFeat is the
child class of boundMinor that matches the DMIS code we want to build (since BOUND is
followed by F(f1)), so we use an instance of boundFeat.

The boundFeat instance has two attributes, a_fLabel and a_featureList. The value of a_fLabel
is an instance of fLabel. The value of a_featureList is a std::list<featureLabel *> which, in this
case, has two elements, both of which are fLabels.

Continuing the analysis through fLabel, labelNameCon, and labelNameConst is left to the
reader.

2.7 The isA Function

The isA function is provided to get run-time information about the type of an object (i.e., an
instance of a class). This is useful for dealing with a parse tree. Frequently, in analyzing a parse
tree, you will know that an object is of some parent type and will need to know what child type it
is. That’s where you use isA. The function takes two arguments: an object, and a type, so that a
call has the form isA(object, type).

For example, suppose in your application you have an instance of a callRoutine. One of the
attributes is a_callType, which is (of course) a callType. You need to determine whether it is a
callType_WAIT, a callType_CONT, or a callType_ATTACH because your application will take
different actions according to what it is. So you write (completely ordinary) if, else if, … else
code using the isA function as your test:

if (isA(a_callType, callType_WAIT))
 action1;
else if (isA(a_callType, callType_CONT))
 action2;
else if (isA(a_callType, callType_ATTACH))
 action3;

The analyzeItems function in the “analyze” tutorial program provides another example of this
kind of code.

The isA function is not a normal function. It could not be a normal function since one of the
arguments is a type. Instead, isA is the following compiler macro

 #define isA(a,b) dynamic_cast<b *>(a)

This uses C++’s dynamic_cast construct. The dynamic_cast construct is the standard C++ method
of casting an object known to be polymorphic. Normal C style casts do not work on polymorphic
objects. Dynamic_cast does not work on an object that is not polymorphic, but every instance of
any of the C++ classes for DMIS is polymorphic, so dynamic_cast will always work.
Dynamic_cast returns a pointer to an object of the type being tested if the object being tested is of
the type being tested and null if not.

Often, once you have determined that an object is of a particular type, you will want to cast it into
that type. To do that, call dynamic_cast explicitly as shown in Figure 6.
11

System Builders Manual NIST DMIS Test Suite 2.2.1
You can, of course, combine the assignment and the test, in which case you do not use isA at all.
This is shorter but a little obscure, as shown in Figure 7.

2.8 Parse Tree

When the yyparse function runs in the parser, it parses a DMIS file and builds a parse tree named
tree that represents the file. In C++ terms, the parse tree is an instance of the inputFile class. An
inputFile has three attributes, as follows:

 dmisFirstStatement * a_dmisFirstStatement;
 std::list<dmisItem *> * a_dmisItemList;
 endfilStm * a_endfilStm;

The list of dmisItems in the middle of the parse tree can be conveniently examined one at a time
by a for loop that iterates using a standard list iterator in a function of the sort shown in Figure 8.

int foo(callType * callType1)
{
 callType_WAIT * callType2;
 if (isA(callType1, callType_WAIT))
 {
 callType2 = dynamic_cast<callType_WAIT *>(callType1);
 doSomething(callType2);
 }
}

Figure 6. Using dynamic_cast with isA

int foo(callType * callType1)
{
 callType_WAIT * callType2;
 if ((callType2 = dynamic_cast<callType_WAIT *>(callType1);))
 {
 doSomething(callType2);
 }
}

Figure 7. Using dynamic_cast without isA
12

System Builders Manual NIST DMIS Test Suite 2.2.1
The same sort of iterator and for loop can be used to examine any list. Just change the type of
thing listed.

If there are more than 100 different possibilities (dmisFreeStatement has 179), the Windows
C++ compiler may be unable to handle the code. In this case, the
 if (A) {do_a();} else if (B) {do_b();} … else if (Z) {do_z();}

construct may be replaced with

 if (A) {do_a(); return;} if (B) {do_b(); return;} … if (Z) {do_z(); return;}

The “analyze” tutorial described in Section 6 uses an iterator and a for loop of the sort shown
above.

3 Namespaces NDTS and NDTU

In order to avoid name conflicts when you use test suite source code and libraries in your C++
programs, all of the test suite code is in one of two namespaces NDTS or NDTU. Namespaces are
the standard C++ method of modularizing code.

3.1 Namespace NDTS

To use the C++ classes for DMIS in the test suite (plus access functions, parser, and printer), the
NDTS namespace has to be accessed. There are two ways to do this. Both methods start by
putting #include “dmis.hh” (dmis.h for Windows) near the beginning of your program, as shown
in Figure 11. That will enable you to use all the DMIS classes, including their constructors and
access functions.

In the first method of using the NDTS code and library, you put the prefix NDTS:: in your code
before every NDTS name you use. In this method, if you want to use the DMIS parser, you will
also need to put into your file the namespace declaration that is shown in Figure 9. This must
come after the #include dmis.hh line. The first method is used in the generate.cc and
analyze.cc tutorials.

In the second method of using the NDTS code and library, you put a using namespace NDTS;

void doItems(std::list<dmisItem *> * items)
{
 std::list<dmisItem *>::iterator iter;
 for (iter = items->begin(); iter != items->end(); iter++)
 {
 if (isA((*iter), type1))
 …
 else if (isA((*iter), type2))
 …
 }
}

Figure 8. For Loop on dmisItem
13

System Builders Manual NIST DMIS Test Suite 2.2.1
line in your code (after the #include dmis.hh line), as shown in Figure 11. This puts all the
NDTS names in your namespace, so if you use this method, you may get name conflicts. If you
do, you must either change your names or use the first method. If you use the second method and
you want to use the DMIS parser, you will have to include extern declarations in your code similar
to the ones in Figure 9, but without the namespace{} around them.

3.2 Namespace NDTU

The test suite utilities and their helper files are all in namespace NDTU. The utilities can be called
from your C++ program by including a namespace NDTU declaration in your program. The
object file for the utility you want to use and the library must be linked with the object file for your
code. The very short driver files (dmisParserDriver.cc, dmisConformanceCheckerDriver.cc,
dmisConformanceTesterDriver.cc, and dmisConformanceRecorderDriver.cc) in
utilityComponenents/linuxSun/source all provide examples of how to do this. The entire
dmisConformanceTesterDriver.cc file is shown in Figure 10. The only thing you need to put in
the namespace declaration is the function declaration for the utility you want to use.

namespace NDTS {
extern FILE * yyin;
extern int numErrors;
extern int numWarnings;
extern inputFile * tree;

void preprocess(char * fileNameIn);
void resetParser();
int yyparse();

}

Figure 9. Namespace Declaration for Using Parser

namespace NDTU {
 int testDmis(int argc, char * argv[]);
}

int main(int argc, char * argv[])
{
 return NDTU::testDmis(argc, argv);
}

Figure 10. dmisConformanceTesterDriver.cc
14

System Builders Manual NIST DMIS Test Suite 2.2.1
4 The “makeBound” Tutorial Program

4.1 What the Program Does

The makeBound tutorial program shown in Figure 11 generates and prints the DMIS statement
BOUND/F(f1),F(f2),F(f3). The code may also be found in tutorials/linuxSun/source/
makeBound.cc and tutorials\windows\source\makeBound.cpp.

The program defines a makeBound2 function that returns a pointer to a boundStm and defines a
main function that calls makeBound2. When the program is run, it prints
BOUND/F(f1),F(f2),F(f3). The general approach of the function is to make a tree of
constructors. There is no constructor for a populated list, however, so the list is populated using
push_back, the standard C++ function for adding items at the end of a list.

For Linux and Sun, the files dmis.hh and dmis.a are used in compiling the program. For
Windows, the files dmis.h and dmis.lib are used.

4.2 How to Run the Program

4.2.1 Linux

In a Linux terminal window, get into the tutorials/linuxSun directory, and give the command:

binLinux/makeBound

4.2.2 Sun

In a Sun terminal window, get into the tutorials/linuxSun directory, and give the command:

binSun/makeBound

4.2.3 Windows

In a Windows command window, get into the tutorials\windows\makeBound directory, and give
the command:

Debug\makeBound
15

System Builders Manual NIST DMIS Test Suite 2.2.1
#include "dmis.hh"

using namespace NDTS;

boundStm * makeBound2(
 char * boundLabel,
 char * featLabel1,
 char * featLabel2)
{
 std::list<featureLabel *> * featureLabels;

 featureLabels = new std::list<featureLabel *>;
 featureLabels->push_back(new fLabel

(new labelNameCon
(new labelNameConst(featLabel1))));

 featureLabels->push_back(new fLabel
(new labelNameCon

(new labelNameConst(featLabel2))));
 return new boundStm

(new boundFeat
(new fLabel

(new labelNameCon
(new labelNameConst(boundLabel))),

featureLabels));
}

int main()
{
 makeBound2("f1", "f2", "f3")->printSelf();
 return 0;
}

Figure 11. C++ Program to Make BOUND/F(f1),F(f2),F(f3)
16

System Builders Manual NIST DMIS Test Suite 2.2.1
5 The “Generate” Tutorial Program

5.1 What the Program Does

The “generate” tutorial program builds a specific DMIS input file. The source code is in
tutorials/linuxSun/source/generate.cc and in tutorials\windows\source\generate.cpp. This
program illustrates how to use the C++ classes in a program that generates DMIS input files. The
generate.cc file contains good in-line documentation.

The general approach is:
• Define helper functions for building instances of frequently used classes and classes with

a lot of substructure.
• Call the helper functions or constructors repeatedly to build a list of DMIS statements.
• Sandwich the list of DMIS statements between a dmismnStm and an endfilStm to make

an inputFile named theFile.
• Call theFile->printSelf() to print the DMIS input file.

The helper functions are similar to the makeBound2 function in Figure 11. They are:
• makeCartPtmeas - takes six doubles representing a point and a surface normal and

returns a pointer to a ptmeasStm with those values.
• makeLabel - takes a string containing the name for a label and returns a pointer to a

labelNameCon with that name.
• makePtGoto - takes three doubles representing a point and returns a pointer to a

gotoStm saying to go to that point.

For Linux and Sun, the files dmis.hh and dmis.a are used in compiling the program. For
Windows, the files dmis.h and dmis.lib are used.

5.2 How to Run the Program

5.2.1 Linux

In a Linux terminal window, get into the tutorials/linuxSun directory, and give the command:

binLinux/generate

5.2.2 Sun

In a Sun terminal window, get into the tutorials/linuxSun directory, and give the command:

binSun/generate

5.2.3 Windows

In a Windows command window, get into the tutorials\windows\generate directory, and give
the command:

Debug\generate
17

System Builders Manual NIST DMIS Test Suite 2.2.1
6 The “Analyze” Tutorial Program

6.1 What the Program Does

The “analyze” tutorial program shows how the parser and the C++ classes for DMIS can be used
in a system that consumes DMIS input files.

The “analyze” program counts the total number of times each of several nominal feature types is
defined in a set of DMIS input files. This is one of the simplest things a DMIS consumer could do.
The kind of DMIS consumer program that is most interesting and useful would be a DMIS
executor, but even the simplest executor is too complex for a tutorial.

The source code for the program is in tutorials/linuxSun/source/analyze.cc and in
tutorials\windows\source\analyze.cpp. The source code for the “analyze” program has only
five functions, but the program also calls three functions defined in dmisYACC.cc.

1. The main function calls analyzeManyFiles to count the number of instances of each feature
type used in a set of DMIS input files, and then calls reportResults to print the results.

2. The analyzeManyFiles function takes a string argument, fileNameFile, and expects it to be
the name of a file that contains the names of a number of DMIS input files. For each file listed in
the fileNameFile, analyzeManyFiles calls analyzeOneFile.

3. The analyzeOneFile function:
• preprocesses the file whose name is fileName.
• opens the preprocessed file and sets yyin to the opened file.
• exits if the preprocessed file did not open.
• calls yyparse; this parses the preprocessed file and builds a parse tree.
• closes yyin.
• deletes the preprocessed file.
• reports the number of errors and warnings.
• calls analyzeItems if there were no errors or warnings and there are items to analyze.
• resets the parser so it is ready to parse another file.

Almost every DMIS consumer program that uses the parser and C++ classes would include all the
steps in the analyzeOneFile function, except that the analyzeItems function would be replaced.

4. The analyzeItems function looks through the dmisItemList which was built when a DMIS
input file was parsed and adds 1 to the number of instances of a type of feature whenever that type
of feature is found among the dmisItems being analyzed.

5. The reportResults function prints the total number of times each feature type was found in the
DMIS input files that were examined.

6.2 How to Run the Program

The runSomeFull file contains a list of the names of DMIS input files, so “runSomeFull” may be
used as a command argument with the “analyze” program. You can substitute the name of some
other list of DMIS input file names, but be sure the file names are complete relative or absolute
path names.
18

System Builders Manual NIST DMIS Test Suite 2.2.1
6.2.1 Linux

In a Linux terminal window, get into the tutorials/linuxSun directory, and give the command:

binLinux/analyze runSomeFull

6.2.2 Sun

In a Sun terminal window, get into the tutorials/linuxSun directory, and give the command:

binSun/analyze runSomeFull

6.2.3 Windows

In a Windows command window, get into the tutorials\windows\analyze directory, and give the
command:

Debug\analyze runSomeFull
19

System Builders Manual NIST DMIS Test Suite 2.2.1
Appendix A Compiling Tutorials from Source Code in Windows

This appendix gives instructions for making the executable “analyze” from source code using the
Microsoft Visual C++ 2008 Express Edition. If you are using some other version of Visual C++,
these exact instructions are not likely to work, but they may be helpful hints.

The easy way to compile the executable “analyze” is described in Section 1.4.3. The instructions
in this appendix are intended to be used only if the easy way does not work. These instructions
assume that the analyze subdirectory of the tutorials\windows directory does not yet exist. So, if
you want to try these instructions, first delete or rename the analyze subdirectory of
tutorials\windows.

These instructions also work for the executable “generate”. Just substitute
• “generate” for “analyze”.

These instructions also work for the executable “makeBound”. Just substitute:
• “makeBound” for “analyze”

1. Start Visual C++. If it is already running, shut it down and restart it.

2. From the File menu, select New and then Project. This brings up a popup with two large
boxes on top, and three long thin boxes on the bottom, with a check box after the last one.

3. In the top left (Project types) box, select Win32.

4. In the top right (Templates) box, select Win32 Console Application.

5. In the bottom boxes put:

Name - analyze

Location - <NDTS>\tutorials\windows\
where <NDTS> is the full path to the test suite, for example:
R:\proj\dmis\kramer\NistDmisTestSuite2.2.1

Solution Name - analyze

Create directory for solution - leave checked

Then press OK.

6. In the popup that appears, press Next (not Finish).

7. This brings up a popup labeled Application Settings.

Under Application Type, select Console Application.

Under Additional Options, first uncheck Precompiled Header, then check Empty Project.
Then press Finish.

This puts control back into the main Visual C++ window.

8. To get the project to use the source code, in the Project menu of the main window, select
Add Existing Item. This brings up a file browser window. It may be necessary to select Add
Existing Item twice, since only one item at a time can be added.

From the <NDTS>\utilityComponents\windows\source directory, select the following
20

System Builders Manual NIST DMIS Test Suite 2.2.1
source code file, and then press Add:

dmis.h

From the <NDTS>\tutorials\windows\source directory, select the following source code
file, and then press Add:

analyze.cpp

Visual C++ will appear to put the files in a location shown in the Solution Explorer
hierarchy window on the left of the main window. This is a project hierarchy, not a directory
hierarchy (although it looks like a directory hierarchy). If the source code is put in the
wrong place, it can be dragged up or down the hierarchy into the right place. Header files go
in the fake HeaderFiles directory, and.cpp files go in the fake SourceFiles directory.

9. To get the project to use the dmis library, in the Project menu of the main window, select
Add Existing Item. This brings up a file browser window.

From the <NDTS>\utilityComponents\windows\dmisClasses\Debug directory, select
dmis.lib and then press Add.

When you add dmis.lib, Visual C++ will display a popup window asking if you want to
create a rule for making dmis.lib.

Press the No button.

In the Solution Explorer window, dmis.lib goes directly into analyze, not in any fake
directory.

10. Even through Visual C++ knows exactly where the dmis.h file is (and will display it if you
double click on it in the Solution Explorer window), Visual C++ does not find dmis.h
(which is #include’d by analyze.cpp) when it is compiling analyze.cpp unless you do the
following.

From the Project menu of the main window, select Properties.

This will bring up a popup window with a box on the left side containing a hierarchy of
properties. Expand Configuration Properties. Then expand C/C++. Then select Command
Line. A box labeled Additional options will appear at the lower right of the popup. In that
box, enter:

/I ..\..\..\..\parserComponents\windows\source

Then click on OK.

The /I means to use the directory as an include directory. The four sets of double dots are
necessary because, apparently, the compilation is attempted from the
<NDTS>\tutorials\windows\analyze\analyze directory.

11. To make the executable analyze, select Build Solution from the Build menu. The
executable will appear in <NDTS>\tutorials\windows\analyze\Debug\analyze.exe.

Windows will build executables in either the debug mode (meaning to build an executable
with debugging code built in) or in the release mode (meaning to build an executable
without debugging code). In order to run an executable built in the debug mode, it is
necessary to have Visual C++ installed. If the executable is intended to run on a computer
21

System Builders Manual NIST DMIS Test Suite 2.2.1
that does not have Visual C++ installed, release mode must be used when compiling. The
Windows default mode is debug, and the tutorial projects use this setting.

The utilities in the test suite are built in release mode, and the mode is set to release in the
projects that build the utilities. To change from one mode to another, before selecting Build
Solution from the Build menu, select Configuration Manager from the Build menu. A
popup window will appear. In the Configuration column, select either Debug or Release.
Then close the popup.

When an executable is built in release mode, it appears in the project’s top-level Release
directory. For example, if it is built in release mode, the analyze tutorial will appear in
<NDTS>\tutorials\windows\analyze\Release\analyze.exe. A lower level Release
directory will also be created elsewhere in the project; don’t let that confuse you.

The time required for compiling is much longer in release mode – up to ten minutes on a
Dell Dimension 8300 running Windows XP for the dmisConformanceChecker.

12. Select Save All from the File menu, then select Exit from the File menu.
22

	System Builders Manual for Version 2.2.1 of the NIST DMIS Test Suite (for DMIS 5.2)
	1 Introduction
	1.1 Overview
	1.2 Arrangement of this Manual
	1.3 Use of Fonts
	1.4 Compiling the Tutorials
	1.4.1 Linux
	1.4.2 Sun
	1.4.3 Windows

	2 C++ Classes Representing DMIS
	2.1 Overview
	2.2 Anatomy of the C++ Classes
	Figure 1. Archetype C++ Parent Class
	Figure 2. Archetype C++ Class
	Figure 3. boundStm C++ Class
	Figure 4. callMacro C++ Class

	2.3 Naming C++ Classes and Attributes
	2.4 Automatically Generated C++ Attribute Names
	2.5 Automatically Generated C++ Class Names
	2.6 Using the C++ classes
	Figure 5. C++ Some Classes for BOUND/F(f1),F(f2),F(f3)

	2.7 The isA Function
	Figure 6. Using dynamic_cast with isA
	Figure 7. Using dynamic_cast without isA

	2.8 Parse Tree
	Figure 8. For Loop on dmisItem

	3 Namespaces NDTS and NDTU
	3.1 Namespace NDTS
	Figure 9. Namespace Declaration for Using Parser

	3.2 Namespace NDTU
	Figure 10. dmisConformanceTesterDriver.cc

	4 The “makeBound” Tutorial Program
	4.1 What the Program Does
	4.2 How to Run the Program
	4.2.1 Linux
	4.2.2 Sun
	4.2.3 Windows
	Figure 11. C++ Program to Make BOUND/F(f1),F(f2),F(f3)

	5 The “Generate” Tutorial Program
	5.1 What the Program Does
	5.2 How to Run the Program
	5.2.1 Linux
	5.2.2 Sun
	5.2.3 Windows

	6 The “Analyze” Tutorial Program
	6.1 What the Program Does
	6.2 How to Run the Program
	6.2.1 Linux
	6.2.2 Sun
	6.2.3 Windows

	Appendix A Compiling Tutorials from Source Code in Windows

