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S. R. Idelsohn1∗, J. Marti1, E. Oñate1, R. Rossi1 and K.M. Butler2
1International Center for Numerical Methods in Engineering (CIMNE)

Universidad Politécnica de Cataluña
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1 INTRODUCTION

The versatility of polymeric materials, as demonstrated in such features as high strength,
low weight, ease of processing, and capability to form into complex shapes, have led
to their widespread industrial application in aircraft structures, transportation vehicles,
building construction, maintenance and finishing products, electronic boards, bioengi-
neering, structural materials, and many other different applications. Their behavior in
a fire is of considerable interest because they play an important role in the ignition and
growth stages of fire. In this paper, a new computational procedure for analysis of the
combustion, melting and flame spread of polymers under fire conditions is presented. The
method places the fluid as well as the solid problem into a Lagrangian framework [1]. This
approach allows treatment of the whole domain, containing both fluid and solid subdo-
mains which interact with each other, as a single entity and describes its behaviour by a
single set of momentum, continuity and energy equations. The equations are discretized
with the Particle Finite Element Method (PFEM) [2]. The paper is structured as follows.
In the next section the basis of the PFEM is summarized. The essential governing equa-
tions and an overview of the discretization procedure and the general solution scheme are
given. The potential of the PFEM to represent flaming combustion of polymers is shown
in examples.

2 ABOUT THE PARTICLE FINITE ELEMENT METHOD

2.1 Basic concepts

In the PFEM the analysis domain is modeled with an updated Lagrangian formulation[2].
The analysis domain can include solid and fluid subdomains. As an example, we can model
one or several thermoplastic objects and the surrounding air as comprising the analysis
domain. All variables in the fluid and solid domains are assumed to be known in the
current configuration at time t. The new set of variables in both domains is sought in the
next configuration at time t+ ∆t. The FEM is used to solve the continuum equations in
both domains. This requires a mesh discretizing these domains to be generated in order
to solve the governing equations for both the fluid and solid problems in the standard
FEM fashion. To do this, the nodes discretizing the analysis domain are treated as ma-
terial particles whose motion is tracked during the transient solution. This is useful to
model the separation of particles from a solid domain, such as in the dripping of melt
particles from a thermoplastic object, and to follow their subsequent motion as individual



Figure 1: Polymer object subjected to a heat flux q applied to its lower boundary (arrows indicate
incoming heat flux). Sequence of steps to update the cloud of nodes representing the object in time using
the PFEM.

particles with a known density, an initial acceleration and velocity, and subject to gravity
forces. Every node is a material point and hence is characterized by the density of the
polymer material. The mass of a given domain is obtained by integrating the density at
the different material points over the domain.

The way the PFEM solution process operates, for the problems we are solving in this
paper, is schematically shown in Figure 1. The figure represents a polymer object hanging
from a wall subjected to an incoming heat flux q acting at the lower part of the object.
The collection or cloud of nodes pertaining to the polymer and the air analysis domain
will be defined as (C), the volume defining the analysis domain as (V ), and the mesh
discretizing this domain as (M).

A typical solution with the PFEM involves the following steps:
1. The starting point at each time step is the cloud of points in the polymer and the

air domain. For instance, 0C and nC are the clouds at the initial time and at time t = tn,
respectively (Figure 1).

2. Identify the boundaries defining the analysis domain,nV [3].
3. Discretize the analysis domain with a finite element mesh, nM .
4. Solve the coupled Lagrangian equations of motion for the domains. Compute the

relevant state variables at the next (updated) configuration for t + ∆t: velocities, strain
rates, strains, pressure, viscous stresses, and temperature in the polymer.

5. Move the mesh nodes to a new position n+1C , where n+1 denotes the time tn +∆t,



Figure 2: Illustration of flame algorithm.

in terms of the time increment size.
6. Go back to step 1 and repeat the solution process for the next time step.
More details of the PFEM can be found in Refs. [4, 5].

2.2 Modeling of combustion with the PFEM

The gas phase particles originate as fully oxygenated air (100 % O2). Figure 2 shows
the approach of a gas phase particle to the thermoplastic object. When the air particle is
close enough to contact a thermoplastic particle and the temperature of the thermoplastic
particles exceeds a specified ignition temperature, several things happen. First, the high
temperature causes gasification of the thermoplastic material, described by an Arrhenius
expression. Mass lost from the condensed phase object becomes mass gained by the gas
phase. Latent heat is absorbed during the phase change of material from liquid to gas,
cooling the thermoplastic material. This is taken into account by the heat flux to the
surface from the flame, which is fed by the fuel gases and is therefore proportional to the
change in volume. During this encounter, the air particle loses some oxygen at a rate
proportional to the stoichiometric ratio and the reaction rate, until after several contacts
with the thermoplastic surface the oxygen is fully depleted. In an open space, the particle
of non-oxygenated air rises away from the burning object. However, in an enclosed space,
it will recirculate. The next time the particle encounters the fuel, no reaction will take
place, and the flame may be extinguished.

3 GOVERNING EQUATIONS

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain containing two subdomains with different
materials (Figure 3). In our case, the subdomains are assumed to behave as viscous fluids.
We denote time by t, the Cartesian spatial coordinates by x = xi|di=1, and the vectorial
operator of spatial derivatives by ∇ = {∂xi

}di=1. The evolution of the velocity u = u(x, t),
the pressure p = p(x, t), the temperature T = T (x, t) and the species Yk = Yk(x, t) is
governed by equations:

dρ

dt
+ ρ∇ · u = 0 in Ω× (0, T ) (1)

ρ
du

dt
= ∇ · σ + ρf in Ω× (0, T ) (2)



Figure 3: Two-fluid flow configuration.

ρC
dT

dt
= ∇ · (κ∇T ) +Q in Ω× (0, T ) (3)

ρ
dYk

dt
= wk +∇ · (Dρ∇Yk) in Ω+ × (0, T ) (4)

where ρ is the density, σ the Cauchy stress tensor, f the vector of gravity acceleration,
C the heat capacity, κ the thermal conductivity, T the temperature, Q the heat source
per unit volume, Yk the mass fraction of species k, wk the source term of species k, D the
diffusion coefficient and dφ/dt represents the total or material derivative of a function φ.

The constitutive equation for a Newtonian fluid is

σ = −pI + 2µfD́ (5)

where µf is the fluid viscosity, p is the thermodynamic (or hydrostatic) pressure of the

fluid and D́ is the deviatoric component of the symmetric part of the velocity gradient
tensor L. In our work the viscosity can be a function of temperature.

Let Γint(t) be the interface that splits the domain Ω into two open subdomains, Ω+(t)
and Ω−(t), which satisfy: Ω+ ∩Ω− = ∅, Ω = Ω̄+ ∪ Ω̄−, and Γint = Ω̄+ ∩ Ω̄− = ∂Ω+ ∩ ∂Ω−.
In each subdomain, the physical properties are defined as:

ρ = ρ(x, t) =

{
ρ+ if x ∈ Ω+(t)
ρ− if x ∈ Ω−(t)

, C = C(x, t) =

{
C+ if x ∈ Ω+(t)
C− if x ∈ Ω−(t)

, (6)

κ = κ(x, t) =

{
κ+ if x ∈ Ω+(t)
κ− if x ∈ Ω−(t)

, D = D(x, t) =

{
D+ if x ∈ Ω+(t)
0 if x ∈ Ω−(t)

(7)

Equations (1)-(4) are completed with the standard boundary conditions of prescribed
velocities and surface tractions in the mechanical problem, prescribed temperature and
prescribed normal heat flux in the thermal problem and prescribed fuel release into the
gaseous phase in the species problem.

4 ACCOUNTING FOR GASIFICATION EFFECTS

The effect of gasification can be introduced by adding a (nonlinear) energy loss term
in Eq. (3). This term represents the energy that migrates from the fluid to the gas due
to the gasification of a part of the material during the heating process. The gasification
heat flux has the following form

qgas = Hεv in Ω−(qgas = −Hεv in Ω+) (8)



with H being the heat of gasification and

εv = f(T ) (9)

where f(T ) expresses the relation between the volume variation εv due to the temperature
and the temperature itself. In our work the following Arrhenius function is chosen [6].

f(T ) = −ρAe−E/RT (10)

The computed mass loss of the fluid has to be included in the problem to ensure that
the volume variation of the sample is correctly modeled, and thus this term is added to
the right hand side of Eq.(1)(−εv in Ω+ and +εv in Ω− ).

5 COMBUSTION PROBLEM

In the present study, the polymer/air reactive system is modelled as a simplified one-
step chemical reaction between the fuel (F) and oxidizer (O) to generate the product
(P)

F + sO → (1 + s)P (11)

where s is the stoichiometric ratio[7]. These species are identified by their mass fraction Y
as follows: YF , YO and YP . The species reaction rates wk are all related to the single-step
reaction rate[8, 9]

wm = −B
1

T 2
YfYoe

−(E/RT ) (12)

where B and E/R are appropriate constants and T is the temperature. The oxidizer and
product reaction rate are linked to the fuel reaction rate by:

wO = (s)wm (13)

wP = (1 + s)wm (14)

and the heat release per unit volume from combustion is scaled according to

Q = −wm∆H in Ω+ (15)

where ∆H is the heat of combustion. The value of Q is introduced as a source term in
Eq. (3).

6 SPATIAL AND TIME DISCRETIZATION

Numerical solutions to equations (1-4) are obtained using an Updated Lagrangian
procedure. Applying the Backward Euler method to integrate in time Equations (1-
4), multiplying these equations by test functions and integrating over the domain, the
resulting nonlinear system of equations is solved iteratively. A Picard iteration is used for
the linearization of all equations, leading to a relatively simple fixed point type solution
procedure [10].

7 NUMERICAL EXAMPLES

The PFEM procedure described in this paper has been tested in two examples: 1)
the melting and dripping of a polymer slab and 2) the burning of a candle in a closed
container. These examples show the capability of the PFEM to handle interfaces with
changes in topology due to melting, dripping and combustion.



7.1 Melting and flow of a rectangular slab

In this example a rectangular polymeric sample is mounted upright and exposed to
uniform heating on one face from a radiant panel on one face. The dimensions of the
sample are 10 cm high by 2.5 cm thick. The heated side is defined as a interface between
the air and the polymer, and is subject to radiative and convective losses. The sample is
insulated on its lateral and rear faces.

Material properties except for viscosity are taken as constant, with values as given in
[11]. Figure 4 shows snapshots of the time evolution of the melt flow into the catch pan
using a steady heat flux, and results for the mass loss rate are plotted in Figure 5 .

7.2 Combustion of vertical and horizontal candle

The problem considered here is a two-dimensional burning rod inside a closed contanier,
as illustrated in Figure 6a. For simplicity, we will refer to this object as a “candle”. The
dimensions of the candle are 50 cm high by 5 cm thick. From time t = 0 to t = 10 s,
the temperature at the candle top is set to 950 K. In the solid phase, the processes of
heating and gasification take place. Simultaneously, in the gas phase chemical processes
are initiated, and temperature, fuel and oxidizer concentration gradients develop. Figures
6 to 8 show snapshots of the temperature evolution and of the flame zone in time for all
configurations. Notice that as the flame grows (see Fig. 7-8)) the combustion takes place
in a larger area. Finally, the flame is extinguished, first in the configuration in Fig. 6 and
later in the other examples, when reactions stop due to the particles of non-oxygenated
air returning to the combustion zone.

7.3 Combustion of vertical and horizontal candle accounting for melting and
dripping effects

In the next example, the material properties for the candle are the same as in the
previous example. Temperature increases in the candle due to combustion cause the
viscosity to decrease by several orders of magnitude [11]. This induces the melting and
flow of the candle material in the heated zone. The melt flows down along the heated face
of the sample and drips onto the surface below. Figures 9 and 10 show the progressive
melting of the candle exposed to the heat from combustion, along with the change of the
flame shape.

The dripping material transports the flame(see Fig.9c) and continues burning on the
surface below. After some seconds, the candle falls down and the flame is extinguished.

8 CONCLUDING REMARKS

The PFEM is a powerful technique to model the combustion, melting, flow and flame
spread of thermoplastic objects in fire situations. The method allows the tracking of the
motion of the polymer particles as they burn, melt, flow over the surface of the object, and
fall toward and on the underlying floor. The PFEM can describe the spread of the flame
onto the floor for different ambient temperature conditions and effects of gasification,
in-depth absorption and radiation. The simulation of a burning candle has shown the
potential of the PFEM to model the drastic change of shape of objects as they melt, drip
and spread, including self-contact situations.



(a) t = 50 s (b) t = 255 s

(c) t = 450 s (d) t = 990 s

Figure 4: Evolution of the melt flow into the catch pan.

Figure 5: Mass vs time for polymer in sample and total mass.



(a) t = 0 s (b) t = 3 s

(c) t = 10 s (d) t = 63 s

Figure 6: Temperature evolution in the combustion of a vertical (bottom-up) candle.

(a) t = 12 s (b) t = 75 s

Figure 7: Temperature evolution in the combustion of a vertical (top-down) candle.



(a) t = 7 s (b) t = 41 s

Figure 8: Temperature evolution in the combustion of a horizontal candle.

(a) t = 5 s (b) t = 10 s

(c) t = 12 s (d) t = 25 s

Figure 9: Combustion, melting and dripping of a candle: temperature evolution.



(a) t = 28 s (b) t = 57 s (c) t = 105 s

Figure 10: Combustion, melting and dripping of a candle: viscosity evolution.
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