
 
 

  
Abstract—This paper reports on work in progress on assessing 
and mitigating selfish routing vulnerability to strategic attacks.  
We explain mechanisms leading to this vulnerability, propose 
the corresponding game-theoretic model, solve this model for 
some particular case, and discuss implications of the 
vulnerability phenomenon.  Our approach extends the well 
established research agenda on selfish routing by incorporating 
attacker(s) as separate agent(s) in the corresponding game.  
While each user makes its routing decision in attempt to 
minimize its transportation cost, the attacker(s) manipulate the 
link costs for the purpose of increasing the aggregate 
transportation cost to all or some users, e.g., by damaging the 
physical infrastructure or inserting malicious traffic as in 
Denial of Service (DoS) attack.  Our initial results demonstrate 
that even “weak” attacker is capable of inflicting a serious 
damage measured by increase in the price of anarchy as 
compared to the case without attacker.  Presence of attacker(s) 
can make Braess’s paradox more pronounced.  These initial 
results demonstrate importance of further research on the 
effect of the adversarial actions on selfish routing and a 
possibility of mitigating of this effect. 
 

Index Terms—Selfish routing, attacks, game-theoretic model, 
price of anarchy.  
 

I. INTRODUCTION 
An emergent trend in networking attempts to resolve 

inefficiencies of network defined routing [1]-[2] by shifting 
responsibility for routing from the network to end users, e.g., 
by using source routing [3] or overlay routing [4].  Despite 
the fact that user-defined routing is much better than 
conventional network-defined routing in addressing specific 
user concerns, the downside may be the inherent selfish 
nature of user-centric routing, where each user attempts to 
optimize its own performance objective without concern for 
the overall network performance.  This selfishness may lead 
to loss in overall network performance. 

The comparative performance of these two routing 
schemes, network-defined and user-defined, is currently an 
active area of research.  While performance limits of 
network-defined routing can be assessed by using 
optimization techniques, performance of selfish routing is 
typically identified with a Nash equilibrium in the 
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corresponding non-cooperative game-theoretic model.  Due 
to the typical multiplicity of Nash equilibria, loss in overall 
network performance resulting from user selfishness is 
defined by the price of anarchy: the worst-case ratio of the 
aggregate cost of selfish and socially optimal routing [5].  
This definition assumes that network defined socially optimal 
routing minimizes the aggregate routing cost, and thus the 
price of anarchy always exceeds or equal one.  Note that the 
route costs may represent actual payments for traffic delivery 
or they may instead characterize route quality with respect to 
delays, reliability, etc.   
 Theoretical and simulation results [6]-[7] suggest that 
despite the fact that the price of anarchy may be high and 
even unbounded, in practical situations performance 
deterioration due to user selfishness is within tolerable limits.  
Selfish user behavior can also lead to counterintuitive 
behavior known as the Braess paradox [8]: increasing the 
number of routing choices by adding more links to the 
network increases the aggregate transportation cost. 

This paper attempts to gain an initial understanding of the 
effect of adversarial presence, e.g., attackers, on the 
performance of selfish routing.  To this end we extend the 
conventional framework for performance evaluation of 
selfish routing by including the possibility of attacker(s) 
capable of manipulating the route costs in an attempt to 
maximize the aggregate transportation cost for all or some 
users, e.g., by damaging the physical infrastructure in 
transportation networks, inserting malicious traffic in a 
Denial of Service (DoS) attack on communication networks, 
or jamming in wireless networks.  We propose an extended 
game-theoretic model, where strategic attacker(s) are 
modeled as separate agent(s) with limits on ability to 
manipulate route costs reflecting attacker power. 
 Quite surprisingly, our results indicate that even a weak 
attacker can inflict a significant damage on network 
performance.  The reason for this disproportional effect is 
that an adversarial presence creates incentive for selfish users 
to avoid being attacked by making other users more 
appealing targets for attacker(s).  This incentive may create a 
positive feedback eliminating the socially optimal 
equilibrium and driving selfish users to a very inefficient 
equilibrium. 
 The paper is organized as follows.  Section II informally 
demonstrates how selfish user behavior in presence of even a 
weak adversary may lead to inefficient system equilibrium 
and Braess’s paradox.  Section III offers a game-theoretic 
performance model for selfish routing under attack, and 
introduces the corresponding generalized price of anarchy.  
Section IV solves this model in a particular case of several 
sources transmitting to a common destination either directly 
or via another source.  Finally, Conclusion summarizes our 
results and outlines directions of future research.  
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II. MOTIVATION: INFORMAL CASE STUDY 

Figure 1 shows a simple network with two sources 1s  and 

2s  sending traffic at rates 1λ  and 2λ  respectively to the 

common destination 0s .   
 

 
 
Figure 1.  Motivational example 
 
Sending traffic over a direct route 2,1, =iri  connecting 

source is  to the destination is associated with cost 0≥ic  
per unit of rate.  Sending traffic over the bi-directional route 
r  connecting sources 1s  and 2s  is associated with cost 

0≥d  per unit of rate.  The transmission cost over a route is 
additive with respect to all the links comprising the route.  
We assume that an attacker can disrupt a certain portion ξ  of 

traffic on either direct route 1r  or 2r , resulting in a certain 
penalty for the sources affected by the disruption, e.g., due to 
disrupted traffic. 
 Consider two scenarios.  In the first scenario sources 1s  

and 2s  are not directly connected. i.e., route r  does not 

exist.  In this scenario each source is  can send traffic to the 

common destination 0s  only over a single direct route ir , 

2,1=i .  A weak attacker can destroy a small portion ξ  of 
this direct traffic, but the negative effect on the network 
performance, which is proportional to ξ , will be small.  In 

the second scenario, sources 1s  and 2s  are directly 
connected by a bi-directional route r  and have a choice to 
split their traffic between direct route ir  and the bypass route 

),( 3 irr − , 2,1=i .  In the rest of this Section we informally 
demonstrate that this ability to choose increases the routing 
cost, which is reminiscent of the Braess paradox. 
 For simplicity we demonstrate this possibility in a 
symmetric case when sources is  transmit at the same rate: 

λλ =i , both direct routes 2,1, =iri  have the same costs: 

00 cci = , 2,1=i , and a strategic attacker disrupts a certain 

portion ξ  of traffic on either direct route 1r  or 2r  where 
route selection is intended to maximize the total amount of 
affected traffic before reaching the destination.  Since transit 
routes are “more expensive” than direct routes for both 
sources, the socially optimal routing for both sources is  is to 

send the entire traffic over the direct links ir  and do not use 
link r  at all regardless of attacker presence.  In this case each 
source 1s  and 2s  incurs transportation cost of λc  while 

having portion λξ )2(  of its traffic disrupted due to 
symmetry. 
 However, selfishness will drive sources away from this 
social optimum as follows. Source 1s  can improve its 
position by shifting a very small portion 0→ε  of its traffic 
from the direct route 1r  to bypass route ),( 2rr  and thus 

making route 2r  more appealing target for attack than route 

1r .  Indeed after this shift, route 2r  will be carrying load 

λε )1( +  while route 1r  will be carrying load λε )1( − .  

As a result of this shift, source 1s  reduces the portion of its 

disrupted traffic by a finite amount )1()2)(1( O=− ξε  at 
the cost of very small increase cελ  in the transportation cost 
as 0→ε .  By symmetry, source 2s  has incentive to shift a 
very small portion 0→ε  of its traffic from the direct route 

2r  to bypass route ),( 1rr .  As both selfish sources 1s  and 

2s  attempt to improve their positions by shifting portions of 
their traffic from direct to bypass routes, they will likely to 
move away from socially optimal equilibrium towards 
competitive equilibrium where both sources split their traffic 
equally between direct and bypass routes.   

This competitive equilibrium is less efficient than the 
socially optimal equilibrium with both sources using only 
direct routes.  Indeed, due to the symmetry, the portion of 
disrupted traffic for each source 2ξ  is the same in both 
equilibria.  However, while the socially optimal 
transportation cost is λc2 , the competitive equilibrium has 
higher transportation cost of λ)2( dc + .  Thus, a surprising 
conclusion is that even a very “weak”, meaning 0→ξ , 
adversary can significantly reduce performance of selfish 
routing. 

It is instructive to look at this phenomenon as an increase 
in the transportation cost with increase in the number routing 
choices for selfish users.  When only direct routes 2,1, =iri  
are available, an adversarial presence does not affect the 
routing cost.  However, adding more routing possibilities for 
traffic delivery by adding route r  directly connecting 
sources 1s  and 2s , results in an increase the transportation 
cost from λc2  to λ)2( dc + .  This phenomenon is very 
similar to the Braess paradox [8].  However, since in our 
simple network without adversary the transportation cost is 
not affected by the presence of route r , the inefficiency of 
selfish routing is entirely due to adversarial presence.  The 
purpose of this paper is to propose a formal framework for 
addressing these issues for general topology networks. 
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III. MINIMUM-COST ROUTING 
This Section formally describes minimum cost routing, 

identifies possible exogenous reasons for link cost 
uncertainty, and discusses possible approaches to minimum 
cost route selection under uncertain link costs. 

A. Known Link Costs 

Consider a network with set of nodes N  and set of links  L .  
Users ),( ns  attempt to send traffic from node Ns ∈  to 

node sNn \∈  at fixed rate snλ  by splitting its traffic into 

flows of rates rλ  over feasible routes snRr ∈ : 

                           
∈

=
snRr

rsn λλ                                            (1) 

The link l  aggregate load is the sum of rates of all flows 
traversing this link: 
                            

∈

=
rlr

rl
:

λμ                                            (2) 

Each user sending traffic over link l  at rate λ  incurs cost 
)( llc μλ , and the cost of transmission over a route is the 

sum of the costs of transmissions over all links comprising 
this route.   

Thus, the transmission cost for user ),( ns  over route 

snRr ∈  is 

                       
∈ ′∈′

′ 






=
rl rlr

rlrr cf
:

)( λλλ                        (3) 

and the total cost to user ),( ns  is 

                
∈ ∈ ′∈′

′ 






=
snRr rl rlr

rlrsn cF
:

)( λλλ                        (4) 

where the vector )( rλλ =  characterizes flow rates on all 
feasible routes r  in the network.  We assume link cost 

)( llc μ  to be increasing and either linear or convex in link 

load 0≥lμ  for all links Ll ∈ . 
 Socially optimal load allocation minimizes the aggregate 
cost for all users: 
            )(min)(

)0(

min λλ
λ

FFF
r

opt

≥
==                            (5) 

where the aggregate cost is 

            
∈ ∈ ′∈′

′ 






=
),( :

)(
ns Rr rl rlr

rlr

sn

cF λλλ                        (6) 

and minimization is subject to constraints (1).  Due to our 
assumptions, optimization problem (1), (5)-(6) is convex, and 
thus has unique computationally tractable solution.   
 In a particular case of load-independent link costs 

lll cc =)(μ  the socially optimal routing can be identified 

explicitly: the optimal route for user ),( ns  is 

                    
∈∈

=
rl

l
Rr

sn cr
sn

minarg*                                       (7) 

the corresponding minimal user ),( ns  cost is 

                   
∈∈

=
rl

l
Rr

snsn cF
sn

minmin λ                                     (8) 

and the total cost for all users is 

                  
∈∈

=
),(

min min
ns rl

l
Rr

sn cF
sn

λ                                 (9) 

A. Unknown Link Costs 

Cost based strategies naturally arise as a result of 
optimization of the network performance [9] or incorporating 
Quality of Service ( QoS ) requirements into admission and 
routing processes [10].  In the case of QoS  routing, the cost 
of a route r  reflects the expected level of the QoS  

provided to a request carried on this route.  For example, lc  
may represent the expected delay, packet loss or available 
bandwidth on link l .  Typically, link costs depend not only 
on the user routing decisions affecting link loads (2), but also 
on some exogenous parameter(s), which are often not known 
precisely.   

Uncertainty in the exogenous parameters creates 
uncertainty in the link costs making minimum cost route 
selection dependent on the nature of uncertainty.  In the case 
of statistical uncertainty it is natural to minimize the average 
route cost.  In this paper we are concerned with adversarial 
uncertainty created by attacker(s).  In this case it is natural to 
base route selection on a worst-case route cost minimization.  
In the rest of this Subsection we consider some examples 
leading to link Ll ∈  cost of the form 
              llllllll bcf ξμμξμ )()()( +=                          (10) 

where lμ  is link l  aggregate load, 0≥lξ  is an exogenous 

parameter, functions )( llc μ  and )( llb μ  are increasing 

and convex in 0≥lμ .  Further in the paper we consider a 

particular case of link costs (10) with lll cc =)(μ  and 

lll bb =)(μ  being link load independent.  In this case link 
costs (10) take the following form 
                     lllll cf ηημ +=)(                                     (11) 

where 0≥= lll b ξη  is an exogenous parameter. 

In the case when a small portion lξ  of traffic traversing 

link l  can be disrupted, user ),( ns ’s aggregate cost (4) 
takes the following form: 

         
∈ ∈ ′∈′

′ 














+=
snRr rl rlr

rllsnrsn cbF
:

)( λξλξλ       (12) 

where parameter snb  quantifies user ),( ns  sensitivity to 
traffic disruption.  In the case when all users have the same 
sensitivity to the traffic disruption, e.g., parameters bbsn =   

do not depend on  ),( ns , aggregate user ),( ns  cost (12) 
can be rewritten as follows: 

              
∈ ∈ ′∈′

′ 






=
snRr rl rlr

rlrsn fF ξλλξλ
:

)(                (13) 

where link l  cost is 
                llllll bcf ξμξμ += )()(                                 (14) 
User cost (13) has the same form as cost (4), but with 
modified link l  costs (14), which now depend on the 
exogenous parameters lξ .  In another example link costs are 
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associated with delays, and a Denial of Service (DoS) 
attacker inserts malicious load lξ  on link l .  In this case the 

modified link l  cost becomes  
              llllllll bcf ξμμγμ )()()( +=                         (15) 

where 
l

ddcb lll μμμμμ == ])([)( . 
 Further in the paper we assume link costs (15), aggregate 
user cost (13), and the aggregate cost for all users 

           
∈ ∈ ′∈′

′ 






=
),( :

)(
ns Rr rl rlr

rlr

sn

fF ξλλξλ                  (16) 

IV. ROUTING UNDER ADVERSARIAL UNCERTAINTY 
This Section proposes game-theoretic models for socially 

optimal and selfish load allocation under attack, which is 
interpreted as adversarial uncertainty.  In a general case of 
load-dependent link costs, considered in Subsection A, the 
agents have continuous sets of strategies and agent’s best 
responses are discontinuous.  Subsection B considers the 
simpler case of load-independent link costs, when the 
corresponding games have finite sets of strategies. 

A. Load-dependent Link Costs 

Consider an adversarial uncertainty when vector Ξ∈ξ  is 
controlled by an adversary who attempts to maximize the 
total cost for all users ( ): 
                  )(maxarg)(* ξλλξ

ξ
F

Ξ∈
=                              (17) 

Vector )(* λξ  represents the best attacker response to load 

allocation λ .  We consider two scenarios for load allocation 
against adversarial uncertainty: socially optimal and 
competitive.   

In a socially optimal scenario, given attacker strategy 
Ξ∈ξ , the social planner allocates all user loads in an 

attempt to minimize the aggregate cost to all users: 
                  )(minarg)(* ξλξλ

λ
F=                              (18) 

where minimization is subject to constraints (1) and                   
0≥rλ .  Load allocation (18) represents the best response 

by a social planner to attacker strategy Ξ∈ξ .  It is natural 
to view (17)-(18) as best responses in a two-player: social 
planner and attacker, zero-sum game, where the social 
planner selects load allocation (18) in an attempt to minimize 
the aggregate routing cost while the attacker selects “attack 
vector” (17) in an attempt to maximize this cost.  The value of 
this game max

minF  quantifies the equilibrium aggregate cost 
when both players act to the best of their abilities.   

In a competitive scenario each selfish  user ),( ns  
allocates its own load 

{ }snrnsrrsn Rr ∈≥==  ,0,:)( λλλλλ  in an 

attempt to minimize its cost in adversarial environment (17): 

         )]([minarg)( *
)(

*
)(

)(

λξλλλ
λ snsnsn F

sn

=−                    (19) 

where vector )(sn−λ  characterizes load allocations by all 

users except user ),( ns .  User ),( ns ’s load allocation (19) 

represents the best user ),( ns  response to other user load 

allocations )(sn−λ  in the Stackelberg game with 

non-cooperative selfish users being leaders as they 
simultaneously allocate their loads in attempt to minimize 
their routing cost and an attacker being a follower who 
manipulates link costs in an attempt to maximize the 
aggregate routing cost to all users.  Generally, this game may 
have multiple Nash equilibria with different aggregate 
routing costs.   

Let *
*̂F  be the maximum aggregate cost over all Nash 

equilibria in this game.  The price of anarchy [5]-[6] 

                              max
min

*
*̂ FF=γ                                    (20) 

characterizes loss in the aggregate performance due to user 
selfishness.  It is easy to see that 1≥γ  since coordinated 
user strategy can better counteract an adversarial action.  The 
novelty of our approach is its ability to quantify the loss in the 
aggregate performance due to user selfishness under attack as 
a function of the attacker “power” represented by the set of 
feasible attacker strategies Ξ : 
                               )(Ξ= γγ                                            (21) 

Note that the typical discontinuity of the best responses 
(17)-(19) makes conventional results about existence and 
uniqueness of the game equilibrium non-applicable for 
games proposed in this Subsection for socially optimal and 
selfish load allocations under adversarial uncertainty.  
Consider, as an example, a case of load-unaware link costs 
(11) and assume that set of feasible adversarial actions 

)(Ξ= γγ  is  

               { }Lla ll lll ∈≥≤=Ξ  ,0,: ξηξξ              (22) 

with some 0>la .  In this case the optimal adversarial 
response (17) is to concentrate “the attack”: 

                   


 =

=
otherwise

llifal
l 0

)(
*

* ηλξ                      (23) 

on a link: 
                   

∈∈
=

rlr
rll

Ll
abl

:

* )(maxarg)( λλ                     (24) 

where the impact is maximal.  In a situation of several such 
“highest impact” links, the attacker is indifferent with respect 
to distributing its efforts among these links.   

B. Load-independent Link Costs 

Consider the case of load-independent link costs (11), and 
assume that each user ),( ns  chooses a single feasible route 

snRr ∈  for transmitting its entire flow of rate snλ , while 

the attacker chooses a single link Ll ∈  to attack by raising 
its cost from lc to hcl + , where 0>h .  It is convenient to 
characterize feasible pure strategies of the attacker by the 
binary variables: 1=lδ  if link l  is attacked, and 0=lδ  

otherwise.  Thus, user ),( ns ’s transportation cost is 

           
∈ ∈

+=Φ
sn ij

sn
rl rlij

ijllrsn hcr
):(

)()( λδλδ                 (25) 

and the total transportation cost for all users is 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 
 

                    Φ=Φ
),(

)()(
ns

sn rr δδ                              (26) 

where vector )( snrr =  characterizes route selections by all 

users, and vector )( lδδ =  characterizes attacker strategy. 
Again, we consider two scenarios for load allocation in an 

adversarial environment: socially optimal and competitive.  
In both scenarios, given route selections by all users 

)( snrr = , the attacker selects a link to attack in an attempt to 
maximize the aggregate cost (26): 
                  )(maxarg)(* δδ

δ
rr Φ=                               (27) 

The socially optimal scenario [11]-[13] is modeled as a 
zero-sum game of social planner and attacker, where for a 
given attacker strategy δ  the social planner assigns routes to 
all users )( snrr =  in attempt to minimize the aggregate cost 
for all users: 
                  )(minarg)(* δδ rr

r
Φ=                               (28) 

The competitive scenario is modeled as a Stackelberg game 
with non-cooperative users being the leaders and the attacker 
being the follower.  All users ),( ns  simultaneously select 

their routes *
snr  in attempts to minimize their own costs (25): 

           )]([minarg)( *
)(

* rrrr sn
r

snsn
sn

δΦ=− ,                     (29) 

assuming attacker strategy (27), where 
)},(),(:{)( nsmkrr kmsn ≠=− . 

Since both scenarios are modeled as games with finite sets 
of strategies, each of these games always has at least one 
Nash equilibrium.  These equilibria may be either pure, e.g., 
specify a feasible route for each source and a link to attack, or 
mixed, e.g., a probability distribution on sets of feasible 
routes and links to attack.  It is natural to view a mixed 
routing strategy as the corresponding load split among 
feasible routes, and a mixed attacker strategy as the 
corresponding splitting of the attacker efforts among 
different links.  This interpretation provides a link between 
the game-theoretic formulation with finite set of strategies in 
this Subsection and the game-theoretic formulation with 
continuous sets of strategies in the previous Subsection.  
 The price of anarchy consistent with definition (20) is  

                          1ˆ max
min

*
* ≥ΦΦ=γ ,                                  (30) 

where max
minΦ  is the total user cost in the unique socially 

optimal equilibrium, and *
*Φ̂  is the total user cost in the 

worst-case competitive equilibrium.  Note that performance 
of a mixed Nash equilibrium is characterized by the 
corresponding average cost. 

Consider price of anarchy (30) as a function of the power 
of attacker 0≥h : )(hγγ = .  Apparently, in absence of an 

attacker the price of anarchy 1)( 0 ==hhγ , i.e., there is no 

loss in performance due to user selfishness, since selfish 
users will choose socially optimal minimum cost routes.  The 
Braess paradox refers to a counterintuitive situation when 
providing more choices to the selfish users by adding links to 
the network increases the total transportation cost.  

Apparently, in absence of an attacker: 0=h , the Braess 
paradox cannot occur.  Informal arguments of Section II 
confirmed by formal analysis in the next Section of the paper 
demonstrate that the presence of an attacker, i.e., 0>h  may 
lead to loss in routing performance, i.e., 1)( >hγ , and 
occurrence of the Braess paradox even in a case of 
load-independent link costs. 

V. EXAMPLE 
Subsection A describes the example network and discusses 

the corresponding equilibria, price of anarchy and Braess 
paradox.  Subsection B briefly outlines the derivation of the 
Nash equilibria for the example network. 

A. Price of Anarchy and Braess Paradox 

Consider a network comprised of sources },..,1{ Ss ∈  

transporting traffic to a common destination at rate sλ .  Each 

source },..,1{ Ss ∈  can either use a direct route to the 

destination sr  at cost of 0>sc  per unit of rate, or use any 

route snr  to the destination via any one other source 

sSn \},..,1{∈  at the cost of nsn cd +  per unit rate, where 

0>snd  is a transportation cost from source s  to source n .  
In this paper, due to space limitations, we consider the 
symmetric case when all users },..,1{ Ss ∈  have the same 

transmission rates λλ =s  and direct transportation costs: 

ccs = .  We assume that transportation costs between any 

two sources   and sSn \},..,1{∈  are the same: ddsn = .  
We also assume that attacker can raise transportation cost on 
one of S  direct routes sr  from c  to hc + . 

Due to the symmetry, the socially optimal routing 
transports all traffic over direct links while the attacker 
attacks direct links equiprobably.  The corresponding total 
aggregate transportation cost is 
                     λ)()(max

min hSch +=Φ                                    (31) 
For simplicity we only consider the game-theoretic model 
introduced in Subsection IVB with a finite set of strategies.  
One can verify that while in socially optimal equilibrium 
users transport their traffic over direct routes, for 0>h the 
competitive equilibrium exists, where each selfish user 
equally splits its traffic among all S  feasible routes, which 
include one direct route and 1−S  bypass routes via other 
users.  Formal arguments supporting this statement are 
briefly outlined in the next Subsection.  In the rest of this 
Subsection we discuss the corresponding price of anarchy 
and a Braess paradox as links directly connecting different 
sources are added. 

In is easy to verify that the total transportation cost in the 
described above competitive equilibrium is 

    




=
>+−+

=Φ
0
0])1([*

* hifSc

hifhdSSc

λ
λ

                (32) 

and the corresponding price of anarchy, shown in Figure 2, is 
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Figure 2.  Price of anarchy γ  vs. attacker power h . 
 
The price of anarchy γ  jumps from 1 for 0=h  to  

                     
c

d

S






 −+= 111maxγ                                 (34) 

as h  becomes positive.  Then, as h  increases, the price of 
anarchy monotonically decreases approaching 1 due to 
ability of a powerful attacker to overwhelm any defense.  The 
price of anarchy (33) also quantifies the severity of the 
Braess paradox as the network in question is expanded from 
one with only direct routes to include links directly 
connecting different sources.  

B. Outline of Nash Equilibrium Derivation 

Let us assume that some source, say source 1=s , 
chooses direct route 1r  with probability ]1,0[∈α  and each 

of 1−S  transit routes with probabilities )1()1( −− Sα .  

Sources Ss ,..,2=  choose direct route with probability 

0≥β  and each of 1−S  transit routes with probabilities 

)1()1( −− Sβ .  The cost per unit of rate for the source 

depends on either βα > , βα < , or βα = .  In the case 

βα >  route 1r  carries more load than other direct routes 

},..,2{, Ssrs ∈ .  Thus, route 1r  will be attacked making 

the source 1=s  transportation cost  

        )1)(()()(1 ααβαφ −+++= dchc .                   (35)            

In a case βα <  route 1r  carries less load than other direct 

routes },..,2{, Ssrs ∈ .  Thus, the attacker will attack each 

of other direct routes },..,2{, Ssrs ∈ with probability 

)1(1 −S  raising its cost by )1( −Sh  on average.  The 

average transportation cost for source 1=s  in this case is 

       )1(
1

)(1 ααβαφ −







−
+++=

S

h
dcc               (36) 

In the case βα =  route 1r  carries the same load as other 

direct routes },..,2{, Ssrs ∈ .  Thus, the attacker will split 

its efforts among all direct routes },..,1{, Ssrs ∈ with 

probability S1  raising the average cost of each direct route 

by Sh .  The average transportation cost for source 1=s  
in this case is 

       )1(
1

)(1 ααβαφ −







−
+++=

S

h
dcc                (37) 

Since source 1=s  will attempt to minimize its cost (37) 
over ]1,0[∈α , it is natural to identify Nash equilibria of the 
corresponding game with solution to equation 
                       ),(minarg 1]1,0[

βαφβ
α∈

=                             (38) 

VI. CONCLUSION 
This paper proposes a research agenda on the effect of 

adversarial presence measured by the price of anarchy.  
Initial models and results suggest practical importance as 
well as theoretical challenges of this research.  For example, a 
possibility of reducing of the price of anarchy while 
preserving the distributed nature of resource allocation is an 
important question to answer. 
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