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Abstract:  We describe progress towards re-determining the Boltzmann constant kB using 

two fixed-path, gas-filled, cylindrical, acoustic cavity resonators. We measure the difference in 

the lengths of the cavities using optical interferometry.  Thus, we do not use a literature value 

for the density of mercury, in contrast with the presently accepted determination of kB. The 

longitudinal acoustic resonance modes of a cylindrical cavity have lower quality factors Q than 

the radial modes of gas-filled, spherical cavities, of equal volume. The lower Qs result in lower 

signal-to-noise ratios and wider, asymmetric resonances.  To improve signal-to-noise ratios, we 

replaced conventional capacitance microphones with 6.3 mm diameter piezoelectric transducers 

(PZTs) installed on the outer surfaces of each resonator and coupled to the cavity by diaphragms. 

This arrangement preserved the shape of the cylindrical cavity, prevented contamination of the 

gas inside the cavity, and enabled us to measure the longitudinal resonance frequencies with a 

relative standard uncertainty of 0.2×10−6. The lengths of the cavities and the modes studied will 

be chosen to reduce the acoustic perturbations due to nonzero boundary admittances at the 

endplates, e. g. from endplate bending and ducts and/or transducers installed in the endplates. 

Alternatively, the acoustic perturbations generated by the viscous and thermal boundary layers at 

the gas-solid boundary can be reduced. Using the techniques outlined here, we estimate that kB 

can be re-determined with a relative standard uncertainty of 1.5×10−6.  
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1. Introduction 

The acoustic resonance method is a means for accurate measurements of the speed of sound 

in dilute gases. Accurate speed-of-sound data have been used to determine the thermophysical 

properties of fluids [1,2,3,4,5], thermodynamic temperatures [6,7,8,9,10], and the universal gas 

constant [11,12]. The acoustic resonance method is one of the most accurate methods now being 

used by several laboratories to re-determine the Boltzmann constant in preparation for the new 

definition of the kelvin [13]. The accurate measurement of acoustic resonance frequencies in 

dilute gases requires non-degenerate resonance modes. These modes include the radially 

symmetric modes of a spherical or cylindrical cavity and the longitudinal modes of a cylindrical 

cavity. Under typical conditions (argon, 273 K, 100 kPa, 50 mm radius), the first five 

radially-symmetric, gas resonance modes of an argon-filled spherical cavity have quality factors 

Q in the range 2000 to 3700. Because the Qs are high, the modes are well-separated from nearby 

degenerate modes and they have high signal-to-noise ratios. Under the same conditions, the first 

five non-degenerate longitudinal gas resonance modes of a cylinder (radius a = 50 mm; length L 

= 100 mm) have Qs that are approximately 1/5th as large. (Much of the reduction of the Qs 

originates in the viscous damping of the longitudinal acoustic modes of a cylindrical cavity.)  

Therefore, it is more difficult to measure the frequencies of the longitudinal acoustic modes of a 

cylinder with the same accuracy as the radial modes of sphere. This difficulty is partially offset 

by the simplicity of machining a cylindrical cavity and the simplicity of measuring its length. 

We describe progress towards re-determining the Boltzmann constant kB using two fixed-path, 

gas-filled, cylindrical, acoustic cavity resonators. This work builds upon the pioneering 

measurements of Quinn et al. [14] and Colclough et al. [11] who used a cylindrical cavity to 

re-determine the universal gas constant R (and also the Boltzmann constant because the value of 

the Avogadro constant NA = R/kB was well known). These authors changed the length of their 

cavity by 140 mm by moving a piston within a cylinder. They used an optical interferometer to 

measure the length changes and they measured the amplitude and phase of the sound pressure at 

one end of the cavity while the cavity was excited at the constant frequency 5.6 kHz. Thus, their 
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data determined the wavelength of sound at 5.6 kHz. They used a slender cylinder (a = 15 mm) 

so that only longitudinal modes would propagate at the operating frequency. However, the fixed 

end of their cylinder was the diaphragm of a loud speaker that both generated and detected sound. 

The diaphragm was a 0.25 mm thick aluminum alloy film which had a non–zero acoustic 

admittance. Unfortunately, this admittance led to a nonlinear speaker response as a function of 

the gas pressure that was discovered only after the initial publication of a re-determination of the 

gas constant [11,14]. The variable-length resonator had additional complications. The movable 

assembly was troublesome to align. The acoustic admittance of the gap between the piston and 

the cylinder interior was hard to characterize. A very narrow gap would have caused excessive 

friction and a wide gap would have a large admittance that would generate large frequency- and 

pressure-dependent perturbations to the acoustic field within the cavity that would add to the 

uncertainty of the results.  

The key features of our apparatus are displayed in Fig.1. In contrast with Colclough et al. and 

Quinn et al. [11,14], we use two, fixed-length, cylindrical cavities because they are easy to 

manufacture and assemble. Because a fixed-length cavity does not have a sliding seal, we can 

isolate the gas inside the cavity from the gas in the surrounding pressure vessel to avoid 

contaminating the gas. The thick endplates have a small mechanical admittance and a PZT 

transducer is installed in a blind hole in each endplate. This transducer scheme avoids the 

problem of the non-linear response of a loud speaker and it generates larger signals than the 

small capacitive microphones that are often used in metrological applications of gas-filled 

acoustic resonators. We use the same endplates for both cylinders and we deduce the speed of 

sound from the difference between the lengths of the two cavities. This length difference is 

determined by two-color optical interferometry. The measured length difference is insensitive to 

the optical phase shifts in the thin-film metallic mirrors. If an absolute length determination were 

required, these phase shifts would have to be determined. As discussed below, we choose the 

lengths of the cavities and the modes studied to achieve specific experimental objectives such as 

reducing the uncertainties from either the hard-to-estimate acoustic perturbations from the 



4/26/2010 168_Zhang, IJoT-D-09-00215, 26-Apr-2010 for resubmission.doc 4/ 33 

 4

bending of the endplates of the cylinders or the comparatively large, but well-understood, 

frequency perturbations that results from the thermal and viscous boundary layers. 

In this work, we consider three challenges: (1) the perturbations from the cavities’ boundaries, 

(2) the determination of the resonance frequencies, and (3) the measurement of the lengths of the 

cavities. Using the techniques outlined here, we estimate that kB can be re-determined with the 

relative standard uncertainty ur(kB) = 1.5×10−6. 

 

2. Normal modes of a cylindrical cavity 

We assume that the gas inside a cylindrical cavity of length L and the radius a is driven by a 

steady, sinusoidal source. We assume that the amplitude of the acoustic oscillations is small 

enough that non-linearity can be neglected [15,16]. As a first approximation, we assume the shell 

surrounding the cavity is perfectly rigid and does not conduct heat and we ignore the viscous 

damping of the gas in contact with the shell. With these approximations, the admittance of the 

gas-shell interface is zero. The normal modes of the gas are acoustic pressure waves with spatial 

dependence: 

 ( ) [ ], , cos( ) sin( ) cosmn
lmn m

r l zr z J m m
a L

χ πϕ θ θ θ⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, (1) 

where the origin of the cylindrical coordinate system is located on the symmetry axis at one end 

of the cavity. Here, l, m, and n are integers; Jm is the mth-order Bessel function of the first kind; 

and mnχ  is a root of the equation ( )d d 0mJ χ χ = . We use the triplet of integers (l,m,n) to refer 

to a specific mode, where l = 0,1,2,… is the longitudinal index, m = 0,±1, ±2,… is the azimuthal 

index, and n = 0,1,2,… is the radial index.1  The resonance frequency of the (l,m,n) mode is:  
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0

2
mn

lmn
c lf

L a
χπ

π
⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (2) 

                                                        
1 The notation that we use was adopted from Ref. [15], Sec 9.2, which describes the modes of circular ducts. The 
mode designated (l,m,n) has l nodal planes perpendicular to the cylindrical axis, |m| nodal planes extending radially 
outward from the axis, and n cylindrical nodal surfaces concentric with the axis. Our notation differs from that of 
Ref. [16], for which the third number in the triplet n′ = n + 1. 
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where c is the speed of sound in the gas, and the superscript “0” of 0
lmnf  refers to the idealized 

(or “unperturbed”) boundary conditions. Due to the symmetry of the Bessel function 

( ) ( ) ( )1 m
m mJ x J x− = − , the modes for which 0m ≠  are doubly degenerate, i.e. the resonance 

frequencies of the modes (l,m,n) and (l,−m,n) are exactly the same. For the non-degenerate, 

longitudinal gas modes denoted (l,0,0), χmn = 0 and the ideal unperturbed frequencies are 

determined only by the length of the cylinder and the speed of sound in the gas: 

 0
00 2l

clf
L

= . (3) 

 

3. Frequency perturbations 

Table 1 lists the unperturbed frequencies of several longitudinal modes (l,0,0) of argon at 

273.16 K and 100 kPa in three cylinders with lengths of 80.7 mm, 129.1 mm and 161.4 mm. 

(Each cylinder has an 80 mm inside diameter and 25 mm thick steel walls.) Table 1 also lists 

estimated perturbations of these modes from the viscous, thermal, and mechanical admittances of 

the walls of the cavity and from a fill duct and transducers. In Section 3.1, we describe the origin 

of the tabulated estimates and in Section 3.2, we discuss ways of accounting for the 

perturbations. 

 

3.1 Estimating frequency perturbations 

3.1.1 Thermoacoustic boundary layer 

The gas-shell boundary has non-zero thermal and viscous admittances that cause the 

measured resonance frequencies to differ from their unperturbed values. The longitudinal 

acoustic oscillations are subject to viscous damping in a boundary layer of gas in contact with the 

surrounding shell. The damping reduces the resonance frequency by |Δfv| and increases the 

half-width of the resonance by gv: 
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Here, δv is the length that characterizes the penetration of the viscous boundary layer into the gas; 

η is the viscosity; ρ is the density and ω ≡ 2πf is the angular frequency of the acoustic oscillation 

[3].  

The irreversible heat exchange between the gas oscillating in the cavity and the shell 

surrounding the cavity reduces the resonance frequency by |ΔfT| and increases the half-width of 

the resonance by gT: 

 
( ) ( ) ( ) ( )00 00

0 0

1 22 21 1 1
2 2

T Tl l T T

lmn lmn

g f Da a
f f a L a L

γδγ
ω

Δ −⎛ ⎞ ⎛ ⎞= − = − + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 . (5) 

Here, δT is the length that characterizes the penetration of the thermal boundary layer from the 

cavity’s wall into the gas; DT ≡ λ/ρCp is the thermal diffusivity; λ is the thermal conductivity and 

Cp and Cv are the constant-pressure and constant-volume specific heats, and γ ≡ Cp/Cv is the 

adiabatic index [3]. 

 

3.1.2 Mechanical admittance of the shell 

The shell surrounding the cavity deforms in response to the acoustic pressure in the gas. In 

general, the mechanical admittance associated with these deformations (and the corresponding 

frequency perturbations and contributions to the half-widths) is difficult to calculate. We 

calculate four simple, model deformations that have been considered in the literature: (1) 

uniform radial ( sh1fΔ ) and (2) uniform axial ( sh2fΔ ) deformations of an infinite cylinder, (3), 

bending of the endplates ( sh3fΔ ), and (4) longitudinal recoil ( sh4fΔ ) of the shell treated as rigid 

body. The shell does not recoil when the spatial average of the momentum of the gas is zero; 

therefore, sh4fΔ  is zero for the (l,0,0) modes when l is an even integer. The perturbations due to 

the model deformations are listed in Table 1. 

To estimate the perturbation from axially-symmetric radial deformation, we use a model for 

acoustic waves in a long pipe with flexible walls [17]. The compliance of the side wall lowers 

the resonance frequency just as it lowers the phase velocity of an acoustic wave propagating 
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through a gas in a pipe [15]. To account for the resonator’s finite length in the model, we use 

periodic simply-supported boundary conditions with period L and apply the spatially-varying 

pressure of the lth longitudinal gas mode. The mode’s resonance frequency is shifted by the 

fractional amount  

 
( )
( ) ( ) ( )

( )( )

22 2
2 ss,gsh1

0 2 2 2 2 2
100 ss p,ss w, u,

q l
lq

ql q l q l
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ρ

ρ

∞

=

−ΩΔ ⎛ ⎞≈ − ⎜ ⎟ Ω −Ω Ω −Ω⎝ ⎠
∑  (6) 

where 0
00 p,ss2l lf a cπΩ ≡ , qk a q a Lπ= , h is the thickness of the shell, and the subscripts “g” 

and “ss” refer to properties of the gas and stainless-steel, respectively. The dimensionless 

parameters w,qΩ  and u,qΩ  are related to the radial and axial resonance frequencies of the shell, 

respectively: 
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±
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 (7) 

where ( )2 2
p,ss 1ssc Y ρ ν⎡ ⎤≡ −⎣ ⎦  is the speed of sound in a plate, Y  is Young’s modulus, ν is 

Poisson’s ratio, and ( )12h aβ = . For the 80.7 mm long resonator, w,1 33 kHzf ≈  and 

u,1 21 kHzf ≈ . The coefficient ( ) ( ) ( )1 2 22 1 1 l q
lqB q q lπ + +⎡ ⎤= + − −⎣ ⎦  for q l≠  and 0llB = . 

Only the first three or four nonzero terms in Eq. (6) were necessary to achieve convergence. 

 

The axial stress on the cylindrical shell from the endplates causes an axial strain for the gas 

resonances modes with l = {even integer}. For the modes with l = {odd integer} numbered gas 

modes, the unbalanced force causes recoil, which is handled separately. The perturbation from 

the axial stress was estimated from the expression 

 
( )
( ) ( )

2

2
20 2 0

axial

1

1
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cf a a
f a hc f f

ρ

ρ
Δ ⎛ ⎞⎛ ⎞≈ − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ −
 (8) 

for the even longitudinal modes, where a  is the average radius of the shell, axial 18.6 kHzf =  
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for L = 80 mm and 13.2 kHz for L = 160 mm. The resonance frequency axialf  was estimated 

from the axial stiffness of the cylindrical walls and the mass of the endplates. The contribution 

from odd longitudinal modes is zero to first order. 

We considered two extreme models to estimate the perturbation from bending of the 

endplates. First, we assumed that they were simply supported around the circumference of a 

circle with radius a . Under this assumption, we calculated the endplate perturbation from the 

expression: 

 
( )
( ) ( )

2 3
3

20 2 0
p bend

1 7 2 1
16 1 1

gsh

l lFS

cf a a a
f L a hc f f

ρν
ν ρ

Δ + ⎛ ⎞⎛ ⎞⎛ ⎞≈ − ⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠⎝ ⎠ −
 (9) 

where ( ) 2
bend p,FS0.217 11.5 kHzf hc a= ≈ , and the subscript “FS” refers to fused silica. We 

listed these results in Table 1. Alternatively, we estimated the endplate perturbation using the 

assumption that the plates are clamped to a rigid cylinder around the circumference of the circle 

with radius a . This assumption reduces the perturbation by approximately a factor of 10 and 

raises the resonance frequency. Because the endplates are bolted to the cylinder, the true 

boundary condition is probably between these extremes and might depend upon details such as 

the torque used to bolt the endplates to the cylinders.  

Finally, the contribution from rigid-body recoil applies to the odd longitudinal modes. The 

correction is proportional to the ratio of the kinetic energies of the solid and the gas 

 
2

gassh4 solid

fluid res

1 2 , odd 
2

Mf KE l
f KE l Mπ

Δ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (10) 

where the last equality is in terms of the total mass of the gas Mgas and the mass of the resonator 

Mres. This correction is for a free body. In actuality, the resonators are supported by a complex 

structure that has resonances of its own. The response of the structure to vibrations of the 

resonator is very difficult to estimate or measure. Therefore, we recommend avoiding the 

asymmetric modes since they couple more strongly to the support structure than the symmetric 

modes. 
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3.1.3 Transducers 

The perturbation produced by a diaphragm in the endplate of a cylindrical cavity was 

modeled by Lin et al. [18]. Here, we use their result to estimate the perturbation from two 

fused-silica diaphragms that were located opposite each other at the ends of the cylindrical cavity. 

Each fused silica endplate had an integrated diaphragm to which a piezoceramic disk transducer 

was attached. The diaphragm had a diameter 2adm = 10 mm and a thickness tdm = 0.5 mm and 

was flush with the endplate’s inner surface. The diaphragm was modeled as a thin plate that was 

clamped around its perimeter. The piezoceramic disk was made from lead zirconium titanate 

(PZT) and had a diameter of 6.4 mm and a thickness of 0.4 mm.  The PZT disk was bonded to 

the outer surface of each diaphragm and it was concentric with the diaphragm.  When the 

diaphragm deflected in response to the acoustic pressure in the cavity, the largest bending stress 

occurred in the fused silica diaphragm near its perimeter. Therefore, the low-frequency 

compliance was determined from the properties of the diaphragm only. The diaphragm’s flexure 

in response to the oscillating acoustic pressure modifies the surface admittance and shifts the 

gas’s resonance frequency by an amount given by 

 
( )
( ) ( )

2 33
tr dm dm

20 2 0
dmFS p,FS dm

1 2 1
16 1

g

l l

cf a aa
f L a tc f f

ρ

ρ
⎛ ⎞Δ ⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ −⎝ ⎠
 (11) 

The diaphragm’s resonance frequency, fdm ≈ 38 kHz, was calculated by modeling the diaphragm 

as a clamped plate loaded with the additional mass of a PZT transducer (~98 mg).  

 

3.1.4 Fill Duct 

As sketched in Fig.1, a duct that admits gas into each cavity is attached to the side of each 

cylinder, midway between the ends of the cylinder. The perturbation produced by a cylindrical 

duct (Δfd in Table 1) was modeled by Gillis et al. [19]. Here, we assumed the duct had an inner 

diameter of 1.4 mm and an infinite length. Note: for the (l,0,0) modes when l is an even integer, 

there is a pressure node at the mid-plane of the resonator; therefore, Δfd = 0 for these modes, in 
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the first order of the theory.  

 

3.2 Accounting for the Larger Frequency Perturbations 

The model for the cylindrical resonator predicts the measured resonance frequency fN is 

related to the unperturbed (ideal) resonance frequency f 0 by  

 0
b d sh trNf f f f f f= −Δ −Δ −Δ −Δ  (12) 

where Δfb ≡ (ΔfT + Δfv) is the sum of the thermal and viscous boundary layer perturbations; Δfd is 

the perturbation from a fill duct; Δfsh ≡ Δfsh1 + Δfsh2 + Δfsh3 + Δfsh4 is the sum of the perturbations 

from the shell’s motion, and Δftr is the perturbation from the transducers.. 

The relation  

 ( )
22

2
B b d sh tr0 0

TPW TPW

2lim lim Np p

mc m Lk f f f f f
T T lγ γ→ →

⎛ ⎞= = −Δ −Δ −Δ −Δ⎜ ⎟
⎝ ⎠

 (13) 

connects the measured resonance frequency fN to the various frequency perturbations and to the 

Boltzmann constant. (Here, TTPW denotes the temperature of the triple point of water and m is the 

average atomic mass of the gas.)  If the frequency perturbations in Eq. (13) are mutually 

independent, the terms ( )b R2u f fΔ , ( )d R2u f fΔ , ( )sh R2u f fΔ , and ( )tr R2u f fΔ  must be 

added in quadrature to other contributions to the relative standard uncertainty of the Boltzmann 

constant,  ( )r Bu k . First, we consider the thermo-acoustic boundary perturbation Δfb and then 

we consider the sum of the perturbations from the shell’s motion Δfsh. Although Δfb > Δfsh, we 

shall conclude that the relative uncertainties obey the opposite inequality ur(Δfb) < ur(Δfsh). 

In reference [20], one of us (MRM) estimated the relative uncertainties of the viscosity 

ur(ηAr) ≈ 0.00025 and the thermal conductivity ur(λAr) ≈ 0.00025 of argon in the limit of zero 

density at 273.16 K.  Using these estimates in Eqs. (4) and (5) leads to an estimated relative 

uncertainty of the thermo-acoustic boundary layer correction: ur(Δfb) ≈ 0.00013. For the worst 

case in Table 1, (L = 80.7 mm, l = 1, p = 100 kPa), Δfb/f 0 ≈ Δfb/fR ≈ −0.0015 and its contribution 

to ur(kB) is 2u(Δfb)/fR ≈ 4×10−7.  This contribution is so small that other contributions to ur(kB) 
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will dominate the uncertainty budget. However, a skeptical metrologist might argue that this 

contribution to ur(kB) is an underestimate for two reasons. First, the values of ur(ηAr) and ur(λAr) 

rely on the work of only one group [21] that measured the ratio (ηargon)/( ηhelium) with the 

extraordinarily small claimed uncertainty 0.00011. Second, the calculation of boundary 

perturbation Δfb via Eqs. (4) and (5) is correct only to the first order in the small quantities δT/a 

and δv/a. A calculation that includes the terms (δT/a)2 and (δv/a)2 is needed for additional 

confidence. These concerns lead us to discuss in Section 6 a method of partially canceling this 

comparatively large contribution to ur(kB).  

Among the model shell motions considered for Table 1, the largest perturbation for l = {even} 

is 0
sh3f fΔ  which resulted from the bending of the endplates.  When the gas is at 100 kPa, 

this perturbation ranges from −20.2×10−6 to 11.9×10−6. As mentioned above, these values were 

calculated by assuming that the position of each endplate was pinned to the end of the cylinder, 

but free to bend. If a clamped boundary condition is assumed, the calculated perturbations are 

reduced by about a factor of 10. This end-plate bending perturbation and the other perturbations 

from the shell’s mechanical admittance are linear functions of the gas pressure that vanish at zero 

pressure. Thus, these perturbations will not contribute to kB if they are not too large and if the 

resonance frequencies are linearly extrapolated to zero pressure. A rare exception to the linear 

pressure dependence occurs when a resonance frequency of the shell’s motion is near the 

resonance frequency of a gas mode. Such gas modes should not be used for measuring kB.  

The frequency shifts and half-width contributions for the shell’s motion depend upon the 

medium surrounding the resonator and the structure supporting the resonator. When the 

surrounding medium is a gas, the energy radiated is negligible because of the large mismatch of 

the acoustic impedances of the gas and the heavy-walled shell. The exchange of momentum and 

energy between the shell and its supports can be reduced by making the supports weak, where 

“weak” means that the resonance frequencies of the shell moving with respect to its supports are 

well below the gas resonance frequencies 0
lmnf .  

For completeness, we mention two smaller perturbations. First, the attenuation of sound 
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throughout the volume of the cavity reduces the resonance frequencies and increases the 

half-widths by terms of order ( )22 2/ ~ / ~v T TD c D c l Lω ω δ . These terms can be calculated 

accurately from the formulas in Ref. [22] and the properties of the gas. Second, there are 

perturbations to the frequencies from the thermal and momentum accommodation coefficients 

[ 23 ]. These perturbations cannot be predicted because they depend upon the gas-metal 

interactions on the scale of atomic sizes.  Instead, these perturbations must be determined by 

including a p−1 term when fitting frequency-vs-pressure data on an isotherm. In Section 6, we 

show that the effects of imperfect thermal accommodation on the endplates of the cavities can be 

canceled by using two cylindrical cavities. 

 

4. Measurement of resonance frequency 

4.1 Overview of Apparatus 

The gas supplied to the resonator’s cavity is independent of the gas supplied to the pressure 

vessel. The pressure in the cavity is the sum of the pressure in the pressure vessel and the 

pressure indicated by the differential pressure gauge between the cavity and the pressure the 

pressure vessel. This arrangement minimizes the chance of contaminating the gas in the cavity.  

Each cylindrical resonator has two fused silica endplates that admit laser beams into and out 

of the cavity. The inside-facing surface of each endplate was coated with a partially-reflecting 

metal film.  The walls of the cavity were bearing-steel cylinders with ends ground flat to 0.3 μm. 

The ends of the cylinder were specified to be parallel within 0.5 μm across the diameter. A CCD 

video recorder and related optical components were built inside the pressure vessel to record the 

optical interference patterns in situ.  

The resonator was supported with its cylindrical axis vertical on a moveable stage. The stage 

could translated the resonator horizontally and rotate it about the cylindrical axis.  

 

4.2 Frequency Measurement 

We used the same procedure described in the literature [24] for fixed path gas resonators to 
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measure the resonance frequencies fN and the half-widths gN of the cylindrical cavity. First, the 

resonance frequency fN and the half-width gN were estimated from either a preliminary 

measurement or from a theoretical model. Then, the drive transducer was stepped in increments 

of gN/5 through 11 synthesized, discrete frequencies starting at fN - gN and ending at fN +gN. Then, 

the frequency sweep was reversed by starting at fN +gN and ending at fN - gN. At each frequency, 

the in-phase voltage u and the quadrature voltage v generated by the detector transducer were 

measured by a lock-in amplifier. The 11 frequencies and 44 voltages were fitted by the resonance 

function: 

 2 2 ( )
( )N N

ifAu iv B C f f
f f ig

+ = + + −
− +

 (14) 

Here, A, B and C are complex constants; FN = fN + igN is the complex resonance frequency of the 

mode under study; the parameter f~  is fixed and is usually taken as the average frequency for the 

data in the fit. The parameters B and C account for the effects of possible cross talk and the 

“tails” of the modes other than fN.  

We conducted simple experiments to compare 6 mm diameter capacitor microphone 

cartridges with 6 mm diameter PZT transducers. For the comparison, we used a prototype 

cylindrical resonator 80.7 mm long and 80 mm in diameter in ambient air without temperature 

controls. First, we used one of the capacitor microphones to generate sound and the other to 

detect sound, as described in the literature [12,6,8,9]. The measurement procedure described in 

the preceding paragraph resulted in the values fN = 2124.24 Hz and gN = 2.1 for the (1,0,0) 

longitudinal mode. The resonance function was fitted with a relative standard deviation of 

1.5×10−3, which corresponds to determining the perturbed resonance frequency fR with the 

uncertainty ur(fR) = 1.5×10−6. 

Next, we replaced the endplates containing the microphones with all-metal endplates 

designed to test the PZT transducers. Each of these endplates had a blind hole that had been 

machined into the outside-facing surface to form a diaphragm flush with the inside surface, 

thereby preserving the cylindrical shape of the cavity. The diaphragm had a diameter of 10 mm 
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and a thickness of 0.3 mm. A PZT transducer (6.4 mm diameter and 0.4 mm thick) was cemented 

to the outside surface of each diaphragm with epoxy. The location of the drive and the detector 

PZTs on opposite endplates minimized electrical crosstalk between them. The drive PZT was 

excited with 7 V (root mean square) and it dissipated 1.0 μW at 2121 Hz. Under these conditions, 

the standard deviation of the voltages from a fit by Eq. (14) was 2.0×10-4, a factor of 7 smaller 

than we obtained with the capacitor microphones. As a result, the perturbed resonance frequency 

was determined with the fractional uncertainty of 2.0×10-7.  

We tested diaphragms with thicknesses tdm of 0.3 mm, 0.4 mm, and 0.5 mm. Our simple 

model predicts that the signal-to-noise ratio varies as 3
dm1 t  for each diaphragm, or 6

dm1 t  for 

the source and detector together. Consistent with this prediction, Fig. 2 shows that the detected 

signal decreased by a factor of approximately 20 when the thicknesses of both diaphragm was 

increased from 0.3 mm to 0.5 mm. 

When fitting Eq. (14) to data, the resonance half-width gR is usually treated as a 

frequency-independent parameter. In reality, the contributions to the resonance half-width 

include the terms gv in Eq. (4) and gT in Eq. (5) that vary as 1/2f − . To account for these terms, 

we follow Gillis et al. [22] and replace gN in Eq. (14) with ( )1/2
N Ng f f . The resulting 

resonance function is no longer symmetrical about fN and the best-fit values of fN and gN must be 

corrected using 

     ( ) ( )2 2
corrected corrected8 and 4N N N Nf f f Q g g g Q− = − − = −    . (15) 

(This correction accounts only for the frequency-dependence of the thermo-acoustic boundary 

layer.)  During the 1988 re-determination of kB [12], this correction was small enough to be 

ignored because Q ≥ 1375; however, in this work the fractional correction the frequency 

becomes as large as 10−6 and the fractional correction to kB becomes as large as 2×10−6.  

We also investigated the effect of adding the term 2( )D f f−  to the right hand side of 

Eq. (14). This term changed the best-fit values of fN by −0.002 Hz for the each of the modes 

(1,0,0), . . . , (5,0,0). The −0.002 Hz change corresponds to fractional frequency changes ranging 
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from −1×10−6 to −0.2×10−6 and will be investigated in future work.  

In order to accurately measure the frequencies of the non-degenerate (l,0,0) modes, they must 

be well separated from the frequencies of the other modes of the cylindrical cavity. For modes of 

comparable amplitude, “well separated” means a separation on the order of 3 times the sum of 

the half-width of the (l,0,0) mode and the half-width of any nearby, interfering mode. Perhaps, 

this criterion can be relaxed if the amplitude of the interfering mode is much smaller than the 

amplitude of the (l,0,0) mode. The possibility of altering the relative amplitudes of the modes led 

us to explore the effects of locating one of the transducers at a distance d off the symmetry axis. 

For example, if the transmitting transducer is placed at d/a = 0.618, its center will lie on the node 

of the first radial mode. In this situation, in a first approximation, the transmitter will not excite 

any of the modes with indices (l,m,1). As shown in Fig.3, the theory does indeed apply to our 

prototype cavity. Specifically, when one transducer was located at d/a = 0.618 (off the symmetry 

axis), the amplitudes of the (0,0,1), (1,0,1), (2,0,1), (3,0,1) and the (4,0,1) modes were reduced in 

comparison with the amplitudes of the (l,0,0) modes. With confidence, we conclude that d/a can 

be chosen for each transducer to suppress any single mode that has a node on the endplates.  

 

5. Length Measurements 

We used two-color interferometry to determine the length of each cylindrical cavity in situ.  

Figure 4 sketches the principle of the measurement.  The two-color setup consisted of a 

stabilized He-Ne laser (nominal wavelength 633 nm) and a semiconductor laser (nominal 

wavelength 657 nm).  A wavelength meter was installed for in situ calibration of the 

semiconductor laser relative to the He-Ne laser. The frequency stability of the semiconductor 

laser was better than 5×10-7.  

The endplates of the resonator were made of optical-quality quartz glass.  The inside surface 

of each endplate was coated with a metallic film to increase its reflectivity.  When the endplates 

were bolted to the cylinder, a small angle existed between the metallic films.  The two laser 

beams entered the cavity perpendicular to one film forming two different equal-inclination 
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interference patterns.  The analysis of the fringe patterns is discussed in Ref. [25]. 

The laser beams penetrate into the partially reflecting films on the order of 20 nm [26,27]. 

Thus, the optical length of each cylindrical cavity Lopt determined by two-color interferometry 

will have an unknown bias on the order of 40 nm.  However, this bias will cancel out from the 

difference between the optical lengths of two cavities provided that the same endplates are used 

on both cavities.  We plan to exploit this cancellation by using a two-cylinder procedure to 

measure the speed of sound. 

 

6. Two-cylinder method 

The fundamental assumption of the two-cylinder method is: the difference between the 

optical lengths (Lopt-1 − Lopt-2) of two cavities is identical to the difference between the acoustic 

lengths (L1 − L2) of the same two cavities. Thus, we use the relation:  

 1 2 1 2
12 1 2 1 2 120 0

1 2 1 22 2opt opt
l l l lc cL L L L L L
f f f f

δ− −

⎛ ⎞ ⎛ ⎞
Δ = − = − = − = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 , (16) 

where the subscripts 1 and 2 refer to the 1st and 2nd cylinders, and 12Lδ  is a small correction due 

to the perturbations discussed in Sec. 3. The parameters jl , jf , and 0
jf  refer to the 

longitudinal mode index, the measured resonance frequency, and the corresponding unperturbed 

frequency, respectively, of the longitudinal mode studied in cylinder j. Now, we show that 

particular choices of l1, l2, L1, and L2 are useful for reducing the effects of particular 

perturbations. 

   

6.1 Reducing the effects of the thermoacoustic boundary layer 

The working equation for the speed of sound is derived from Eq. (16): 

 1 2 12 12

1 2 2 1 12

2 1f f L Lc
l f l f L

δ⎛ ⎞Δ
= −⎜ ⎟− Δ⎝ ⎠

 (17) 

where the small correction 12 12L Lδ Δ  is, to lowest order, 
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 ( )212 1 2
1 20 0

12 12 1 2

1 OL f fL L f f
L L f f

δ ⎛ ⎞Δ Δ ⎡ ⎤= − + Δ⎜ ⎟ ⎣ ⎦Δ Δ ⎝ ⎠
. (18) 

The frequency shifts Δf1 and Δf2 denote the sum of perturbations of the boundary layer, the gas 

fill duct, the transducers, and the shell motion in the two resonators at the same temperature and 

pressure. Since the correction in Eq. (18) depends on the difference of terms, we looked for 

conditions for which the difference, and hence the correction, is small. We investigated the 

dependence of Eq. (18) on the length ratio of the two cylinders and on the mode-index ratio of 

the longitudinal modes studied. We define 1 2b L L≡ , with 1b > , and 1 2s l l≡ , so that 

0 0
1 2f f s b=  and ( )12 2 1L L bΔ = − . We substitute these relations into Eq. (18) to obtain: 

 
2

12
1 20

12 2

1 1
1

L b f f
L f b s

δ ⎛ ⎞
= Δ −Δ⎜ ⎟Δ − ⎝ ⎠

. (19) 

The frequency shifts 1fΔ  and 2fΔ  are functions of b, s, L2, l2, T, and p.  

In the present work, we chose the lengths of the resonators to have the ratio b = 1.6 (L1 = 

129.14 mm and L2 = 80.7 mm) because this choice resulted in significant cancellation of the 

boundary layer perturbation, the largest perturbations in Table 1. The estimates of the correction 

given by Eq. (19) for resonators filled with argon at 273.16 K and 100 kPa are given in Table 2. 

We recall that the free body recoil does not generate a perturbation for even modes. Therefore the 

preferred modes are those with l1 = 6, 12 and l2 = 2, 4 for s = 3, and l1 = 4, 8, 12 and l2 = 2, 4, 6 

for s = 2.  

The total uncertainty in 12Lδ  is included in Table 2. The perturbations generated by the 

boundary layers and the fill duct can be modeled with sufficient accuracy to correct the 

measurements. The accuracy of the boundary layer perturbation correction is limited by the 

thermal conductivity of gas. For argon, the thermal conductivity is known with an uncertainty of 

0.025% [Section 3.2]. Therefore, we can correct the resonance frequencies for the boundary layer 

perturbations in a single resonator with an uncertainty of 0.13×10-6. Using two resonators that are 

tuned to reduce the boundary layer perturbations (b = 1.6, s = 3), the uncertainty in the frequency 
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correction for the boundary layer is reduced to 0.02×10-6. In hindsight, this method of tuning the 

resonators’ dimensions and the mode ratios to cancel the boundary layer perturbation does not 

reduce the uncertainty in the determination of kB, because the boundary layer correction can be 

calculated with very high accuracy, whereas the correction from the shell motion has a much 

higher uncertainty. In particular, for b = 1.6, the uncertainty is dominated by the large uncertainty 

in 0
sh3f fΔ  due to endplate bending. 

The last entry for b = 1.6 in Table 2 assumes that the resonance frequency of the (12,0,0) 

mode f12,0,0 will be accurately measured for a cavity with L1 = 129.14 mm and 2a = 80 mm. In 

practice, this may be impossible because many other modes have nearly the same frequency, as 

shown in Table 3.  Table 3 lists the mode indices, the dimensionless wave-vector 2ka fa cπ≡ , 

and the half-width of each mode expressed as a wave-vector difference: 2ka ga cπΔ ≡ . 

Although five values of ka are listed near f12,0,0, there are nine modes in this frequency interval 

because the modes with m ≠ 0 are doubly degenerate.  Any two of these nearby modes can be 

suppressed by locating the two transducers on nodes of these modes.  Nevertheless, we 

conclude that it will be difficult to measure f12,0,0 accurately. 

  

6.2 Reducing the effect of the endplates. 

In Section 3.1.2, we noted that the perturbation from the bending of the endplates cannot be 

calculated accurately because the elastic boundary condition where the quartz endplates join the 

sides of the metal cylinders is not accurately known. Furthermore, the boundary condition might 

change every time the joint is disassembled and reassembled.  

The effects of endplate bending can be eliminated almost entirely by using two cylinders 

with lengths in a 2:1 ratio (i.e. L2 = 2L1) and using modes in a 2:1 ratio (i.e. l2 = 2l1) as shown in 

the last two rows of Table 2. With these choices, the two cavities operate at nearly the same 

frequencies; therefore, the frequency-dependent admittances of the cavities’ endplates will be 

nearly identical for both cavities. Thus, the effects of endplate bending as well as the effects of a 
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fill duct located in one end and the thermal admittance of the ends (including the effect of 

imperfect thermal accommodation) will be nearly identical for both cavities and will cancel out 

of the determination of the speed of sound and kB.  

It is possible to avoid disassembly and reassembly of the fragile joints between the quartz 

endplates and the steel cylinder by assembling the two cavities from three subassemblies such as 

those sketched in Fig.5. Although we have not tested this concept yet, the flanged joints between 

sections of a steel cylinder can be robust, and, we expect, assembled reproducibly. Concerning 

reproducibility, we cite on an international comparison which required wringing together pairs of 

steel gauge blocks [28]. The standard deviation of the repeatability of the lengths of assembled 

pairs of blocks ranged from 3 nm to 12 nm, depending upon the laboratory.  

A joint between two sections of the resonator will perturb the resonance frequencies if it is 

located at a pressure anti-node and if the width of the gap between the sections is comparable to 

the boundary layer thickness. The joints at the endplates are always located at pressure 

anti-nodes. When the resonator in Fig. 5 is assembled without the center section, the joint 

between the sections will lie at a pressure anti-node for all the even-numbered modes (l1 = 2, 

4, …). When the center section is used, the joints, located ¼ of the resonator length from each 

endplate, will lie at pressure anti-nodes for l2 = 2l1 = 4, 8,… (twice the even-numbered modes of 

the shorter resonator). We conclude that the surfaces of all the joints should be lapped to 

minimize the gaps. The joints at the endplates need not be disassembled, so those gaps may be 

permanently filled.  

  

7. Projected uncertainty budget 

We use Eq. (17) as a starting point for the discussion of a projected uncertainty budget for 

re-determining kB using the two-cylinder method for measuring the speed of sound in argon. For 

argon, the zero-pressure heat capacity ratio γ0 is exactly 5/3. We expect to control and measure 

the temperature of the working gas near TTPW with an uncertainty of 0.2 mK, which contributes 

the relative uncertainty ur(T) = 0.73×10−6 to the determination of kB. The Avogadro constant has 
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a relative uncertainty ur(A) = 0.5×10−8 [29]. The noble gas impurities in the argon and the 

uncertain relative isotope abundances contribute to the uncertainty of molecular weight M. The 

previous work of Moldover et al. [12] attained the uncertainty ur(M) = 0.7×10−6; we expect to 

equal this. The speed of sound is obtained from the difference between the lengths of the two 

cylinder resonators ΔL12 and the resonant frequency of a non-degenerate longitudinal mode. 

From Section 5, we expect to achieve ur(L1) = ur(L2) = 5×10−7 and therefore ur(ΔL12) = 7×10−7. 

As indicated in Section 4, the relative uncertainty of measuring the (1,0,0) resonance frequency 

at 100 kPa was ur(f1,0,0) = 2.0×10−7, assuming we use 0.3 mm diaphragms. This uncertainty will 

be smaller at higher pressures and for the modes (l,0,0) with l > 1. However, this uncertainty 

does not propagate in a simple way into a component of ur(kB). We now discuss this propagation. 

As in previous acoustic determinations of kB, the resonance frequencies of each resonator 

measured on the isotherm TTPW can be corrected for the well-known, gas-dependent, 

perturbations (e. g. thermo-acoustic boundary layer).  Then, the corrected frequencies and 

lengths from the two cylinders are combined and fitted by the polynomial function 

 
3

1 2 12 12

11 2 2 1 12

2 1 i
i

i

f f L Lc A p
l f l f L

δ
= −

⎛ ⎞Δ
= − =⎜ ⎟− Δ⎝ ⎠

∑ , (20) 

where A1, A2, and A3 are the acoustic virial coefficients, A−1 accounts for thermal and viscous 

accommodation coefficients, and 0 A B TPW 0A N k T Mγ= . Thus, the uncertainty of kB will have 

contributions from the correlations among the parameters in Eq. (20) that are much larger than 

ur(flmn). These correlations will depend upon the range of the data fit. We have not completed an 

analysis appropriate to the two-cylinder method; therefore we now outline the complications and 

conclude by guessing the uncertainty contribution from fitting the data.  

First, we recall, that in the context of re-determining kB using argon in a quasi-spherical 

cavity resonator, one of us (MRM) observed that the lowest uncertainties can be obtained by 

measuring acoustic resonance frequencies in the range 100 kPa to 500 kPa [20]. At still lower 

pressures, the perturbations from the thermo-acoustic boundary layer and the accommodation 

coefficients diverge; at higher pressures, the perturbations from the elastic response of the shell 
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become excessive. The same considerations apply to the two-cylinder method and approximately 

the same pressure range is optimum. (Note: A cylinder is less rigid than a quasi-sphere if both are 

made of the same material and both have the same ratio ℜ = {shell thickness}/{radius}.  

Therefore, we made our prototype cylinders with ℜ ≈ 0.6 which is significantly larger than the 

value ℜ ≈ 0.2 that has been used for spherical and quasi-spherical acoustic thermometers [6,8,9].)  

Second, the parameter A3, in Eq. (20) will be taken from the literature of speed-of-sound 

measurements at high pressures without adding significant uncertainties. Third, the parameter A1 

will be frequency-dependent, hence mode-dependent, because it accounts for the linear pressure 

dependence of the various shell perturbations as well as the linear pressure dependence of the 

speed of sound in argon.  

With the above complications in mind, we recall that the 1988 re-determination of kB relied 

on frequency measurements with a relative uncertainty that was 0.5 times the relative uncertainty 

we have demonstrated here under comparable conditions. We can offset this factor of 0.5 by 

using the present, fully-automated, apparatus to acquire 5 to 10 times the amount of data that was 

acquired in 1988. Thus, we expect to achieve approximately the same relative uncertainty 

ur(A0) ∼ 0.7×10−6 that was achieved in 1988. In Table 4, we summarize the uncertainty estimates 

that lead to the projected uncertainty ur(kB) = 1.5×10−6.  

 

8. Summary and discussion 

We report significant progress in developing the two-cylinder method of measuring the 

Boltzmann constant. We are able to account for the comparatively low Qs of the (l,0,0) modes by 

using an asymmetric resonance function. We improved the signal-to-noise ratio of the frequency 

measurements by a factor of 8 by replacing capacitive electro-acoustic transducers with 

piezoelectric transducers. By selecting the ratio of the cavity lengths and by choosing the modes 

to study, we can reduce either the perturbations from the endplates or the perturbations from the 

thermo-acoustic boundary layer. The perturbed resonance frequency is determined for this mode 

of the resonance frequency. By locating the transducer diaphragms on a node, we can suppress a 
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particular mode that is close on of the modes (l,0,0) chosen for measurement.  

We adapted the two-color laser interference method for determining the lengths of gauge 

blocks to determining the interior length of an acoustic cavity at ambient temperature. We will 

use the two-color laser interferometer in its single wavelength mode as a dilatometer to measure 

the thermal contraction of the length in situ. In summary, the current investigation demonstrates 

that the two-cylinder method for determining kB is likely to achieve an uncertainty that is 

comparable to the uncertainty of spherical resonators. 

The present acoustic method of re-determining kB relies on an optical measurement of the 

change in the length of a cavity. This differs significantly from the presently accepted 

determination of kB [12] that relied on measuring the volume of a spherical cavity by weighing 

the mercury required to fill the cavity.  

 

Acknowledgments The authors would like to thank D. Ripple and F. Pavese for their helpful 

suggestions to prevent gas contamination.  This work was supported by the National Science 

and Technology Pillar Program (2006BAF06B00) and the National Natural Science Foundation 

of China (No. 50906076). 



4/26/2010 168_Zhang, IJoT-D-09-00215, 26-Apr-2010 for resubmission.doc 23/ 33 

 23

References 
                                                        
[1] K.A. Gillis and M.R. Moldover, Int. J. Thermophys. 17, 1305 (1996) 
[2] J. J. Hurly, K. A. Gillis, J. B. Mehl, and M. R. Moldover, Int. J. Thermophys. 24, 1441 

(2003) 
[3] K. A. Gillis, Int. J. Thermophys. 15, 821 (1994) 
[4] J. F. Estela-Uribe and J. P. M. Trusler, Int. J. Thermophys. 21, 1033 (2000) 
[5] J. P. M. Trusler, Int. J. Thermophys. 18, 635 (1997) 
[6] M. R. Moldover, S. J. Boyes, C. W. Meyer, and A. R. H. Goodwin, J. Res. Natl. Inst. 

Standards Technol. 104, 11 (1999) 
[7] M. B. Ewing and J. P. M. Trusler, J. Chem. Thermodynam. 32, 1229 (2000) 
[8] G. Benedetto, R. M. Gavioso, R. Spagnolo, P. Marcarino and A. Merlone, Metrologia 41, 

74 (2004) 
[9] L. Pitre, M. Moldover, and W. L. Tew, Metrologia 43, 142 (2006) 
[10] D. C. Ripple, G. F. Strouse, and M. R. Moldover, Int. J. Thermophys. 28, 1789 (2007) 
[11] A. R. Colclough, T. J. Quinn, and T. R. D. Chandler, Proc. R. Soc. Lond. A368, 125 (1979) 
[12] M. R. Moldover, J. P. M. Trusler, T. J. Edwards, J. B. Mehl, and R. S. Davis, J. of Res. of 

NBS 93, 85 (1988) 
[13] J. Fischer, S. Gerasimov, K. D. Hill, G. Machin, M. Moldover, L. Pitre, P. Steur, M. Stock, 

O. Tamura, H. Ugar, R. White, I. Yang, and J. Zhang, Int. J. Thermophys. 28, 1753 (2007) 
[14] T. J. Quinn, A. R. Colclough, T. R. D. Chandler, Phil. Trans. R. Soc. Lond. A283, 367 

(1976) 
[15] P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill Book Co. New York, 

1968) pp 554-557, p 606 
[16] J. P. M. Trusler. Physical Acoustics and Metrology of Fluids (Adam Hilger, IOP Publishing 

Ltd., Bristol, 1991) 
[17] M. C. Junger and D. Feit, Sound, Structures, and Their Interaction (MIT Press, Cambridge, 

MA, 1986) pp.195-234 
[18] H. Lin, K.A. Gillis, and J.T. Zhang, submitted to Int. J. Thermophys.  
[19] K. A. Gillis, H. Lin, and M. R. Moldover, J. Res. Natl. Inst. Stand. Technol. 114, 263 

(2009) 
[20] M. R. Moldover, Comptes Rendus Physique 10, 815 (2009) 
[21] E. F. May, M. R. Moldover, and R. F. Berg, Int. J. Thermophys. 28, 1085 (2007) 
[22] K. A. Gillis, I. I. Shinder, and M. R. Moldover, Phys. Rev. E 70, 021201 (2004) 
[23] Reference [16], pp 44-47 
[24] M. R. Moldover, J. B. Mehl, and M. Greenspan, J. Acoust. Soc. of America 79, 253 (1986) 
[25] C.R. Tilford, Applied Optics 16, 1857 (1977) 
[26] E. D. Palik, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 

New York, 1985) pp. 275–804 
[27] N. Barakat, S. Mokhtar, and K. A. el Haadi, J. Opt. Soc. Am. 54, 213 (1964) 
[28] R. Thalmann, Metrologia 39, 165 (2002) 



4/26/2010 168_Zhang, IJoT-D-09-00215, 26-Apr-2010 for resubmission.doc 24/ 33 

 24

                                                                                                                                                                                   
[29] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 80, 633 (2008) 



4/26/2010 168_Zhang, IJoT-D-09-00215, 26-Apr-2010 for resubmission.doc 25/ 33 

 25

Table 1. Calculated unperturbed frequencies and fractional frequency perturbations of several longitudinal acoustic modes of argon-filled cavities 
of radius a = 40 mm and lengths L. The perturbations are calculated for argon at 273.16 K and 100 kPa and the results are multiplied by 106.  

  unpert. freq. boundary layer  shell motions transducers fill duct 

L l f 0 thermal viscous radial stretch axial stretch 
bending of 

ends 
free-body 

recoil 
  

mm  Hz 6T
0 10f

f
Δ

×  6v
0 10f

f
Δ

×  6sh1
0 10f

f
Δ

×  6sh2
0 10f

f
Δ

×  6sh3
0 10f

f
Δ

×  6sh4
0 10f

f
Δ

× 6tr
0 10f

f
Δ

×  6d
0 10f

f
Δ

×  

1 1907 −912.8 −557.9 −0.23 0 −10.5 −42.72 −0.27 0.00 

2 3815 −645.5 −394.5 −0.26 −1.00 −11.5 0 −0.27 −0.22 

3 5722 −527.0 −322.1 −0.10 0 −13.6 −4.75 −0.27 0.00 
80.7 

4 7630 −456.4 −279.0 −0.04 −1.13 −18.2 0 −0.28 −0.07 

4 4768 −469.8 −353.2 −0.16 −1.06 −7.7 0 −0.17 −0.09 

6 7152 −383.5 −288.4 −0.04 −1.23 −10.4 0 −0.17 −0.05 

8 9536 −332.1 −249.8 −0.01 −1.56 −20.3 0 −0.18 −0.03 
129.1 

12 14304 −271.3 −204.0 −0.00 -7.44 11.9 0 −0.20 0.00 

2 1907 −685.6 −557.9 −0.66 −0.98 −5.3 0 −0.13 −0.44 

4 3815 −484.8 −394.5 −0.29 −1.04 −5.8 0 −0.14 −0.14 

6 5722 −395.8 −322.1 −0.09 −1.16 −6.8 0 −0.14 −0.07 
161.4 

8 7630 −342.8 −279.0 −0.03 −1.39 −9.1 0 −0.14 −0.04 
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Table 2. Length correction and its uncertainty for the two-cylinder 
method with L2 = 80.7 mm at 273.16 K and p =100 kPa.  

 mode 

b s l2 l1 

( )6
12 12 10L Lδ Δ × ( ) ( )6

12 12 10u L Lδ Δ ×  

1.6 2 2 4 -464 24 (a) 

1.6 2 4 8 -352 58 (a) 

1.6 3 2 6 -68 30 (a) 

1.6 3 4 12 2.4 48 (a) 

2.0 2 2 4 -720 3.2 (b) 

2.0 2 4 8 -510 3.2 (b) 
(a) The uncertainty at 100 kPa is dominated by endplate bending; however, this 

contribution will extrapolate to zero as p→0. 
(b) The uncertainty at 100 kPa is dominated by radial and axial stretching which should 

extrapolate to zero as p→0.

Table 3.  Wave-vectors and half-widths of the acoustic modes of a cylindrical cavity 
with L = 129.14 mm and 2a = 80 mm near the (12,0,0) mode. The calculation of Δka 
assumes that the cavity is filled with argon at 100 kPa and 273.16 K.  

mode indices ka Δka 

(10,5,0) 11.655 0.024 

(12,0,0) 11.677 0.011 

(0,1,3) 11.706 0.006 

(3,3,2) 11.715 0.010 

(6,0,3) 11.730 0.010 

(0,6,1) 11.735 0.010 
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Table 4. Projected uncertainty budget for re-determining the 
Boltzmann constant by the two-cylinder method.  

Uncertainty source Uncertainty (×106) 
Gas temperature measurement 0.73 
Avogadro constant  0.10 
Molecular weight determination 0.70 
Cylinder length difference  0.70 

Fitting A0 to frequency measurements (a) 0.70 

Combined uncertainty 1.47 
(a) assumes 0.3 mm thick diaphragms are used. 
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Figure captions 

 

Figure 1. Schematic diagram of two fixed-length, cylindrical, cavity resonators with 

interchangeable ends. 

 

Figure 2. Frequency scan through (1,0,0) mode using diaphragms of various thicknesses. 

 
Figure 3.  Effect of transducer location on the relative amplitudes of the (l,0,0) and (l,m,1) 
modes at 293 K and 100 kPa. 
 
Figure 4.  Sketch of two-color interferometer. 
 

Figure 5. Conceptual design of three components that form two cylindrical resonators designed 
to cancel perturbations from end-plates. In one configuration, both ends constitute a resonator. In 
the second configuration, the middle section is inserted between the ends to double the length of 
the resonator.  
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Figure 1. Schematic diagram of two fixed-length, 
cylindrical, cavity resonators with interchangeable ends. 



4/26/2010 168_Zhang, IJoT-D-09-00215, 26-Apr-2010 for resubmission.doc 30/ 33 

 30

 

 

 

 

 

 

 

Figure 2. Frequency scan through (1,0,0) mode using diaphragms 
of various thicknesses. 
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Figure 3.  Effect of transducer location on the relative amplitudes of the (l,0,0) and 
(l,m,1) modes at 293 K and 100 kPa in argon. 
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Figure 4.  Sketch of two-color interferometer. 
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Figure 5. Conceptual design of three components that form 
two cylindrical resonators designed to cancel perturbations 
from end-plates. In one configuration, both ends constitute a 
resonator. In the second configuration, the middle section is 
inserted between the ends to double the length of the 
resonator.  


