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Abstract—This paper reports on work in progress on 
developing a unified co-evolutionary/pricing framework for 
Mobile Sensor Networks (MSN) self-organization.  MSN self-
organization involves cooperative sensor positioning and 
formation of a multi-hop Mobile Ad-hoc NETwork (MANET) 
enabling sensor information acquisition and communication 
while prolonging MSN life-span.  A number of inherent MSN 
traits such as lack of centralized control and variety of 
performance criteria suggest framing MSN self-organization as a 
sensor co-evolutionary optimization.  The first issue to be 
addressed is aligning individual sensor utility/fitness landscapes 
with the overall MSN goals as “selfish” sensor behavior may 
result in suboptimal overall MSN performance.  The paper 
proposes using “socially optimal pricing” to internalize the effect 
of each sensor relocation on the overall MSN performance.  It is 
assumed that intermediate nodes in the MSN relay sensor 
information to a single fusion point without processing.  The 
proposed framework is illustrated for the special case of a MSN 
tracking a single target.  

Keywords—mobile sensor network, socially optimal sensor 
fitness, pricing. 

I. INTRODUCTION 
Mobile Sensor Networks (MSN) are envisioned to offer a 

novel set of applications in detecting, monitoring and tracking 
people, targets or events in pervasive computing 
environments.  Locations of sensors in a MSN affect both their 
ability to acquire information on the intended targets and 
events as well as their ability to communicate this information 
to the intended recipients.  The information acquisition needs, 
which require proximity to the target(s), could potentially 
compete with communication needs, which require proximity 
to the recipient(s) of the sensor information.  Inherent traits of 
MSN such as centralized control, variety of performance 
criteria, operational uncertainties, etc., make conventional 
approaches to MSN optimization inefficient.  In continuation 
of our previous publications [1,2], this paper, suggests framing 
MSN self-organization as a co-evolutionary optimization 
problem, where sensors cooperate in finding their optimal 
locations while forming a multi-hop Mobile Ad-hoc NETwork 
(MANET).  
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Here, some sensors may act as relay of other sensor’s 
information in addition to transmitting their own data. The 
first step in developing a co-evolutionary framework for MSN 
self-organization is identifying “socially optimal” individual 
sensor fitness/utility landscapes in the inherently distributed 
environment of a MSN. “Social optimality” implies that each 
sensor maximization of its individual fitness results in overall 
performance optimization of the network.  This is a 
challenging problem since MSN performance critically 
depends on sensors cooperation, and “selfish” sensors 
behavior typically results in drastic deterioration of the overall 
performance.  For example, selfish sensor positioning can 
quickly deplete some sensor battery power; resulting in the 
network inability to carry out its mission.  Note that 
performance loss due to selfish agent behavior, quantified by 
“price of anarchy”, is currently an active are of research [3]. 

This paper builds on the proposed idea of extending 
pricing-based Network Utility Maximization (NUM) 
framework for MSN distributed optimization that includes 
sensor location [1,2,4-6].  Appeal of this unified MSN NUM 
(MSN-UM) framework is that while system utility 
maximization over sensor information flow rates in “fast” time 
scale yields the optimal cross-layer design of the MSN 
MANET, system utility maximization over sensor locations in 
“slow” time scale controls sensors motion.  MSN-UM 
suitability for inherently distributed MSN environment is the 
result of using socially optimal pricing, which “internalizes” 
effect of sensor individual actions on the overall MSN 
performance.  Major issues discussed in this paper are 
information asymmetry, cost of sensor relocation, simulated 
annealing type MSN optimization, and simulation results of 
some basic scenarios. 

Information asymmetry is due to inherent distributed nature 
of MSN [2].  It can be assumed that the node which is the 
recipient of all sensors information is capable of estimating the 
aggregate utility of sensor information streams.  On the other 
hand, each mobile sensor has direct knowledge of its 
remaining battery power and surrounding terrain which affect 
sensor ability to communicate and relocate.  Here, we consider 
MSNs in which all sensors information is transmitted to a 
single destination (i.e. fusion) point, and the intermediate 
nodes only relay other sensor information without any 
processing. In this case, the fusion center guides individual 
sensor decisions by informing each sensor on the “willingness-
to-pay” information. 

A widely used approach to mobility control is based on 
phenomenologically defined potential fields and the 
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corresponding virtual forces [7]-[9].  As opposed to this 
phenomenological approach, MSN-UM offers a consistent 
approach to aligning controlled sensor mobility with the 
overall MSN operational goals.  Since sensor mobility often 
involves dissipation of non-renewable sensor battery power, 
dynamics of sensor repositioning is inherently non-potential, 
and thus cannot be completely characterized by sensor spatial 
fitness landscape.  We overcome this shortcoming by 
assuming that sensor fitness depends on both initial and final 
sensor positions. This approach offers a tractable abstraction 
for expanding system phase space by including dissipation of 
sensor battery energy supply.  This expansion significantly 
impacts the sensor relocation dynamics, e.g., making sensors 
more conservative in their “willingness” to relocate as 
compared to conventional schemes which do not account for 
the “cost” of relocation. 

In the context of evolutionary robotics, this paper can be 
viewed as a framework for distributed on-line design of sensor 
fitness landscapes consistent with the overall MSN goals.  The 
next step should be evaluation of performance of various 
sensor co-evolutionary algorithms where sensors attempt to 
increase their fitness by relocation.  This paper discusses the 
possibility of simulated annealing type self-organization, 
where each sensor performs random walk with drift in the 
direction of the gradient of the socially optimal sensor 
utility/fitness along with random “mutations” to avoid 
trapping [9] in the local optima.  This paper also reports 
simulation results for a simple scenario when six mobile 
sensors are tracking a single target on a flat terrain.  The 
simulation reveals basic elements of self-organization i.e. 
sensors cooperate in forming a linear topology MANET from 
the target to the intended recipient of sensor information.  This 
cooperation includes prolonging MSN life-span by ensuring 
that all sensors deplete their battery energies simultaneously.    

The paper is organized as follows.  Section II introduces 
utilities and penalties, which quantify MSN desired life-span 
with respect to MSN ability to acquire and transmit sensor 
information as well as extending MSN life-span by conserving 
battery energy.  Section III quantifies energy requirements and 
constraints associated with performing basic MSN operations: 
sensor information acquisition, communication, and sensor 
relocation.  Section IV frames sensor relocation as a co-
evolutionary optimization by introducing “socially-optimal” 
individual sensor utility/fitness landscape and discussing 
simulated annealing type algorithm for the fitness/utility 
maximization.  Section V discusses simulation results for a 
simple MSN that tracks a single target.  Finally, Section VI 
briefly summarizes our results and discusses directions for 
future research.   

II. UTILITIES AND COSTS 
This Section introduces utility functions that drive MSN 

co-evolutionary self-organization.  Subsection A quantifies 
value of sensor information based on the fusion point 
“willingness-to-pay” for this information.  Subsection B 
quantifies the “cost” of sensor battery energy expenditure with 

respect to the corresponding reduction in the sensor network 
life-span. 

 

A. Utility of Sensor Information 

Consider a network formed by mobile sensors Ss ,..,1=  
transmitting to a single fixed destination point Ds == 0 , 
where all sensor information streams are fused.  Sensor s , 
located at point sx , transmits to the destination D  at rate sλ .  
Due to possible redundancy of information streams from 
different sensors, aggregate utility of sensor information 

),( xU λ  is generally a function of all sensors rates 
),..,( 1 Sλλλ =  and locations ),..,( 1 Sxxx =  [10].  While 

increasing sensor information rates is beneficial, their 
marginal benefit decreases; therefore, it is natural to assume 
that the function ),( xU λ  is monotonously increasing and 
concave in rates ),..,( 1 Sλλλ = . The following representation 
for the aggregate utility of sensor information ),( xU λ  has 
been proposed in [2]: 

 
                ∑

∈

=
Ss

ss xwxU λλ log)(),(                                (1) 

It can be assumed that given sensor locations )( sxx = , the 

destination point D  which fuses all sensor information 
streams into a coherent picture, approximates parameters 

)(xws  and notifies each sensor of its corresponding value.  

Parameters )(xws  Ss ,..,1=  quantify the effects of the 

physical locations of all sensors ),..,( 1 Sxxx =  on the value 
of information captured by each sensor. Dependence of 

)(xws  on the physical locations of all sensors ),..,( 1 Sxxx =  
can be explained as follows.  While the value of the 
information collected by a single sensor s  from the intended 
target(s) depends on the sensor physical location sx  relative 
to the target(s), this value can be reduced if other sensors are 
located close to sensor s  due to redundancy of the acquired 
information.  In the situation where all S  sensors acquire 
information about a single target, the value of )(xws  also 

depends on the target location Gx  i.e. )()( Gss xxwxw = . 

The parameter )(xws  can be interpreted as the “willingness-
to-pay” by the fusion point for marginal value of sensor s  
information stream.   

We can characterize the overall network performance by 
the system social welfare ),( λxW  as  

         [ ]∑
∈

−=
Ss

sssss xfxwxW ),(log)(),( λλλ                   (2) 

where ),( sss xf λ  is the penalty associated with resource 

expenditure of sensor s  located at point sx  and transmitting 
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at rate sλ  to the fusion point. Functions ),( sss xf λ  are 
assumed to be monotonously increasing and convex in 
rates 0≥sλ , Ss ,..,1= . 

 Due to our assumptions, given sensor locations )( sxx = ,  

system social welfare (2) is concave in rates )( sλλ = . Thus, 
optimal rates 
                  ),(maxarg)(* λλ

λ
xWx =                                (3) 

are the unique solution of the following equations: 
              ),()( sssss xdxw λλ = , Ss ,..,1=                      (4) 
where the marginal cost of sensor s transmission to the fusion 
point is: 

                ssss

def

sss xfxd λλλ ∂∂= ),(),(                             (5) 

At the optimum (3), the “payment” each sensor Ss ∈  
receives from the fusion point (i.e. )(xws ) is equal to the 

“transmission cost” incurred by that sensor ssss xd λλ ),( .   
 

B. Cost of Battery Energy 
The sensor network life-span is limited by the sensors 

battery energy availability. We assume that the network life-

span can be quantified by the penalty function )~( TTϕ  
where T  is the time moment when the network becomes non-
operational, and T~  is the target value for the desired network 
life-span [11]. Monotonously decreasing function 

0),( >yyϕ  has an inverse S-shape and steeply decreases 
around 1≈y .   

A convenient two-parameter approximation for function 
)(yϕ  is  

                      ⎟
⎠
⎞

⎜
⎝
⎛ −−=

a
yAy 1)( φϕ                                    (6) 

where sigmoid function 

                           ze
z −+

=
1

1)(φ                                           (7) 

and parameters 0, >Aa  affect importance of enforcing 

network longevity until the desired moment T~  as compared 
to other considerations, e.g. high information rates. At time t  
when sensor s  battery energy level and its corresponding 
draining rate are )(tEs  and )(tps  respectively, the projected 

time of its battery energy depletion is )()( tptEtT sss +≈ . 
Assuming that the MSN operation requires all sensors being 
operational, the aggregate penalty of draining sensor 

Ss ,..,1=  battery energies at rates )( spp =  is ),( EptV , 
where 

                ∑=
s

sss EptvEptV ),(),(                              (8) 

and 

                 ⎟
⎠
⎞

⎜
⎝
⎛ +=

T
pEtEptv ss

sss ~),( ϕ                          (9) 

 

III. PENALTIES AND CONSTRAINTS  
This Section quantifies energy requirements and 

constraints associated with MSN ability to perform its basic 
operations.  Subsection A demonstrates that constraints on 
sensor ability to acquire relevant information can be 
formalized either in terms of feasible sensor locations relative 
to the target or energy expenditure.  Subsections B and C 
quantify energy expenditure on sensor communication and 
relocation respectively. 

 

A. Information Acquisition 
Sensor ability to acquire relevant information can be 

modeled either as constraints on sensor locations or by 
introducing the corresponding penalties and prices.  Area 
coverage constraints are often formulated as requirement for 
any point in the area to be within certain “sensing range” of at 
least one sensor.  Constraints on MSN ability to track specific 
targets or events can be also formulated in terms of these 
targets or events being in the “sensing range” of at least one 
sensor.  More elaborate location-dependent penalty function 
may encourage sensor(s) to stay in certain proximity to the 
locations/events/targets of interest. 

Typically sensing involves battery energy expenditure, 
which generally depends on the relative target(s) and sensor(s) 
locations, terrain, and sensor information rate.  One may 
approximate the power required for a sensor located at the 
position sx  acquiring information at rate λ  from the target 

located at point Gx to be as follows: 

                 ),()(),;( GsGs xxxxp ξλζλ =                     (10) 

where )(λζ  is a non-decreasing and concave function of rate 

λ , and function ),( Gs xxξ  characterizes the attenuation of 
the corresponding tracked signal.  For example, in the case of 

flat terrain 
γξ −− GsGs xxxx ~),( , where γ  is some 

positive constant and .  is the physical distance.  This 
“sensing power” can be either used in constrains on the sensor 
location or incorporated into the penalty (6).  
 

B. Communication 

 In a wireless interference-limited network capacity lc  of a 
link ),( jil =  from node i  to node j  depends on the 
transmission power, channel condition and node locations: 
                              )( ijijij SIRcc =                                      (11) 
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where Signal-to-Interference Ratio on link ),( jil =  is 

     
∑ ≠≠

+
=

jinjikn njnkj

ijij
ij p

p
pxSIR

,),,(),(

),(
ξη

ξ
               (12) 

In (12), path loss ),( jiijij xxξξ =  corresponding to the 

link ),( ji  depends on the locations of the communicating end-

points ix  and jx , and the noise power )( jjj xηη =  only 

depends on the receiver location jx .  For example, in the case 
of free-space propagation: 

                         
γ

ζξ
−

−= jiijij xx                                    (13) 

where ijζ  and γ  are positive constants, and ji xx −  is the 

physical distance between sensors i  and j  with coordinates 

ix  and jx  respectively. 
 Specific form of channel capacity (11) depends on the 
modulation and coding schemes.  For example, Shannon 
capacity is given by   
                      )1log( 21 ll SIRkkc += ,                              (14) 

where 1k , 2k  are constant coefficients.  A threshold-based 
channel model is given by 

               
⎩
⎨
⎧ >

=
otherwise

SIRifc
SIRc l

ll 0
)(

χ
                       (15) 

where  0, >χc  are some constants.   
 In the special case of an energy-limited network where 
interference from simultaneous transmissions by different 
sensors is negligible compared to the noise at the receiver i.e. 
        )(),(

,),,(),( jjinjikn jnnk xxxp ηξ <<∑ ≠≠
,                (16)  

Signal-to-Interference Ratio on the link ),( ji  will become a 
function of the transmission power: 
                  )(),( jjiijij xxxpSIR ηξ≈                            (17) 
Using a threshold-based channel model (15), the optimal 
transmission power for node s on an active link ),( jsl =  is: 

⎩
⎨
⎧ ∈

=
otherwise

Ljsifxxx
xxp jsjsj

jssj 0
),(),()(

),(* ξηχ
    (18) 

The total sensor s  transmission power is 
                  ∑

∈

=
Ljsj

jssjs xxpxp
),(:

** ),()(                                (19) 

where the set of active links L  determines the network 
connectivity (i.e. topology).   
 

C. Sensor Relocation 
The rate of energy expenditure for sensor s  located at point 

sx  and moving with speed sx  can be quantified by a 

monotonically increasing (and convex in sx ) dissipative 

function ),( sss xxϕ , where 0),( >ss xxϕ  if 0≠sx  and 
0),( =sss xxϕ  if 0=sx .  However, as mentioned in [2], 

using dissipative function for “pricing” sensor relocation 
appears to be computationally intractable. However, as 
explained in the following, in some important practical 
situations significant simplification is possible. 

Consider the case when the remaining network life-span is 
sufficiently long and thus sensors can relocate sufficiently 
slow in order to minimize the energy expenditure on 
relocation without regard for energy expenditure on 
communication and sensing during relocation.  Under these 
assumptions energy expenditure for sensor s  moving from 
point )0(

sx  to point sx  can be expressed by 

∫≤≤≥
=Δ

t

sstxtsss dxxxxE
s 0

)0),((0

)0( )](),([infinf),( τττϕ
ττ

     (20) 

where minimization over trajectory )0),(( txs ≤≤ττ   is 

subject to fixed initial )0()0( ss xx =  and ending ss xtx =)(  
trajectory points. 
 Reasonable approximations for the energy expenditure 
(20) can be used for special cases.  For example, for a flat 
homogeneous terrain it can be assumed that  

                 ssssss xxmxxE −=Δ )0()0( ),(                          (21) 

where positive constant sm  characterizes resistance to sensor 

s  movement, and ss xx −)0(  is the physical distance 

between points )0(
sx  and sx .   

IV. EVOLUTIONARY MSN OPTIMIZATION  
Given sensor locations, MSN utility maximized over 

sensor information acquisition and communication capabilities 
characterizes the MSN spatial fitness landscape.  Subsection A 
demonstrates that NUM in “fast” time scale determines the 
“socially optimal” individual sensor utility/fitness landscapes, 
which are consistent with the overall MSN operational goals.   
While sophisticated versions of NUM for MANET have been 
developed which include optimization of transmission 
scheduling on different links [5,6], Subsection A only 
considers flow control and routing optimization for 
interference-limited MANET.  The socially optimal sensor 
utility/fitness landscapes combine the result of NUM and at 
the same time, accounting for the “cost” of energy expenditure 
needed for sensor motion.  Subsection B briefly discusses a 
simulated annealing type procedure [12,13] for co-
evolutionary MSN optimization. 
 

A. Socially Optimal Sensor Fitness/Utility Landscapes 
 In this paper we only consider a link-centric NUM 
formulation for the MSN; assuming that each sensor 

},..,1{ Ss ∈  transmits its acquired information to the fusion 
center at an end-to-end rate of sλ  by (possibly) splitting its 
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flow among feasible routes sRr ∈ : ∑ ∈
=

sRr rs λλ .  Thus, 

the aggregate load lμ on link ),( jil =  from node i  to node 
j  is the sum of the loads resulting from all flows traversing 

this link: 
                          ∑ ∑ ⊆∈

=
s Rrlr rl

s:
λμ .                           (22) 

 Now, the sensor s utility/fitness function can be defined as 
follows: 

⎟
⎠

⎞
⎜
⎝

⎛−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

∈ i
sis

Rr
rss xpvxwxW

s

),(log)(),( λλλ      (23) 

where sip  is power required for sensor s  to communicate to 
i  if i  is another sensor or acquire sensor information from  i  
if i  is a target. The first component in the right-hand side of 
(23) is the utility of information stream from sensor s , and the 
second component, which includes the communication and 
sensing power, characterizes penalty associated with sensor s  
battery energy expenditure.  Note that penalty )( ss pv  also 
explicitly depends on current time t  and battery energy 
level )(tEs .  Sensor s  location sx  affects not only sensor s  
utility but also affects utility of other sensors through (a) 
fusion point willingness-to-pay for other sensor si ≠  
information )(xwi  and (b) energy cost of sensors 

}:,..,1{ siSi ≠∈  directly communicating to sensor s . This 

is because path losses ),( siisis xxξξ =  on links ),( si  affect 

transmission powers isp  on these links. 
 Due to these interdependencies maximization by each 
sensor s  of its own utility (23) may result in poor overall 
network performance measured by the following utility/fitness 
function. 
                    ∑=

s
s xWxW ),(),( λλ                                (24) 

We assume that for a given vector of sensor locations 
)( sxx =  and the current levels of remaining sensor battery 

power )( sEE = , conventional NUM operates sufficiently 

fast to maximize the MSN fitness (24) over rates )( sλλ = . 
Take: 
                 ),(maxarg)(

)0(

* xWx
r

λλ
λ ≥

=                               (25) 

Then, the corresponding maximized fitness 
                ]),([)( ** ExxWExW λ=                               (26) 
is the MSN aggregate utility/fitness landscape in the space of 
joint sensor locations )( sxx =  and conditioned on the 

remaining sensor battery power levels )( sEE = . Due to the 
interdependencies between sensor utilities (23), sensor 
positioning by maximizing their individual fitness 

               ]),([)( **
ssss ExxWExW λ=                            (27) 

could result in poor overall MSN performance measured by 
MSN fitness (24).   
 Now, Introduce function (.)su as 

              ∑
≠

•−=
si

sisssss gxExWExu )()( *                 (28) 

where •  denotes scalar product, and 
                       )(*

iixsi ExWg
s

−∇=                                  (29) 

characterizes the effect of sensor s  location sx  on sensor  i  

fitness )(* ExWi .  It is easy to see that if gradients (29) are 

fixed then )()( *
sxsssx ExWExu

ss
∇=∇ , and thus sensor 

s  relocation from point )0(
sx  to point sx  results in MSN 

fitness change 
)(),(),( )0()0()0()0()0()0(

ssssss ExuExxuExxW −=Δ −       (30) 

up to the terms of order ( ))0(
ss xxo − , where vector sx−  

characterizes locations of all sensors except sensor s . 
Equation (30) demonstrates that sensor s  relocation to 
increase its utility (28) also increases MSN utility (26). 
 Individual sensor utilities (28) however are not “socially 
optimal” because they do not take into account sensor s  
battery energy expenditure ),( )0(

sss xxEΔ .  To account for this 
energy, we define socially optimal sensor s  utility/fitness as 
follows: 

[ ] )(),,(,

),(
)0()0()0()0()0()0(

)0()0(

ssssssssss

ss

ExuExxEExxu

ExxU

−Δ−

=

−−

  (31) 

Considering equations (28) and (30), the socially optimal 
sensor s  utility/fitness landscape (31) can also be rewritten as 
follows: 

[ ]
∑

≠

−

•−−−

Δ−=

si
sissss

ssssssssss

gxxExW

xxEExxWExxU

)()(

),(,),(
)0()0()0(*

)0()0()0(*)0()0(

 (32) 

 

B. Sensor Relocation 
 Sensor s  fitness equation (31)-(32) depends on the sensor 
s  both initial )0(

sx  and final sx  locations, and assumes that 

other sensors remain fixed at locations )0(
sx− .  Using this 

equation, various forms of “hill climbing” can be 
implemented. Deterministic hill climbing moves sensors to 
increase their fitness.  It is known, however, that this strategy 
often traps sensors in one of numerous undesirable local 
maxima of the MSN fitness (26) [9].   
 Another important issue is sensor speed.  On one hand the 
quicker sensors move to the optimal locations, the better 
overall MSN performance is going to be.  On the other hand, 
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faster sensor relocation typically requires more energy.  Also, 
sensor s  fitness (31)-(32) assumes that all other sensor 
locations )0(

sx−  are fixed.  Sensors speeds are also limited by 
MSN ability to update their individual fitness landscapes (31)-
(32) as changes occur in the network e.g. sensors or target 
locations.  Since these updates are associated with additional 
sensor battery energy expenditure, the corresponding trade-
offs should be taken into account. 
 The rest of this subsection describes a “simulated 
annealing” type of hill climbing procedure [12]-[13], which 
attempts to take into account the above concerns.  Assuming 
discrete time, let sΔ  be the maximum distance, sensor s  is 
allowed to move in one time step.  In practice, sensors relocate 
in continuous time and parameters sΔ  control the speed of 

sensors motion.  By varying parameters sΔ , one can control 
the additional sensor battery expenditure due to fast sensor 
mobility as well as MSN ability to update and propagate the 
changing information affecting individual sensor fitness 

),( )0()0( ExxU ss .   

 Now, consider the following scheme.  Given vectors of 
sensor positions and battery energy levels ),( )()( kk Ex  at time 

step k , sensor s  selects its next position )1( += k
ss xx  at time 

step 1+k  with probability 

          [ ]),(exp)Pr( )()(1 kk
sssss ExxUZx β−=                (33) 

if s
k

ss xx Δ≤− )( , and 0)Pr( =sx  if s
k

ss xx Δ>− )( . 

The normalization constant sZ is 

         [ ]∫
Δ≤−

=
s

k
ss xx

s
kk

ssss dxExxUZ
)(

),(exp )()(β              (34) 

and the “inverse temperature” sβ  characterizes the level of 
“mutations”.  In the extreme case of only mutations without 
selection: 0↓sβ , and sensor s  performs a completely 
random walk without any drift.  In the other extreme case of 
selection without mutations: ∞↑sβ , sensor s  performs a 
steepest fitness ascend. 
 Note that parameters sβ  control the trade-off between 
MSN ability to operate in stationary or changing 
environments.  It is known that in stationary environments, 
when MSN aggregate utility/fitness landscape does not change 
with time, e.g., due to moving target(s), the “temperatures” 

1−
sβ  should be monotonously decreasing and approaching 

zero as time progresses [12]-[13].  This ensures convergence 
to the globally optimal sensor locations. Controlling 
parameters sβ  in changing environment is still an open 
problem. 
 

V. EXAMPLE: TRACKING A SINGLE TARGET   
To demonstrate potential viability of the proposed 

framework, this Section reports simulation results for MSN 
tracking a single target on a flat terrain.  The focus of MSN 
optimization is prolonging MSN life-span by ensuring that all 
sensors deplete their battery energy simultaneously. 
Subsection A briefly introduces the tracking model, and 
Subsection B reports the simulation results. 
 

A. Model 

Consider a MSN designed to track a single target G  and 
communicate the desired information at a low rate to a fixed 
destination D .  It can be shown that under some natural 
assumptions the optimal MSN topology is linear with only one 
sensor Ss =  acquiring target information and the rest of the 
sensors 1,..,1 −= Ss  relaying this information to the 
destination D .  In this linear topology, sensor information 
flows from the target to the destination: 

DsSsG →=→→=→ )1(...)( , while the control 
information, e.g., destination “willingness-to-pay” for sensor 
information, flows in the opposite direction: 

)(...)1( SssD =→→=→ . 
We estimate the communication power using the 

threshold-based wireless channel model (15). We also estimate 
sensor Ss =  power expenditure for tracking target G  by 
function ),(1

SG xx−ω , where ),( SG xxω  can be interpreted 

as the “path loss” with respect to the target G .  Assumption 
of low information rate and thus low transmission powers 
allows us to neglect the interference and use formulas (18)-
(19). Under these assumptions, the aggregate penalty 
associated with draining sensor battery energy is  
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where for simplicity we assumed the same threshold for all 
sensors: χχχ == +− 1,1, ssss  and also location independent 

noise power: ηη =)(x .  We also formally identified 
destination D  with sensor 0=s . 
 Minimization of its own penalty by each sensor may 
result in poor overall MSN performance.  For example, each 
sensor 1,..,2 −= Ss  attempting to minimize its penalty 
while maintaining communication with neighboring sensors 

1−s  and 1+s  typically has incentive to position itself at the 
“middle point” between the neighbors such that 

),(),( 11 +− = ssss xxxx ξξ . This is done without any 
consideration for conserving the neighboring nodes’ energy.  
This “selfish” sensor positioning may quickly deplete battery 
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energy of some sensors disconnecting the network and 
destroying MSN ability to relay sensor information to the 
destination from sufficiently distant target.  

B.  Simulation Results 
Consider a MSN with six mobile sensors tracking a single 

mobile target on a flat terrain where path losses are of the form 
(13). Assume that maximum sensing and communication 
distances are 6 and 12 meters respectively, and also sensor 
energy expenditure due to motion is negligible.  It is also 
assumed that sensors have different initial battery energy 
levels (ranging between 5-50 KJ).  Further details of sensor 
relocation algorithm for this particular scenario will appear in 
[14].  Figure 1 demonstrates inefficient “selfish” sensor 
relocations where sensors deplete their battery energy in the 
order of their initial energy levels.  In the case of target being 
sufficiently distant from the destination, this selfish behavior 
makes the network non-operational in 60 minutes. 

 
Figure 1:  Residual sensor battery energy without cooperation 
 
Figure 2 demonstrates that cooperative relocation which takes 
into account the residual battery energy levels can prolong the 
network life-span to 78.5 minutes. In this case, all sensors 
deplete their battery energy simultaneously. 

 
Figure 2: Residual sensor battery energy with cooperation 
 

Figures 3-5 show sensor locations along with their 
communication regions and sensing region of sensor Ss =  at 
time instants t=5, 50 and 72 minutes. Figure 6 shows the 
sensor battery energy levels at these moments for 
cooperatively moving sensors. First observe that all sensors 
position themselves on a straight line from the destination to 
the target. This is due to the flat terrain assumption.   

 
Figure 3: Target and sensor locations: min5=t  

 

 
Figure 4: Target and sensor locations: min50=t  

 

 
 

Figure 5: Target and sensor locations: min72=t  
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Figure 6: Sensor battery energy 

 
Figures 3-6 exhibit some details of sensor cooperative 
repositioning for the purpose of preserving battery energy for 
sensors with lower residual battery energy.  Since maximum 
sensing and communication distances are 6 and 12 meters 
respectively, the MSN is able to track a target within 78 
meters from the destination point.  In Figure 5, when the target 
is at the boundary of this “tracking range”, sensors maintain 
the maximum communication and sensing ranges.  By doing 
that MSN carries out its primary goal: tracking the target, at 
the cost of reducing the MSN life-span.  Figures 3 and 4, when 
the target is located well within the “tracking range” and 
sensors have certain freedom in positioning themselves while 
MSN keeps tracking the target.  Figures 3-6 demonstrate that 
sensors cooperatively position themselves to reduce 
communication range and thus reduce energy expenditure for 
sensors with low battery energy level. 

VI. CONCLUSION AND FUTURE RESEARCH 
The paper is proposing a unified pricing/evolutionary 

framework for MSN self-organization, which involves sensor 
cooperation in data acquisition and communication as well as 
sensor relocation.  Socially optimal pricing, which internalizes 
the effect of each sensor action on the overall MSN 
performance, allows for decentralized MSN optimization.  
Presented results on a MSN, tracking a single target, suggest 
viability of the proposed framework for prolonging the MSN 
life-span at least in the case of a flat terrain.   

Future research should address practicality of the proposed 
framework.  Three major obstacles to overcome are (a) 
overhead associated with social pricing exchange, (b) multiple 
locally optimal sensor locations, and (c) numerous other 
uncertainties.  While phenomenologically defined virtual 
forces are widely used for controlling mobility, the proposed 
unified framework leads to “socially optimal” virtual forces, 
which are consistent with the overall MSN goals.  
Evolutionary algorithms appear to be a natural approach to 
overcoming obstacles (a) and (b).  To gain some insight, we 
plan to evaluate a simulated annealing type optimization of 
MSN tracking a single target in complex terrains. 
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