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Abstract 

The Guide to the Expression of Uncertainty (GUM) in Measurement established a general procedure to 
evaluate measurement uncertainty. The Guide covers only the evaluation of a single result or a set of results. 
Modern measurement instruments and procedures operate over a wide range of values. Therefore in practice a 
calibration procedure is needed that is valid for this range. It should include an evaluation of uncertainty 
associated with the calibration results and for the subsequent measurements performed with the calibrated 
instrument. Traditionally regression is used for this purpose. In this talk we will discuss the weaknesses of the 
regression approach and suggest an alternative to overcome the weaknesses. 

1 Introduction 
Measurements are applied to a variety of different quantities of interest and different methods and principles 
are in use. A very common cause-and-effect structure for many measurements is shown in Fig. 1. Often the 
quantity of interest (the measurand) is an input to a measuring device (instrument or procedure) and an 
indication (or observation) is the output. A typical example is a digital voltmeter which has input connectors 
for the quantity DC voltage and a digital display to indicate the value. 

  
Figure 1: Cause-and-effect structure for many measurements. 
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We are interested in situations where a measuring device corresponding to the structure in Fig. 1 is used for a 
range of values of the measurand Y. We begin with the simple case where the response of the measuring 
device within the calibration range is linear and we discuss the calibration and the uncertainty budget. 
Traditionally a linear regression is used in these cases. We apply a linear regression to the simple case to 
demonstrate the limitations of this approach. We introduce the deviation from linearity in the model to deal 
with the limitation and combine it with a 2-point calibration. Based on a set of calibration points we develop 
an uncertainty budget for a real measuring device and discuss its limitations. In the last section we discuss 
how the calibration concept can be extended to deal with non-linear measuring devices.  

                                                      
1 Corresponding author: Rüdiger Kessel, ruediger.kessel@nist.gov 
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2 Calibrating a linear measuring device 
When the response of the measuring device (indication X) is a linear function of the measurand Y, we use the 
term linear measuring device. The corresponding cause-and-effect structure is shown in Fig. 2. A detailed 
description about the modelling of measurements can be found in [1]. Perfectly linear measuring devices 
rarely exist in practice. It can never be known that the response of a real measuring device is exactly linear. 
Therefore a real device is considered linear if the deviation of the response from a perfectly linear response is 
smaller than a known limit and we use the term limit for the deviation from linearity for it. 

When the limit for the deviation from linearity is large almost any device can be considered linear.  Thus the 
setting of this limit has an influence on the quality of the measurement results when the device is used and it 
should therefore have an influence on the corresponding uncertainty associated with the results. The details 
are discussed in section 2.2. 

 
Figure 2: Cause-and-effect structure for a linear measuring device. 
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A special case of a linear measuring device is a device where the output of device for a zero input is zero. We 
will call this a zero adjusted linear measuring device. In this case the indication (or output) X of the device is 
proportional to the input Y. When the measuring device is used to measure an unknown measurand Yi we 
observe the indication Xi. We need a function to calculate an estimate for the measurand based on the known 
indication Xi and the known inverse of the response of the measuring device. If the response is linear and zero 
adjusted then the inverse of the response is also linear and zero adjusted. The measurement function is: 

cali iY K X= ⋅ , (1) 

where Kcal is the calibration factor. In general the measurement function for a linear measuring device is 

cal zeroi iY K X Y= ⋅ − , (2) 

where Yzero is the negative of the known value of the measurand Y which produces an indication of zero. 

Traditionally a linear regression is used [2, 3, 4] to calibrate a linear measuring device and to find appropriate 
values for Kcal and Yzero. 

2.1 Calibration using a linear regression 

Suppose we have a linear measuring device corresponding to the cause-and-effect structure in Fig. 2 and we 
have a set of N known realisations of the measurand Y with different values Ycal,i and the associated observed 
values of the indication Xcal,i. We can use a linear regression to calculate Kcal and Yzero: 
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To investigate the effectiveness of the linear regression2 in determining Kcal, we look at the sensitivity 
coefficients 
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If the deviation from linearity is small then we can approximate the difference of the value Xcal,j from the 
average of all Xcal values in Equ. (4) by 
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The sensitivity coefficient of a calibration point Pj : (Ycal,j, Xcal,j) with respect to Kcal is proportional to the 
distance in the Y- and X-direction of that point from the average of the calibration points.  

A similar investigation leads to the conclusion that calibration points closest to the origin have the largest 
sensitivity coefficient with respect to Yzero. In addition Yzero is also sensitive to changes in calibration points at 
the other end of the calibration range because of their influence on Kcal. 

As a consequence Kcal is always determined by the calibration points which are far away from the centre of all 
calibration points and Yzero is mostly determined by the points close to the origin. If the other points have a 
minor role in determining Kcal or Yzero what is the purpose of measuring them? We will discuss this in 
Section 2.2. 

Usually the state of knowledge about the calibration points is incomplete. Therefore we introduce the 
uncertainties associated with the calibration points. We can use the linear regression equations in Equ. (3) as a 
model equation (measurement function) and propagate the uncertainties accordingly. The sensitivities can be 
calculated with Equ. (4). Usually the Ycal,j are not independent from each other because they are derived from a 
common standard. In such cases we need to include the correlation between them. Tab. 1 shows some 
example data points together with a given standard uncertainty in parenthesis. The data is considered 
uncorrelated. 

Table 1: Example data points for a linear regression. The standard uncertainty is given in parenthesis. 
j 1 2 3 4 5 

Ycal,j 9.00(5) 3.00(5) 6.00(5) 9.00(5) 12.00(5) 
Xcal,j 0.000(8) 0.800(8) 1.800(8) 2.600(8) 3.400(8) 

                                                      
2 In statistical text books, X is usually the known or independent quantity and Y is the unknown and dependent quantity. 
Therefore the equations presented here look different but are essential equal to the equations used in statistics. 
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Using Equ. (3) as the model of evaluation (measurement function) we propagate the uncertainty according to 
the GUM [5] by using the software package GUM Workbench [6] and we calculate the uncertainty budget for 
Kcal shown in Tab. 2. The main contributions are highlighted in grey. 

Table 2: Uncertainty budget for the slope Kcal based on a regression and the data from Tab. 1. 
Quantity Value Standard 

uncertainty 
Sensitivity 
coefficient 

Uncertainty 
contribution 

Contribution 
Coefficient 

Xcal,1 0.0 8.0·10-3 0.81 6.5·10-3 9.5 % 
Ycal,1 0.0 0.050 -0.23 -0.012 30.5 % 
Xcal,2 0.80000 8.0·10-3 0.41 3.2·10-3 2.4 % 
Ycal,2 3.0000 0.050 -0.11 -5.4·10-3 6.6 % 
Xcal,3 1.80000 8.0·10-3 19·10-21 150·10-24 0.0 % 
Ycal,3 6.0000 0.050 -0.011 -540·10-6 0.0 % 
Xcal,4 2.60000 8.0·10-3 -0.41 -3.2·10-3 2.4 % 
Ycal,4 9.0000 0.050 0.11 5.7·10-3 7.3 % 
Xcal,5 3.40000 8.0·10-3 -0.81 -6.5·10-3 9.5 % 
Ycal,5 12.0000 0.050 0.24 0.012 31.9 % 
Kcal 3.4884 0.0211 

 
As it can be expected from the previous discussion only two of the five points contribute significantly to the 
uncertainty (uncertainty contribution coefficient >10 %). It should be noted that the calibration Point 3 close 
to the centre of all points has virtually no influence on the value or the uncertainty of Kcal. The uncertainty of 
Kcal is only dependent on the uncertainty of the data points and not on the quality of fit of the data to a straight 
line. 

2.2 Deviation from linearity 

Often a chi-square test is used to check the quality of the fit [7]. We do not believe that this is a useful 
approach especially if the uncertainty associated with the Xcal,j and Ycal,j is not dominated by distortion from 
noise. The chi-square test checks if the data is consistent with a statistical model. When the reproducibility of 
the measuring device is very good a statistical model is not advisable since the deviation from linearity is 
largely deterministic. 

We use an additional quantity δlin(Y) in the model to cope with the deviation from linearity. Fig. 3 shows the 
cause-and-effect structure of a linear measuring device including δlin(Y). The actual value of δlin(Y) is 
dependent on the measured value Y. 

 
Figure 3: Cause-and-effect structure of a linear measuring device with a deviation from linearity. 
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From the cause-and-effect structure in Fig. 3 we can derive the measurement model 
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where Yzero is the zero offset, δlin(Y) is the deviation from linearity and Kcal is the calibration factor. 

We can use the measurement model (7) to derive the measurement function for an unknown measurand Yi 

cal lin zero( )i i iY X K Y Y= ⋅ − δ − . (8) 

In practice, the exact value of δlin(Y)i is unknown. But it should be possible to state an upper limit εlin as a 
guardband for the deviation from linearity so that 

( )lin lini
Y εδ <  for all i. (9) 

In these cases the limit εlin can be converted to an uncertainty using a rectangular distribution. 

2.3 Two point calibration 

As demonstrated with the sensitivity analysis in Section 2.1 and the uncertainty budget in Tab. 2, the value of 
the slope evaluated by a linear regression is determined mostly by the extreme calibration points. Therefore 
we use a much simpler 2-point calculation to evaluate the calibration factor Kcal and zero offset Yzero. 

We use two extreme points for the calculation Pl : (Ycal,l, Xcal,l) and Pu : (Ycal,u, Xcal,u). The lower point is often 
the origin. The upper point is usually chosen close to the end of the range to minimize the influence on the 
uncertainty of Kcal. Since the two points define the slope of the linear measuring device response, the value of 
δlin(Y) for these points is zero. Using the measurement model from Equ. (7) and applying it to both calibration 
points, we get: 

cal, cal,
cal

cal, cal,

u

u l

Y Y
K

X X
−

=
−

l
l and . (10) zero cal cal, cal,lY K X Y= ⋅ −

Note that Equ. (10) is a special case of Equ. (3) for N = 2. 

Tab. 3 shows the uncertainty budget for Kcal using P1: (Xcal,1,Ycal,1) and P5: (Xcal,5,Ycal,5) from Tab. 1 as 
calibration points. Compared with the uncertainty budget in Tab. 2 we get a very similar value and uncertainty 
for Kcal but with a much simpler model equation. 

Table 3: Uncertainty budget for the slope Kcal based on a 2-point calculation. 
Quantity Value Standard 

Uncertainty 
Sensitivity 
Coefficient 

Uncertainty 
Contribution 

Contribution 
Coefficient 

Xcal,1 0.0 8.00·10-3 1.0 8.3·10-3 12.1 % 
Ycal,1 0.0 0.0500 -0.29 -0.015 37.9 % 
Xcal,5 3.40000 8.00·10-3 -1.0 -8.3·10-3 12.1 % 
Ycal,5 12.0000 0.0500 0.29 0.015 37.9 % 
Kcal 3.5294 0.0239 

 
Especially when the uncertainty of the calibration points is not dominated by noise but by systematic effects in 
Ycal, it is not advisable to apply a regression. A two point calibration together with an additional term to cope 
with the possible deviation from linearity is more effective in those cases. 

2.4 Limited resolution 

Measuring devices always have a limited resolution. Since most of the present measuring devices use a digital 
display, we discuss this case here. Fig. 4 shows the cause-and-effect structure of a linear measuring device 
with a deviation from linearity and a limited resolution.  
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Figure 4: Cause-and-effect structure of a linear measuring device with a limited resolution. 

The derived measurement model for the measuring device in Fig. 4 is 

zero lin
res
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( )round ,Y Y Y X
K
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⎝ ⎠

⎟ , (11) 

where the function round() is rounding the indication to the number of digits of the display expressed as a 
limit of resolution εres which is equal to half of the last digit. 

The limited resolution is a non-linearity in the transfer function of the measuring device. Furthermore a digital 
quantisation (rounding) introduces discontinuities which make the mathematical inversion of the measurement 
model impossible. Therefore we use the common solution of adding an additional quantity δXres with a 
rectangular distribution to the indication which represents the resolution: 

zero lin
res

cal

( )Y Y Y X X
K

+ + δ
= + δ , with res resX εδ ≤ . (12) 

From Equ. (12) we derive the measurement function for the measurement of an unknown measurand Yi 

( )res, cal lin zero( )i i i iY X X K Y Y= + δ ⋅ − δ −  (13) 

and for the calibration of Kcal and Yzero: 

( ) ( )
cal, cal,

cal
cal, res, cal, res,

u l

u u l

Y Y
K

X X X X l

−
=

+ δ − + δ
 and ( )zero cal cal, res, cal,l lX X Y= ⋅ + δ − lY K . (14) 

3 Example with real measurement data 
We want to apply the calibration concept developed in Section 2 to calibrate and use a pressure sensor. 
Although in practical cases one needs to use proper units for the quantities, we do not use units here to 
simplify the discussion.  

3.1 Calibration 

Tab. 4 shows the measurement data for eleven calibration points. We assume that the linearity of the pressure 
generator which generates the known pressures Ycal,j is much better than the linearity of the device under 
calibration. Therefore we can ignore the uncertainty of the Ycal,j in the context of the evaluation of the 
deviation from linearity. Fig. 5 shows a plot of the response of the measuring device together with a plot of the 
deviation from linearity (residuals [4]). 
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Table 4: Measured data observed for the measuring device (pressure sensor). 
Point, j 0 1 2 3 4 5 6 7 8 9 10 

Ycal,i 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 
Xcal,i 0.0000 0.2039 0.4080 0.6120 0.8160 1.0201 1.2242 1.4283 1.6325 1.8367 2.0410 

 

 
Figure 5: Response of the measuring device and residuals based on the data in Tab. 4. 

We use Point 0 and Point 10 to calculate Kcal and Yzero from Equ. (14). The limit of resolution is εres = 0.00005. 
While the zero point can be generated with a negligible uncertainty, the uncertainty in u(Ycal,10) cannot be 
neglected and it is u(Ycal,10) = 2.3·10-3. Repeated observations Xcal,j do not change and are therefore treated as 
constants. This is in practice often the case when industrial sensors are calibrated and the stability of the 
measurement system and the standards is much better than the resolution. Tab. 5 shows the uncertainty budget 
for the evaluation of the calibration factor Kcal. 

Table 5: Uncertainty budget for Kcal based on a 2-point calibration with Point 0 and 10 from Tab. 4. 
Quantity Value Standard 

Uncertainty 
Sensitivity 
Coefficient 

Uncertainty 
Contribution 

Contribution 
Coefficient 

Ycal,10 20.00000 2.30·10-3 0.49 1.1·10-3 97.1 % 
Xcal,10 2.041     
δXres,10 0.0 28.9·10-6 -4.8 -140·10-6 1.5 % 
δXres,0 0.0 28.9·10-6 4.8 140·10-6 1.5 % 
Kcal 9.79912 1.14·10-3 

 
A similar evaluation leads to a value of Yzero = 0.0 and an uncertainty of u(Yzero) = 280·10-6. Because Point 0 is 
used in both evaluations Kcal and Yzero are correlated with r(Kcal,Yzero) = 0.12. 

The residuals in Fig. 5 show that the measuring device has a significant non-linearity which could be 
corrected. We will handle the correction later in Section 4. In an industrial context, it is not always feasible to 
apply such a correction. Therefore we will increase the uncertainty instead. We specify an upper limit for the 
deviation from linearity εlin as 0.005 and use the residuals to prove that 

cal cal, zero cal, linj jK X Y Y ε⋅ − − <  for all calibration points (j = 1 ... 9). (15) 

Since we do not know for which measured values the sensor will be subsequently used, we use a rectangular 
distribution for δlin(Y). We could improve the uncertainty in this special case by establishing a negative 
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expectation value for δlin(Y) of half the largest residual, but it would make the use of the sensor more 
complicated since the user must apply this correction to every measured value. 

The calibration provides the following information to the user for the subsequent measurements: 
• The calibration factor Kcal which contains the link to the stated reference for traceability. 
• The zero offset Yzero and the correlation r(Kcal,Yzero) which are often omitted in case the  

device can be zero adjusted by the user later before the measurement. 
• A limit of the deviation from linearity εlin to allow the measuring device to be used over the specified 

range. 

3.2 Measuring an unknown measurand 

After we have calibrated the measuring device we can use it to measure different unknown measurands within 
the calibrated range. We use the indications Xcal found during the calibration as examples for observations of 
unknown measurands. We use Equ. (13) as a measurement function to evaluate the results. Tab. 6 shows the 
uncertainty budget for a measurement in the middle of the calibrated range. 

Table 6: Uncertainty budget for a measurement with the measuring device 
Quantity Value Standard 

Uncertainty 
Sensitivity 
Coefficient 

Uncertainty 
Contribution 

Contribution 
Coefficient 

Yzero 0.0 28.9·10-6 -1.0 -29·10-6 0.0 % 
Kcal 9.79912 1.14·10-3 1.0 1.2·10-3 13.8 % 
X5 1.0201     

δXres,5 0.0 28.9·10-6 9.8 280·10-6 0.8 % 
δlin(Y),5 0.0 2.89·10-3 -1.0 -2.9·10-3 85.3 % 

Y5 9.99608 3.12·10-3 
 

Table 7: Results with their associated expanded uncertainties  
over the calibrated range of the measuring device. 

Quantity Value Exp. Uncertainty Coverage factor 
Y0 0.0 5.8·10-3 2.00 
Y1 1.9980 5.8·10-3 2.00 
Y2 3.9980 5.9·10-3 2.00 
Y3 5.9971 6.0·10-3 2.00 
Y4 7.9961 6.1·10-3 2.00 
Y5 9.9961 6.2·10-3 2.00 
Y6 11.9961 6.4·10-3 2.00 
Y7 13.9961 6.6·10-3 2.00 
Y8 15.9971 6.9·10-3 2.00 
Y9 17.9980 7.1·10-3 2.00 
Y10 20.0000 7.4·10-3 2.00 

 
As expected, the contribution because of the limited linearity δlin(Y) dominates the uncertainty budget. Tab. 7 
shows the results with the associated expanded uncertainties for different values of the measurand over the 
calibrated range of the measuring device. It should be noted that since the uncertainty budget in Tab. 6 is 
dominated by the quantity introduced to cope with the limited linearity which has a rectangular distribution 
assigned to it, the distribution of the Yi is not normal but more trapezoidal. The relative influence of this 
contribution is larger for smaller values of the measurand leading to an overestimation of the coverage factor 
by about 15% for small measurands around zero and down to 3% for measurands at the higher end of the 
calibrated range. For the midrange value in Tab. 6 the coverage factor in Tab. 7 is about 10% too large. 
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3

It would be possible to improve the expanded uncertainty by applying a better coverage factor found for 
example by Monte Carlo simulation [8]. In the next section we will instead improve the uncertainty by 
correcting for the non-linearity and thereby reducing the contribution of δlin(Y). 

Fig. 6 shows the performance of the measuring device over the calibration range as uncorrected deviations 
ΔY = Y − Ycal with their expanded uncertainties (kp95 = 2.0), treating the Ycal as constants. The expanded 
uncertainty interval always covers the value zero. 

 
Figure 6: Performance of the measuring device over the full range with uncertainty bars (kp95 = 2.0) 

The uncertainty of the results Tab. 7 is very similar. Therefore the use of the measuring device could be 
simplified for the user by applying the same value for the uncertainty to all values of Y over the calibration 
range. The indication X should be multiplied with a calibration factor Kcal = 9.799 to calculate the value of an 
unknown measurand Y and the expanded uncertainty can be predicted with Upred(Y) = 7.4·10-3 (kp95 = 2.0). 

4 Non linear measuring device 
The measuring device we have used as an example in Section 3 shows a significant deviation from linearity 
which is the dominating uncertainty component if it is not corrected (Tab. 6). The non-linearity of these 
pressure sensors is quite common and usually a third degree polynomial is used to correct for it.  

 
Figure 7: Cause-and-effect structure of a linearized measuring device. 
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For the specific sensor used as an example here, the following function has been found to be useful as a 
correction: 

( ) 2
linf X a b X c X d X= + ⋅ + ⋅ + ⋅ , (16) 

where a = 0, b = 9.806027, c = -2.251197·10-3, d = -5.753193·10-4. The parameters a, b, c and d have been 
found by regression, but it does not matter how we find a useful correction function.  

Fig. 7 shows the cause-and-effect structure of a non-linear measuring device being corrected by a correction 
function. The combination of the measuring device together with the function to correct for non-linearity can 
be treated as a new virtual linear measuring device which should be more linear than the measuring device 
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without correction and it can be calibrated following the procedure discussed in Section 2. The measurement 
model can be derived from Equ. (12) by replacing the right side by the corrected observation with  flin() (Equ. 
(16)) and we get: 

(zero lin
lin res

cal

( )Y Y Y f X X
K

+ + δ
= + δ ) . (17) 

From Equ. (17) we derive the measurement function for the measurement of an unknown measurand Yi 

( )lin res, cal lin zero( )i i i iY f X X K Y Y= + δ ⋅ − δ −  (18) 

and for the calibration, the evaluation model for Kcal and Yzero: 

( ) ( )
cal, cal,

cal
lin cal, res, lin cal, res,

u l

u u l

Y Y
K

f X X f X X
−

=
+ δ − + δ l

 and ( )zero cal lin cal, res, cal,l lY K f X X Y= ⋅ + δ − l . (19) 

The key question is whether or not there is an uncertainty involved with the function flin() which need to be 
included in the uncertainty budget for Yi, Kcal or Yzero? Since flin() has been established based on uncertain data, 
the parameters a, b, c and d are also uncertain. The consequence is that there is more than one set of values for 
the parameters a, b, c and d which would be a useful correction for the non-linearity. We are free to pick one 
of the many. After we have picked one set of values, the values we used are fixed. They become part of the 
sensor and we can treat them as if they would be hardwired to the sensor. After we have fixed the parameters 
a, b, c and d, the function flin() is completely defined and known and there is no uncertainty left about it. 
Applying a fixed and known function to the data does not introduce any uncertainty. But it might change the 
sensitivities or modify the distribution of the result and therefore should be part of the measurement model as 
shown in Equ. (17). 

Table 8: Uncertainty budget for the slope Kcal based on a 2-point calibration  
using the correction function from Equ. (16). 

Quantity Value Standard 
Uncertainty 

Sensitivity 
Coefficient 

Uncertainty 
Contribution 

Contribution 
Coefficient 

Ycal,10 20.00000 2.30·10-3 0.050 120·10-6 97.1 % 
Xcal,10 2.041     
δXres,10 0.0 28.9·10-6 -0.49 -14·10-6 1.5 % 
δXres,0 0.0 28.9·10-6 0.49 14·10-6 1.5 % 
Kcal 1.000008 117·10-6 

 
Tab. 8 shows the uncertainty budget for Kcal using the measurement function in Equ. (19) with the correction 
function flin() for the non-linearity. 

Comparing the uncertainty budgets in Tab. 5 and Tab. 8 it should be noted that the value of the calibration 
factor Kcal changed from 9.99608 to 1.000008. This is due to the fact that flin() not only improves the linearity 
but also does a linear scaling because b = 9.806027. But the uncertainty contribution coefficients do not 
change and also the relative uncertainty u(Kcal)/|Kcal| is the same. Using flin() has in our case no influence on the 
value or the uncertainty of Yzero. Therefore we use Yzero = 0.0, u(Yzero) = 280·10-6 and r(Kcal,Yzero) = 0.12, the 
same as for the uncorrected measuring device. 
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( )cal lin cal zero calK f X Y Y⋅ − −

 
Figure 8: The residuals based on the data in Tab. 4 after applying the correction function flin() from Equ. (16). 
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Fig. 8 shows a plot of the residual after applying the correction function flin() from Equ. (16) to the calibration 
points in Tab. 4. The upper limit for the deviation from linearity can be reduced to εlin = 0.0007 which is 
almost a magnitude better than for the uncorrected measuring device. 

Table 9: Uncertainty budget for a measurement with using the correction from Equ. (16). 
Quantity Value Standard 

Uncertainty 
Sensitivity 
Coefficient 

Uncertainty 
Contribution 

Contribution 
Coefficient 

X5 1.0201     
δXres,5 0.0 28.9·10-6 9.8 280·10-6 5.0 % 
Kcal 1.000008 117·10-6 10 1.2·10-3 82.4 % 
Yzero 0.0 283·10-6 -1.0 -280·10-6 2.5 % 

δlin(Y),5 0.0 404·10-6 -1.0 -400·10-6 10.1 % 
Y5 10.00025 1.27·10-3 

 
Tab. 9 shows the uncertainty budget for a measurement with the measuring device in the middle of the 
calibrated range using the correction from Equ. (16). It should be noted that the uncertainty contribution of the 
term coping with the limited linearity has dropped to a level where it is almost insignificant. The uncertainty 
budget is now dominated by the uncertainty of the calibration factor Kcal which is dominated by the 
uncertainty of the calibration standard Ycal,10. To improve the uncertainty further a better calibration standard 
would be needed. 

Table 10: Results with their associated expanded uncertainties over the calibrated  
range of the measuring device using the correction from Equ. (16). 

Quantity Value Exp. Uncertainty Coverage factor 
Y0 0.0 990·10-6 2.00 
Y1 1.9994 1.2·10-3 2.00 
Y2 4.0005 1.4·10-3 2.00 
Y3 6.0004 1.8·10-3 2.00 
Y4 8.0000 2.1·10-3 2.00 
Y5 10.0003 2.5·10-3 2.00 
Y6 12.0002 3.0·10-3 2.00 
Y7 13.9998 3.4·10-3 2.00 
Y8 16.0000 3.8·10-3 2.00 
Y9 17.9997 4.3·10-3 2.00 
Y10 20.0000 4.7·10-3 2.00 

 
Table 10 shows the results with an expanded uncertainty covering the full calibrated range. Using the 
correction Equ. (16) the uncertainty improves in the lower range by about a factor of 5 while the improvement 
at the upper end of the range is less than factor of 2. The reason is that for values of Y larger than 4, the 
calibration factor Kcal is the biggest contributor to the uncertainty with a sensitivity coefficient equal to the 
value of Y. 
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Figure 9: Performance of the measuring device over the full range with uncertainty bars (kp95 = 2.0), using the 
correction for non-linearity from Equ. (16). The performance of the uncorrected device is plotted in grey. 

Fig. 9 shows the performance of the corrected measuring device over the calibration range as deviations 
ΔY = Y − Ycal with their expanded uncertainties (kp95 = 2.0), treating the Ycal as constants. The performance of 
the uncorrected measuring device is plotted in grey to allow a direct comparison. It should be noted that the 
expanded uncertainty for the corrected measuring device is increasing with the value of the measurand Y. 

 
Figure 10: Expanded uncertainty (kp95 = 2.0) as a function of the measurand Y.  

Fig. 10 shows the expanded uncertainty (kp95 = 2.0) as a function of the measured value from Tab. 10. Based 
on the evaluated uncertainties for different values of Y we can specify an envelope function 
Upred(Y) = 0.00019·Y + 0.001 which characterizes the prediction of the expanded uncertainty for subsequent 
measured values determined with the measuring device.  

The use of the measuring device can be simplified by specifying that the result should be calculated from the 
indication X by using the equation  

( )3 2 4 31.000008 9.806027 2.251197 10 5.753193 10Y X X−= ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅  (20) 

while the expanded uncertainty should be predicted using the specification 

pred( ) 0.00019 0.001U Y Y= ⋅ + , (kp95 = 2.0). (21) 

It should be noted that this is only possible if the same coverage factor is used over the full range. 

5 Conclusions 
To calibrate a measuring device for the use over a range of values it is useful to assume linearity of the device 
response and introduce a quantity to cope with the possible deviation from linearity. A linear regression can be 
used to evaluate the calibration factor and the zero offset but this is not advisable especially if the uncertainty 
of the calibration is not dominated by noise effects. Instead, a simple 2-point calibration at the ends of the 
calibration range should be used. It is still necessary to perform a linearity study over the full calibration range 
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to investigate the possible deviation from linearity which always needs to be included in the uncertainty 
budget when measuring with the measuring device. 

To simplify the use of a measuring device a significant but small non-linearity may not be corrected. But this 
will lead to a larger uncertainty when using the device. 

A fixed correction function of the indication for non-linearity does not contribute to the measurement 
uncertainty. Therefore any kind of function (or method) can be used to correct for non-linearities as long as it 
results in a fixed function which improves the overall linearity. After the linearity correction is established the 
measuring device plus correction can be treated as a linear device and should be calibrated with a 2-point 
calibration and an investigation of the deviation from linearity should be carried out. The same data might be 
used for establishing the correction and an upper limit on the deviation from linearity if a sufficient number of 
data points are used. 

It is important that the same correction function (or method) be used to improve the linearity during 
calibration and subsequent use of the measuring device for unknown measurands. 

If the coverage factor is constant over the calibration range, it is possible to specify a simple envelope function 
to predict the expanded uncertainty for later measurement values in the calibration range. 

Disclaimer 
The software GUM Workbench is identified in this paper in order to specify the calculation procedure 
adequately. Such identification is not intended to imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor is it intended to imply that the software identified is necessarily the 
best available for the purpose. 
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