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Abstract
This technical paper of mathematical physics arose as an aftermath of the
2002 Cassini experiment (Bertotti et al 2003 Nature 425 374–6), in which
the PPN parameter γ was measured with an accuracy σγ = 2.3 × 10−5 and
found consistent with the prediction γ = 1 of general relativity. The Orbit
Determination Program (ODP) of NASA’s Jet Propulsion Laboratory, which
was used in the data analysis, is based on an expression (8) for the gravitational
delay �t that differs from the standard formula (2); this difference is of second
order in powers of m—the gravitational radius of the Sun—but in Cassini’s
case it was much larger than the expected order of magnitude m2/b, where
b is the distance of the closest approach of the ray. Since the ODP does
not take into account any other second-order terms, it is necessary, also in
view of future more accurate experiments, to revisit the whole problem, to
systematically evaluate higher order corrections and to determine which terms,
and why, are larger than the expected value. We note that light propagation
in a static spacetime is equivalent to a problem in ordinary geometrical optics;
Fermat’s action functional at its minimum is just the light-time between the
two end points A and B. A new and powerful formulation is thus obtained.
This method is closely connected with the much more general approach of
Le Poncin-Lafitte et al (2004 Class. Quantum Grav. 21 4463–83), which is
based on Synge’s world function. Asymptotic power series are necessary to
provide a safe and automatic way of selecting which terms to keep at each
order. Higher order approximations to the required quantities, in particular the
delay and the deflection, are easily obtained. We also show that in a close
superior conjunction, when b is much smaller than the distances of A and B
from the Sun, say of order R, the second-order correction has an enhanced part
of order m2R/b2, which corresponds just to the second-order terms introduced
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in the ODP. Gravitational deflection of the image of a far away source when
observed from a finite distance from the mass is obtained up to O(m2).

PACS numbers: 04.20.Fy, 04.25.Nx, 95.30.Sf

List of symbols

A event or point where the photon starts
A(r) metric coefficient
B event or point where the photon is detected
B(r) metric coefficient
b closest approach in isotropic variable
C(r) metric coefficient
h closest approach in Moyers’s variable
b0 Euclidian approximation of the same
� Euclidian arc length
m gravitational radius

N(r) =
√

B(r)

A(r)
index of refraction

ODP Orbit Determination Program
p� perihelion distance
R = 2rArB

rA+rB
harmonic mean of the distances

r isotropic radial coordinate
R� radius of the Sun
r(�) photon trajectory
S Fermat’s action
S(xμ) eikonal function
t time in the rest frame of the mass
tA starting time of photon
tB arrival time of photon
γ relativistic PPN coefficient
�t gravitational delay
�s expansion coefficients of delay (12)
λ undefined parameter along the light path
ρ = rN(r) Moyer’s radial coordinate
φ longitude
	AB elongation angle

1. Introduction

In the framework of metric theories of gravity and the PPN formalism, the main violations
of general relativity—those linear in the masses—are described by a single dimensionless
parameter γ . The question, at what level and how general relativity is violated, in particular
how much γ differs from unity, Einstein’s value, is still moot. No definite and consistent
predictions about it are available, except for the inequality γ < 1, which must be fulfilled
in a scalar–tensor theory, in particular those arising as the low-energy limit of certain string
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theories. To date, the best measurement of γ has been obtained with Cassini’s experiment,
which has provided the fit (at 1-σ )

γ − 1 = (2.1 ± 2.3) × 10−5. (1)

Einstein’s prediction is still acceptable, but more accurate experiments are needed and planned.
While γ also controls other relativistic effects, in particular those related to gravito-

magnetism, it mainly affects electromagnetic propagation. The differential displacement of the
stellar images near the Sun historically was the first experimental effect to be investigated and
is now of great importance in accurate astrometry. The bending of a light ray also increases the
light-time between two points, an important effect usually named after its discoverer Shapiro
[27]. Several experiments to measure this delay have been successfully carried out, using
wide-band microwave signals passing near the Sun and transponded back, either passively by
planets, or actively by space probes (see [24, 31]).

Cassini’s 2002 experiment has implemented a third way to measure γ [4], in which
coherent microwave trains sent from the ground station to the spacecraft (at that time about
7 AU far away) were transponded back continuously. The use of high-frequency carriers (in
Ka band, 34 and 32 GHz) and the combination with standard X-band carriers (about 8 GHz)
allowed successful elimination of the main hindrance, dispersive effects due to the solar corona
traversed by the beam [3]. The tracking was carried out around the 2002 superior conjunction;
the minimum value of the impact parameter of the beam was 1.6 R� (R� is the Sun’s radius),
but in effect only 18 passages have been used, with a minimum impact parameter of ≈6 R�.
The two-way total amount of phase difference between the time of emission and the time of
arrival has been continuously measured in each passage. In effect, however, NASA’s Deep
Space Network provides the phase count in a given integration time τ . Mathematically, in the
limit τ → 0 this would give the received frequency, in which Doppler effects and gravitational
frequency shift are mixed up (section 3). Cassini’s observable, therefore, can also be assessed
in terms of the predicted change in frequency, as in [4]; however, in practice, taking τ small
would introduce unacceptable high-frequency noise. The change in light-time in a given
integration time is the correct, theoretically available observable.

In the standard formulation for a superior conjunction, and taking the Sun at rest, the
(one-way) light-time from an event A to an event B is

tB − tA = rAB + �t = rAB + (1 + γ )m ln
rA + rB + rAB

rA + rB − rAB

, (2)

where m = 1.48 km is the gravitational radius of the Sun, rA, rB are, in Euclidian geometry
(see figure 1, left), the distances of A and B from the Sun and rAB is their distance. The
velocity of light c is unity. �t , the increase of the light-time over rAB , is the gravitational
delay.

In a close superior conjunction A and B are on the opposite sides of the mass and the
Euclidian distance b0 of the straight line AB from the mass fulfils, say, b0 � (rA, rB) = O(R).
In this approximation equation (2) reduces to

tB − tA = rAB + �t = rAB + (1 + γ )m ln

(
4rArB

b2
0

)
, (3)

with a logarithmic enhancement over the formal order of magnitude �t = O(m).4 Taking the
logarithm equal to 10, this provides an estimate of the timing accuracy in terms of the error
in γ :

σ�t = 1.43σγ × 106 cm, (4)

4 As stated in the supplementary material of [6], in equation (2) the two terms on the right-hand side should obviously
be multiplied by a factor 2. This error, of course, had no consequence on the computer fit.
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Figure 1. The background Euclidian geometry. The mass at O and the end points at A and B define
a triangle AOB; the distance OH = b0 from the straight line AB to the mass at the origin is taken
as the unit of length in this figure. The angles α are taken positive. The internal angle 	AB can be
obtuse (left) or acute (right); in the first, more interesting case, when, in addition, rA � rB � b0,
we have the most important case of a close superior conjunction, in which the deflection is large.

Elementary trigonometry gives the relation b0

√
r2
A + r2

B − 2rArB cos 	AB = rArB sin 	AB .

corresponding, in Cassini’s case, to 30 cm. Equation (3) also embodies the one-way frequency
change �ν induced by gravity between A and B. Their motion makes b0 (and the distances)
change with time, so that, for a one-way experiment:

�ν

ν
= d�t

dt
= −2(γ + 1)

m

b0

db0

dt
. (5)

The basic geometric setup is straightforward: a point mass m at rest at the origin in an
asymptotically flat space generates a line element with rotational symmetry. An invariant
Killing time t is defined; events on each t = constant surface are ‘simultaneous’ and the metric
components are constant. The proper time ds = √

g00(r) dt of a static observer differs from dt

by the red-shift factor
√

g00(r). A null geodesic runs from the event A (with radial coordinate
rA and time tA) to the event B (with radial coordinate rB and time tB); it stays on a plane, taken
here as the equatorial plane θ = π/2. The (invariant) longitude difference 	AB = φB − φA

completes the setup. In the PPN formalism and isotropic coordinates the metric reads

ds2 = A(r) dt2 − B(r) d�2

=
(

1 − 2m

r
+ 2β

m2

r2
+ · · ·

)
dt2 −

(
1 + γ

2m

r
+

3ε

2

m2

r2
+ · · ·

)
d�2, (6)

where

d�2 = dr2 + r2(dθ2 + sin2 θ dφ2) = dr2 + r2 d�2

is the Euclidian line element. The parameters γ , β and ε are equal to 1 in general relativity;
while γ and β are accurately known, currently no information is available about ε.
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In our case the best mathematical tool to deal with electromagnetic propagation is not null
geodesics, but the theory of the eikonal. It is known (e.g. [19]) that in this problem Fermat’s
Principle holds, corresponding to the refractive index

N(r) =
√

B(r)

A(r)
; (7)

we develop ab initio the eikonal and solve for it by separation of variables (section 3).
The radial part provides Fermat’s action as a radial integral containing N(r) and the impact
parameter h; when computed at the true value htrue, such action is just the required light-time.
The solution can be obtained recursively, using appropriate expansions in powers of m: the
expansion for h begins with h0 = b0, the distance of the straight line AB from the origin. In
this way the variational nature of the problem brings about a great conceptual and algebraic
simplification. At the linear approximation in m one would expect that the light-time contains
h1, the correction in the impact parameter linear in the mass; as one can see from (2), this is
not the case. This property is generally true: the correction to the light-time O(m)k does not
contain hk (section 5).

Cassini’s and many other space experiments have been analysed by the use of NASA’s
Orbit Determination Program (ODP), developed by NASA at Jet Propulsion Laboratory in the
1960s and steadily improved since; a new version called MONTE is under development. The
ODP, whose theoretical formulation is due to Moyer [21], integrates the equations of motion
of the relevant bodies and provides their trajectories in the ephemeris time. This task is carried
out in a reference system, called BCRS (barycentric coordinate reference system) [28], in
which the centre of gravity of the solar system is at rest and the Sun moves around with a
velocity v� ≈ 10 m s−1 = 3 × 10−8 c. As discussed in [2], the light-time in this frame differs
from the rest frame of the Sun essentially due to Lorentz time dilatation; being of order v�,
this difference is quite below the sensitivity of the Cassini experiment [17]. We do not discuss
this point any more; t is just Killing time.

The ODP uses a fictitious Euclidian space S3(x, y, z), which corresponds to the isotropic
coordinates of (6). This space is just a computational convenience and should not be considered
as a physical background in which gravity acts. For example, replacing r, the Euclidian distance
from the origin, with r + km, where k is an arbitrary constant, is fully legitimate in a covariant
theory, but it destroys the conformal flatness of space, introduces a gravitational potential
−km2/r2 and adds a second-order term to the delay �t . Strictly speaking, the word ‘delay’ is
inappropriate: we just have a light-time and there is nothing with respect to which a delay can
be reckoned. The object of the measurement is the time change of the delay. The arbitrariness
of the radial coordinate also affects gravitational bending: its second-order approximation up
to O(m/b)2 depends on which radial coordinate is used (see [7, 10, 13, 25]).

It should also be noted that the spacetime coordinates of the end events are not directly
provided in the experimental setup and depend on the gravitational delay �t , the very quantity
one sets out to measure. The trajectories rA(t) and rB(t) are given by the numerical code; the
starting time tA is just a label of the ray, but the arrival time tB is greater than tA + rAB . The
way out is to take for the end point

rB(tB) = rB(tA + rAB) + �tuB(tA + rAB),

where uB = drB/dt . For a typical velocity 10−4 c the correction is of order 20 × 1.4 × 105 ×
10−4 = 300 cm, and the a priori accuracy in �t is sufficient.
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Since for electromagnetic propagation dt and d� in (6) are almost equal, (2) is the correct
approximation to the delay to O(m); one would expect this to be the first term in an expansion
in powers of m/b0, so that the next term should be

≈m
m

b0
= m

m

R�

R�
b0

= 0.3
R�
b0

cm,

quite below Cassini’s sensitivity. The present paper arose because the ODP (equation (8–54)
of [21]), in fact does not use (2), but, in our notation,

tB − tA = rAB + �t = rAB + (1 + γ )m ln

(
rA + rB + rAB + (1 + γ )m

rA + rB − rAB + (1 + γ )m

)
. (8)

We have not been able to fully reconstruct Moyer’s derivation of this expression. It introduces
nonlinear corrections arising from nonlinear effects of linear metric terms, but not quadratic
metric terms. However, the difference between the two expressions of the delay is much
larger than the estimate above; this arises because in Cassini’s case, in (2) the denominator
rA + rB − rAB is much smaller than the numerator ≈2rAB . Indeed,

�t − (�t)ODP = −2(1 + γ )2 m2

b2
0

rArB

rA + rB

= −(1 + γ )2 m2R

b2
0

, (9)

where we have introduced the harmonic mean of the distances
2

R
= 1

rA

+
1

rB

= rA + rB

rArB

. (10)

If, as in Cassini’s experiment, rB � rA = 1 AU = 200 R�, R = 400 R� the correction (9) is
about

1600m
m

R�

(
R�
b0

)2

= 500

(
R�
b0

)2

cm.

Even at ≈6 R� this correction is somewhat below sensitivity (4) and it should not affect the
result. However, it cannot be excluded that neglected nonlinear terms relevant for Cassini’s
experiment affect fit (1). One could say, (8) is not justified; a full clarification of the problem
is needed.

Empirically dropping or keeping ‘small’ terms may lead to inconsistencies and therefore
does not work; the rigourous method of asymptotic perturbation theory (see, e.g. [11, 16])
must be used. We briefly sketch it now at a practical level. One begins with a wise choice of a
dimensionless ‘smallness’ parameter, and expands every function in the corresponding power
series. Our main choice will be m/b0, but convenience may suggest using other lengths, such
as in m/r . An asymptotic series

G =
∑

s

Gs

(
m

b0

)s

is a formal object assigned just by the sequence of its coefficients Gs; arithmetic and calculus
follow the obvious rules for sum, multiplication and differentiation. Equality between two
asymptotic series just means that the coefficients of the same order are equal. The value of
G(m) as a function of m plays no role, and even the convergence of the series is irrelevant;
what matters is only the truncated value at any order k:

G(k) =
k∑

s=0

Gs

(
m

b0

)s

. (11)

The remainder is of O((m/b0)
k+1). The parameter m/b0 should not be understood as a fixed

number, but as a variable that tends to zero. The symbol O(.) means order of infinitesimal;
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Figure 2. The minimum of the reduced action (51) is equal to the light-time at the true value htrue.
See equation (52).

it states how fast the remainder tends to zero as the parameter diminishes. An asymptotic
series can be constructed from an ordinary arbitrary function G(m); however, a whole class of
functions give rise to the same series; for example, if Gs is the sequence generated by G(m),
the same sequence is also generated by

[1 + P exp(−Qb0/m)]G(m) (Q > 0).

In this way any recursive iteration then proceeds automatically and safely, even in the most
complex situations.

In our case light-time will be provided as an asymptotic power series

tB − tA = rAB + m
∑
s=1

�s

(
rA

b0
,
rB

b0

)(
m

b0

)s−1

, (12)

with dimensionless coefficients �s . �1 provides the lowest standard approximation to �t

(see (2)). In principle, asymptotic analysis provides no numerical estimate of the remainder
in a given situation; this is a physical, not a mathematical question. But when the problem,
properly formulated, does not contain small dimensionless quantities other than the smallness
parameter itself, one can expect the mathematical operations leading to the result to maintain
the order of magnitude and to lead to expansions whose coefficients are numerically of the
same order. This is the case of deflection, the angle between the asymptotes of the ray. There is
only one length in the problem, the distance b of the point of closest approach, or, equivalently,
the impact parameter h = bN(b) (see figure 3); hence, in the expansion

δ =
∑

s

δs

(m

h

)s

(13)

the coefficients δs are dimensionless numbers, determined solely by the PPN parameters,
and must be of order unity (see section 8). But in the delay problem the coefficients �s

depend on the geometrical configuration. They are of order unity in the generic (but scarcely
interesting) case in which rA, rB and b0 are of the same order; however, in a close superior
conjunction—of crucial relevance in experimental gravitation—when b0 � (rA, rB) = O(R),
besides m/b0, there is another smallness parameter, namely b0/R, and there is no reason to
exclude that the �s increase with R/b0 beyond the expected order of magnitude unity. This
we call enhancement. We already saw in (3) that �1 is enhanced, albeit only logarithmically;
the ODP correction (9), formally of second order, is enhanced by R/b0. This could place
serious limitations on the method and even invalidate the iteration itself. This would occur,
for instance, when mR ≈ b2

0; if b0 = R� = 1/200 AU, this corresponds to R = 2000 AU.

7



Class. Quantum Grav. 27 (2010) 145013 N Ashby and B Bertotti

Figure 3. Three ways to define the separation of the ray from the origin: the distance
b0 = h0 = OH (in this paper often taken as unit of length) of the straight line AB; the distance
b = OK the point of closest approach; the impact parameter h = bN(b) = OJ .

The enhancement, which has never been discussed in the literature, has been fully understood
and tamed in the present paper (section 7). We have found, indeed, that the second-order
terms embodied in the ODP expression (8) that was used in Cassini’s experiment are just the
enhanced second-order terms; Cassini’s result (1) is still safe.

The problem can be reduced to one of ordinary optics; due to its variational nature, the
eikonal function can be easily solved in an expansion in powers of m/h. The second-order
expression of the light-time for a static spacetime has been obtained; extension to third order is
also easy. This approach should be compared with the much more general work of [18], who
consider Synge’s world function �(xA, xB) in a generic spacetime for a generic geodesic (not
necessarily null) between two events A and B. On the basis of Hamiltonian theory, they develop
a method to solve for �(xA, xB) in a formal power series with respect to the gravitational
constant G and compute it up to the second order. In the null case the world function vanishes
on the solution and becomes the eikonal function. Our method, limited of course to the
spherically symmetric case, exploits directly the variational nature of the problem and leads
to the second-order expression of the light-time, which agrees with the expression of [18];
extension to third order is also easy.

For a realistic observation of a distant source, from a point B at a finite distance rB , (13)
must be generalized to an expansion of the type

δB =
∑

s

δBs

( rB

h

) (m

h

)s

, (14)

where h is the impact parameter. The linear term has been evaluated in [19], section 40.3; the
quadratic correction will be obtained in section 8.
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2. Hyperbolic Newtonian dynamics

Newtonian dynamics of a test particle attracted by a point mass M, an exactly soluble problem,
illustrates these issues. We consider a motion in the equatorial plane θ = π/2, with the radial
coordinate r and the azimuthal longitude φ. The Lagrangian function

LNewton = 1

2

[(
dr

dt

)2

+ r2

(
dφ

dt

)2
]

+
GM

r
(15)

keeps the total energy v2
∞
/

2 constant; v∞, the ultimate speed of the particle at a large distance,
plays a role analogous to the speed of light and we can define a new time coordinate by
replacing v∞t by t. Energy conservation gives(

dr

dt

)2

+ r2

(
dφ

dt

)2

− 2
m

r
= 1, (16)

where m = GM
/
v2

∞ is the gravitational radius. φ is an ignorable coordinate, so that the
angular momentum

∂LNewton

∂(dφ/dt)
= r2 dφ

dt
= h (17)

is constant. Since the trajectory at infinity is straight, h is the impact parameter. Eliminating
dt we get

r
dφ

dr
= ± h√

r(r + 2m) − h2
; (18)

hence,

h =
√

b(b + 2m) (19)

determines b, the distance of the closest approach where dr/dφ = 0. The sign depends upon
whether the ray is ingoing or outgoing. Integrating (18) we get the true anomaly α:

α = arccos

(
b2 + 2mb − mr

r(b + m)

)
. (20)

Alternatively, the motion can be expressed in terms of the semi-major axis a = m and the
hyperbolic eccentricity e = 1 + b/m:

r = a(e2 − 1)

1 + e cos f
. (21)

The acute angle δ between the asymptotes is given by

sin δ = sin

(
2 arccos

(
−1

e

))
= 2m

b + m

√
1 − m2

(b + m)2
. (22)

This angle has a regular expansion in powers of m/b, with no enhancement.
Consider, however, the hyperbola determined by the two points A and B on the opposite

sides of the vertex (left side in figure 1). As in space navigation—in particular in the ODP—the
end points are provided in terms of the initial and final position vectors, or equivalently, in
terms of the initial and final distances rA and rB and the elongation angle 	AB ; the ‘unperturbed
distance of the closest approach’ may then be calculated from elementary geometry:

b0 = rArB sin 	AB√
r2
A + r2

B − 2rArB cos 	AB

. (23)
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Choosing the angles αA, αB and 	AB positive, we can express b in terms of b0 with the
condition

	AB = αA + αB = arccos
b0

rA

+ arccos
b0

rB

= arccos

(
b(b + 2m)

rA(b + m)
− m

b + m

)
+ arccos

(
b(b + 2m)

rB(b + m)
− m

b + m

)
, (24)

from (20). The symmetric case rA = rB = R is sufficient to exhibit the problem. The
condition (24) reads

b

R

b + 2m

b + m
− m

b + m
− b0

R
= 0, (25)

or

b2 + (2m − b0)b − m(R + b0) = 0, (26)

with the solution

2b

b0
= b0 − 2m

b0
+

√
1 + 4

m

b0

R + m

b0
. (27)

Expansion in powers of m gives

b

b0
= 1 +

(
R

b0
− 1

)
m

b0
−
((

R

b0

)2

− 1

)(
m

b0

)2

+ O

(
mR

b2
0

)3

. (28)

The enhancement is clear: when R = O(b0) the truncation error at order k is O(m/b0)
k+1,

with a coefficient of order unity, as naı̈vely expected; however, when—as in a close superior
conjunction—R � b0, the error is larger, O

(
mR

/
b2

0

)k+1
. Formally this requires introducing

another smallness parameter b0/R and expanding every coefficient of the primary m-expansion
in descending powers of R/b0. Of course, the condition

mR

b2
0

� 1 (29)

must be fulfilled, lest the whole procedure breaks down. One could say, anchoring the
trajectory at far away end points has a lever effect, so that an increase in the mass produces a
large increase in the closest approach.

The quantity (29) gives, in order of magnitude, the ratio between the deflection ≈m/b0

and the angle b0/R which separates the central mass and a distant star, as seen from a distance
R. Hence the limiting constraint above implies that the geometry of astronomical deflection is
the same as in the classical case (see figure 4): sources in the sky near the Sun are displaced
outwards by an amount inversely proportional to the angular distance. The transition through
the milestone mR = b2

0 marks the passage to the gravitational lensing regime, in which the
image can appear on both sides.

In section 7 the light-time enhancement is dealt with in the general case and it is shown
that the dimensionless coefficients �s in (12) are O(R/b0)

s−1.

3. The radial gauge

The metric of a spherical body at rest has the general form

ds2 = A(r) dt2 − B(r) dr2 − C(r)r2 d�2, (30)

10
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Figure 4. Deflection measured from a finite distance. A ray from a faraway source arriving along
the direction n� is deflected, and arrives at the observation point B from a different direction,
with unit vector nB (equation (111)) tangent to the ray. The deflection angle δB is smaller
than the asymptotic deflection δ, the angle between the asymptotes. The origin of longitudes is
taken on the axis OK through the closest approach, so that φ∞ = π/2 + δ/2. The figure also
illustrates the meaning of the parameter h. The point J is the intersection of the tangent through
B with a line through O perpendicular to the asymptote. It is easily seen that the distance OJ =
rh/

√
r2N(r)2 − h2, so that at great distance this distance becomes h, which is therefore just the

impact parameter. In the Newtonian dynamical model h (17) is a constant of the motion, with the
same meaning.

where A(r), B(r), C(r) are the power series of the form

A(r) =
∑

s

As

(m

r

)s

. (31)

It is asymptotically flat, so that A0 = B0 = C0 = 1. The radial coordinate is otherwise
arbitrary; this is the gauge freedom at our disposal. For consistency, however, any change
r → r̄ = g(r) must become an identity at infinity and have a similar expansion:

g(r) = r + g1m + g2
m2

r
+ · · · ; (32)

the coefficients As, Bs, Cs are not gauge invariant. Two gauges are common. In the isotropic
form—the canonical choice in space physics—C(r) = B(r), so that

ds2 = A(r) dt2 − B(r)(dr2 + r2 d�2) = A(r) dt2 − B(r) d�2; (33)

the space part of the metric is conformally flat. We define

N(r) =
√

B(r)

A(r)
=
∑

s

Ns

(m

r

)s

= 1 + N1
m

r
+ N2

(m

r

)2
+ O

(m

r

)3
. (34)

In the PPN scheme (e.g. [31])

N1 = γ + 1, N2 = 6 − 4β + 3ε + 4γ − 2γ 2

4
. (35)

In ‘Schwarzschild’ gauge C̄(r̄) = 1 and

ds2 = Ā(r̄) dt2 − B̄(r̄) dr̄2 − r̄2 d�2;
11
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the area of a sphere of radius r̄ is just the Euclidian expression 4πr̄2, which defines r̄ in an
invariant way. In the original Schwarzschild solution Ā(r̄) = 1/B̄(r̄) = 1 − 2m/r̄ . To get the
isotropic form one requires

g2(r) = B̄(g(r))

(
dg

dr

)2

r2; (36)

to first order

r̄ = r + γm + · · · . (37)

In the present paper a third radial coordinate

ρ = rN(r) = r

√
B(r)

A(r)
= r + mN1 + m2 N2

r
+ · · · (38)

plays an important role. It is a monotonic function of r and ensures that A(ρ) = C(ρ). In the
linear approximation it was introduced by Moyer in [21] (equation (8)–(23)), and boils down
to just adding to r a constant term, equal to 2.95 km for the Sun.

4. Geometrical optics

It is convenient to reduce the problem to geometrical optics by use of the eikonal function S.
In a generic spacetime S fulfils the eikonal equation

gμν∂μS∂νS = 0; (39)

its characteristics are the null rays (see, e.g. [1]). S is the phase of the electromagnetic wave.
Let r

μ

A = rμ(sA), r
μ

B = rμ(sB) be the trajectories of the end points of the light path, given as
functions of their proper times sA, sB ; let

v
μ

A = drμ

dsA

, v
μ

B = drμ

dsB

be the corresponding four-velocities. Clocks associated with them measure the proper angular
frequencies

ωA = −v
μ

A∂μS = − dS

dsA

, ωB = −v
μ

B∂μS = − dS

dsB

. (40)

In the simple case in which the end points are far away from the source, where the metric
corrections can be neglected, the contribution to the frequency difference corresponds to the
ordinary Doppler effect, and can be evaluated with a slow motion expansion; the change in
S between A and B is determined by the accumulated gravitational effect along the ray and
mainly comes from the region near the mass:

gμν∂μS∂νS = 0 = N2(r)(∂tS)2 − ∇S · ∇S, (41)

where ∇ is the Euclidian gradient operator. We are really interested only in the spherically
symmetric case, but the reasoning of this section holds also for an arbitrary N(r).

S is the phase; propagation occurs keeping it constant. Separating space and time
variables with

S = St (t) + Sr(r),

leads to the class of solutions

S = ω0(S(r) − t), (42)

12
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where ω0S(r) is the spatial part of the phase and ω0 is a constant frequency. S has the
dimension of time and satisfies

∇S · ∇S = N2(r). (43)

If a clock is at rest relative to the mass, vμ = (1, 0)/
√

A(r) is its four-velocity and the
measured proper frequency ω0/

√
A(r) includes the appropriate gravitational shift away from

the asymptotic value ω0. This is enough to reduce the problem to geometrical optics (see, e.g.
[8], chapter III). A ray r(�), as a function of the Euclidian arc length �, is orthogonal to the
eikonal surfaces S(r) = const and fulfils

d

d�

(
N(r)

dr
d�

)
= ∇N(r). (44)

The index of refraction is the rate of increase of the spatial phase along the ray:

dS

d�
= N(r).

Consider now Fermat’s action functional

S[r(λ)] =
∫ λB

λA

dλ N(r)

√
dr
dλ

· dr
dλ

=
∫ λB

λA

dλLF , (45)

where the trajectory, any path joining the end points, is expressed in terms of a generic
parameter λ:

r(λA) = rA, r(λB) = rB. (46)

Because the action is, in fact, independent of the choice of λ, no generality is lost if dλ = d�,
the Euclidean line element. The Euler–Lagrange equation for the action (45) reduces to (44).
The actual elapsed time

tB − tA = S(A,B) =
∫ �B

�A

d�N(r) = SB − SA (47)

is just the value of S[.] computed at a local minimum—the actual ray (Fermat’s Principle).
One should keep in mind the distinction between the action functional, with its argument
in square brackets, and the action computed at the extremum, an ordinary function of the
end points denoted with S(A, B). In S(A, B), but not in S[.], it is allowed to replace the
generic independent variable λ with a more convenient one related to the solution, such as
r. For simplicity, the different functions denoted by the symbol S are distinguished by their
arguments; below, the quantity S(rA, rB; b) = S(h) will be introduced to denote the action
corresponding to a ray anchored at rA and rB , but with arbitrary b (or h).

5. The solution

The eikonal function provides a deep simplification in the evaluation of the light-time. Having
already separated out the time, the three-dimensional eikonal equation (43) in spherical
symmetry and in the equatorial plane can be solved by separating out the longitude φ: setting

S(r, φ) = Sr (r) + Sφ(φ).

It satisfies5

r2(S
′
r )

2 + (S
′
φ)2 = r2N2(r),

5 For a function of a single variable, a prime indicates the derivative.

13
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so that S
′
φ is a constant. Setting Sφ = hφ, the eikonal equation reduces to

(S
′
r )

2 = 1

r2
(r2N2(r) − h2),

with the primitive

S(r) = ±
∫ r dr

r

√
r2N2(r) − h2.

The + and the − signs correspond, respectively, to outgoing and incoming photons. The radial
coordinate of the closest approach b, where S

′
r = 0, is the solution of

bN(b) = h; (48)

since r � b, S is a real function. In section 8 it will be shown that h, just as in the Newtonian
case, is the impact parameter (figure 4). The total phase is therefore

S = ω0

(
hφ ±

∫ r dr

r

√
r2N2(r) − h2 − t

)
. (49)

A wavefront propagates keeping S constant, so that the time along the ray is

t = ±
∫ r dr

r

√
r2N2(r) − h2 + hφ. (50)

In the usual case (see figure 1), in which the point of the closest approach is within the angle
̂AOB, the ray has two branches, both taken with the positive sign: an incoming one from rA

to b and an outgoing one from b to rB . In the inferior case b is never reached and we have just
an outgoing ray from rA to rB . In both cases, ingoing from A to B the longitude increases by
φB − φA = 	AB. The quantity

S(h) =
∫ rB

b

dr

r

√
r2N2(r) − h2 ±

∫
rA

b

dr

r

√
r2N2(r) − h2 + h	AB (51)

gives the phase change, hence the light-time, between the end points, but the quantity h is still
arbitrary. The upper (lower) sign corresponds to the case of superior (inferior) conjunction;
in the latter case the two integrals combine in a single one from rA to rB , and b disappears as
a lower limit. Equation (51) is what Fermat’s action functional becomes when its variability
is restricted to h and the longitude constraint is not imposed; it shall be called reduced action.
At the true value it satisfies

S ′(htrue) = 0, (52)

keeping the end points fixed. This is illustrated in figure 2.
The present work aims at providing the theoretical foundation for the time delay in

all configurations; the sign freedom allows dealing with both cases at the same time, but
applications will be given mainly for a conjunction, with +. The origin of longitudes is
arbitrary. This general approach is relevant, for example, for a spacecraft on an almost
parabolic orbit, as in the Solar Probe concept; with a perihelion as low as 4 R�, it can have a
strong enhancement of the light-time even in the inferior configuration.

In the derivative S ′(h) there are no contributions from the lower limits; then (52) provides
h as an implicit function of the total elongation 	AB :

	AB +
∫ rB

b

dr

r

−h√
(rN(r))2 − h2

±
∫ rA

b

dr

r

−h√
(rN(r))2 − h2

= 0. (53)

14
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Hence (51) reads6

S(h) =
∫ rB

b

drN(r)
rN(r)√

(rN(r))2 − h2
±
∫ rA

b

dr N(r)
rN(r)√

(rN(r))2 − h2
. (54)

Both integrals are convergent (and in the inferior case the singularity at rN(r) = h is not
even reached). Equation (51) suggests the introduction of the function

G(r, h) =
∫ r

b

dr

r

√
(rN(r))2 − h2 , (55)

in terms of which

S(h) = G(rB, h) ± G(rA, h) + h	AB. (56)

Equation (53) reads7

G,h(rB, h) ± G,h(rA, h) + 	AB = 0. (57)

While in (51) h is an independent parameter, in (54) it is fixed by (53).
This expression for h can also be derived directly from Fermat’s Principle, thus providing

its significance. Fermat’s action (47), expressed as a function of r, has the Lagrange functional

LF [φ(r)] = N(r)
√

1 + r2(dφ/dr)2, (58)

with the (positive) constant of the motion

∂LF

∂(dφ/dr)
= ± r2N(r)√

1 + r2(dφ/dr)2

dφ

dr
= h. (59)

The upper (lower) holds for the outgoing (incoming) branch. Thus,

r
dφ

dr
= ± h√

r2N2(r) − h2
= ± h√

ρ2 − h2
, (60)

and then integrating, (53) is recovered. Comparison with (18) shows that in the Newtonian
case the exact index of refraction is

NNewton(r) =
√

1 + 2
m

r
, (61)

corresponding, as expected, to γ = 0, N1 = 1 and N2 = −N3 = −1/2, etc.

6. A variational argument

At this point one could proceed as follows: using power series, solve (53) for h in terms of 	AB ,
a known quantity. The value of h, inserted into (54), provides the required light-time. The
stationary character of action (52), however, brings about a deep and important simplification.
This is already tacitly applied in the usual derivation of the gravitational delay (2). To first
order, the integral of dt = N(r) d� in (33) reads

tB − tA =
∫ �B

�A

d� + (γ + 1)

∫ �B

�A

d�
m

r
;

the second integral can be carried out along the straight path from A to B, leading to the
characteristic logarithmic term. In principle, however, the first integral should take into
account the (first-order) deflection; we should understand

∫
d� = �AB as the Euclidian length

6 In a slightly inconsistent notation, we often use h to denote both an independent and variable quantity, and the fixed
value htrue determined by the elongation. The context should be sufficient to clear the ambiguity.
7 The suffix ,h indicates partial derivative.
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of the bent arc between A and B. But the length rAB of the straight segment AB is a minimum
in the set of all curves joining A and B, so that �AB − rAB vanishes to O(m).8 Ray bending is
irrelevant here.

In order to exploit the variational nature of the problem it is convenient to apply power
expansions before imposing the extremum condition (52). We just need the value of the reduced
action (51) S(h) = ∑

s msSs(h) at the value which fulfils (52), namely 0 = ∑
s msS ′

s(h).

Setting h = h0 +mh1 +m2h2 and expanding �sm
sSs(h0 +mh1 +m2h2), the solution to second

order is obtained iteratively:

S ′
0(h0) = 0, (62)

h1S
′′
0 (h0) + S ′

1(h0) = 0, (63)

h2S
′′
0 (h0) +

h2
1

2
S ′′′

0 (h0) + h1S
′′
1 (h0) + S ′

2(h0) = 0. (64)

In the expression

S(h) = S0(h0) + m(h1S
′
0(h0) + S1(h0)) + m2

(
h2S

′
0(h0) +

h2
1

2
S ′′

0 (h0) + h1S
′
1(h0) + S2(h0)

)
,

(65)

the effect of the extremum property is clear: because S ′
0(h0) = 0, the first-order term does

not contain h1, and the second-order term does not contain h2; in general, the term in S(h) of
order mk does not depend on hk. This important result is reflected in the general approach of
[18]. Referring to the equation numbering of [18], their world function �(xA, xB) fulfils the
Hamilton–Jacobi equation (30). In the null case � = 0, (30) becomes the eikonal equation.
Their theorem 2 proves that the nth-order �n can be expressed in terms of integrals along
the Minkowskian path of lowest order. In our case this variational lemma (namely that the
term in S(h) of order mk does not depend on hk) clarifies the matter and produces considerable
simplifications. Using (63), the light-time to second order reads

S(h) = S0(h0) + mS1(h0) + m2

(
h2

1

2
S ′′

0 (h0) + h1S
′
1(h0) + S2(h0)

)
, (66)

where h1 is given by (63). The delay coefficients (12) read

�1 = S1(h0), �2/h0 = h2
1

2
S ′′

0 (h0) + h1S
′
1(h0) + S2(h0). (67)

The second-order correction in the impact parameter h2, given by (64), is needed only at third
and higher orders. For the record, note the third-order contribution to the light-time:

�3
/
h2

0 = h1h2S
′′
0 +

h3
1

6
S ′′′

0 + h2S
′
1 +

h2
1

2
S ′′

1 + h1S
′
2 + S3, (68)

where, for simplicity, the arguments h0 have been understood, and h2 is provided by (64).

7. Power series

We now proceed to apply this simple and general lemma to the light-time. To lowest order, in
(55) we use b = b0 = h0 and N(r) = 1, so that

S0(h) =
√

r2
B − h2 ±

√
r2
A − h2 − h

(
arccos

h

rB

± arccos
h

rA

− 	AB

)
. (69)

8 A didactical remark is in order here. This minimum property, crucial to the argument, is often omitted in the usual
derivation. See, e.g. [19] p 1107, [9] p 125; in equation (17.59) of [5], p 581, the minimum is not mentioned, and a
factor of 4 is missing in the argument of the logarithm.
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The condition S ′
0(h0) = 0 determines h0 with the trigonometric relation (see figure 1)

	AB = arccos
h0

rB

± arccos
h0

rA

, (70)

or

h0 = rArB

rAB

sin 	AB. (71)

Therefore,

S0(h0) =
√

r2
B − h2

0 ±
√

r2
A − h2

0 = rAB =
√

r2
A + r2

B − 2rArB cos 	AB, (72)

is the geometric distance AB. h0 is now fixed and could be taken equal to unity without loss of
generality. Because of the variational lemma, at the next order we can retain h = h0. S1(h) is

S1(h) = N1

[
ln

(
rB +

√
r2
B − h2

h

)
± ln

(
rA +

√
r2
A − h2

h

)]
. (73)

Then (51), with N(r) = 1 + mN1/r , reads

S0(h0) + mS1(h0) = rAB + mN1

⎡
⎣ln

⎛
⎝ rB +

√
r2
B − h2

0

h

⎞
⎠ ± ln

⎛
⎝ rA +

√
r2
A − h2

0

h

⎞
⎠
⎤
⎦ . (74)

In the case of superior conjunction (with the + sign) the logarithm has the argument(
rB +

√
r2
B − h2

0

)(
rA +

√
r2
A − h2

0

) = rA + rB + rAB

rA + rB − rAB

, (75)

as easily checked by cross multiplication using (72); then the standard expression (2) is
properly recovered. (See the appendix for the confusion that can arise due to the gauge
freedom and the difference between the closest approach and the distance b0.) In the inferior
case, instead,

tB − tA = rAB + mN1 ln

⎛
⎝ rB +

√
r2
B − h2

0

rA +
√

r2
A − h2

0

⎞
⎠ .

Before proceeding to the next order we need to evaluate h1 with (63). Differentiating (69)
twice we easily get

h1

⎡
⎣ 1√

r2
B − h2

0

± 1√
r2
A − h2

0

⎤
⎦ = N1

h0

⎡
⎣ rB√

r2
B − h2

0

± rA√
r2
A − h2

0

⎤
⎦ . (76)

In section 8 the superior case in which rA → ∞ will be considered; it simply gives

h1 = N1rB

h0
. (77)

Considerable simplification may be achieved with the aid of the identities:√
r2
B − h2

0 = rB(rB − rA cos 	AB)/rAB; (78)√
r2
A − h2

0 = ±rA(rA − rB cos 	AB)/rAB. (79)

In both cases the expression for h1 becomes

h1 = N1

(
rA + rB

rAB

)(
1 − cos 	AB

sin 	AB

)
. (80)
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It is useful to record the value of b1 = h1 − N1:

b1

⎡
⎣ 1√

r2
B − h2

0

± 1√
r2
A − h2

0

⎤
⎦ = N1

h0

[√
rB − h0

rB + h0
±
√

rA − h0

rA + h0

]
. (81)

Enhancement is in progress: in the superior case, with the + sign, the elongation comes close
to π and h1 becomes large, as discussed in the following section. In the inferior case h1

remains of order unity.
An expansion of G(r, h) in powers of m generates a corresponding expansion of S(h)

(see equation (87) below). At the next order (see (65)), we need G2(r, h), G1(r, h) and
its first derivative with respect to h, and G0(r, h) with its first and second derivatives (see
(55)). At order s we need G0(r, h) with its first s derivatives. If these differentiations are
carried out before the integration, a technical difficulty arises. h appears both in the lower
limit and in the square root. In the superior case, already at the second order each of the
two contributions diverges; the second derivative of the integrand, for instance, has a non-
integrable term ∝(r2 − h2

0

)−3/2
; it turns out, however, that this divergence is compensated by

the lower limit contribution. At higher orders the complexity increases. In the inferior case
the singular point is not within the integration domain and no hindrance arises. This suggests
that the integration is best carried out first, leading to a finite result whose differentiation is
straightforward.

The hindrance arises because as m → 0 the singular point at r = b moves. The integration
variable

u(r) = rN(r)

bN(b)
= ρ

h
(82)

keeps the singularity fixed at u = 1 and cures the problem. Note the appearance of Moyer’s
radial coordinate

ρ = rN(r) = r + mN1 + m2 N2

r
. (83)

Then (55) reads

G(r, h) = h

∫ u(r)

1
du

d ln r(u)

du

√
u2 − 1. (84)

r(u), the inverse of u(r), is itself a power series, so that
d ln r(u)

du
=
∑
s=0

(m

h

)s Cs

us+1
= 1

u
+

m

h

∑
r=0

(m

h

)r Cr+1

ur+2
= 1

u
+

m

h
q(u). (85)

We have split out the main part 1/u from the correction O(m/h). Cs are the numbers O(m0)

constructed with the set {Nk}:

C0 = 1, C1 = N1, C2 = N2
1 + 2N2, C3 = N3

1 + 6N1N2 + 3N3, . . . . (86)

Hence

G(r, h) = h
∑

s

(m

h

)s

CsJs(u) =
∑

s

msGs(r, h), (87)

where

Js(u) =
∫ u

1
du

√
u2 − 1

us+1
(88)

are the elementary functions. Except for constant contributions, their power expansions for
large u are odd (even) and for s even (odd). As implied in equation (87), h is not expanded in
the functions Gs.
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With this general formalism we can draw an interesting conclusion about enhancement,
which corresponds to the limit (uA, uB) � 1. When u � 1 the functions Js(u) converge to
a finite limit of order unity, except for J0(u) → u and J1(u) → ln u; hence, when h is fixed,
at higher order no enhanced terms arise in G(r, h) and in the reduced action. Enhancement
occurs only when h itself is expanded and expressed in terms of the geometric distances of the
end points, just as it happens in the case of Newtonian hyperbolic motion.

Using the universal integration variable u, the second-order contribution to the light-time
in (67) has been calculated out with the aid of a computer algebra code. We have

S2(h) = N2
1

2

⎛
⎝ 1√

r2
B − h2

± 1√
r2
A − h2

⎞
⎠ +

1

2h

(
N2

1 + 2N2
) (

arccos
h

rB

± arccos
h

rA

)
. (89)

With the help of (70), (78) and (79), this expression reduces to

S2(h0) = N2
1 r3

AB

2rArB(rB − rA cos 	AB)(rA − rB cos 	AB)
+

(N2
1 + 2N2)

2h0
	AB. (90)

The last line in (65) requires the derivatives S ′
1(h0) and S ′′

0 (h0):

S ′
1(h0) = −N1

h0

⎛
⎝ rB√

r2
B − h2

0

± rA√
r2
A − h2

0

⎞
⎠

= − N1rAB(rA + rB)(1 − cos 	AB)

h0(rB − rA cos 	AB)(rA − rB cos 	AB)
; (91)

S ′′
0 (h0) =

⎛
⎝ 1√

r2
B − h2

0

± 1√
r2
A − h2

0

⎞
⎠

= r3
AB

rArB(rB − rA cos 	AB)(rA − rB cos 	AB)
. (92)

The second term in parentheses in (65) is therefore

−1

2

S ′2
1 (h0)

S ′′
0 (h0)

= − N2
1 rAB(rA + rB)2(1 − cos 	AB)2

2rBrA sin2 	AB(rB − rA cos 	AB)(rA − rB cos 	AB)
. (93)

Combining this with the last term in parentheses in (65), we obtain

S2(h0) − 1

2

S ′2
1 (h0)

S ′′
0 (h0)

= − N2
1 rAB

rArB(1 + cos 	AB)
+

N2
1 + 2N2

2h0
	AB

= − N2
1 rAB

rArB(1 + cos 	AB)
+

rAB(8 − 4β + 8γ − 3ε)	AB

4rBrA sin 	AB

.

The light-time to second order (65) is therefore

tB − tA = rAB + mN1 ln[(rB + rA + rAB)/(rB + rA − rAB)]

+ m2 rAB

rArB

(
N2

1 + 2N2

2

	AB

sin 	AB

− N2
1

1 + cos 	AB

)
; (94)

tB − tA = rAB + mN1 ln
[(

rB +
√

r2
B − h2

0

)/(
rA +

√
r2
A − h2

0

)]
+ m2 rAB

rArB

(
N2

1 + 2N2

2

	AB

sin 	AB

− N2
1

1 + cos 	AB

)
, (95)
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in the superior and inferior cases, respectively. Remarkably, �2 has the same expression. This
agrees with the result obtained in [29].

With the same technique, using (68), we have also computed the reduced action at the
third order. For good measure, here is the result:

S3(h) = 1

6h2rB

(
r2
B − h2

)3/2

(
2
(
N3

1 + 6N1N2 + 3N3
)
r4
B

− 3h2
(
N3

1 + 6N1N2 + 4N3
)
r2
B + 6h4(N1N2 + N3)

)
± 1

6h2rA

(
r2
A − h2

)3/2

(
2
(
N3

1 + 6N1N2 + 3N3
)
r4
A

− 3h2(N3
1 + 6N1N2 + 4N3

)
r2
A + 6h4(N1N2 + N3)

)
. (96)

8. Enhancement

Enhancement occurs in the superior case when rA ∼ rB ∼ R are both much larger than
b0 = h0, so that (76) reduces to

h1

(
1

rA

+
1

rB

)
= h1

2

R
= 2N1

h0
. (97)

As hinted in section 1 for the Newtonian case, it is appropriate to formally introduce another
infinitesimal parameter h0/R, where R is the harmonic mean of the distances (10). When the
ratio rA/rB is O(R0), as we assume, the nth-order harmonic average 1

/
rn
A +1

/
rn
B is O(1/Rn).

The intermediate case b0 ≈ rA � rB , not discussed here, also shows enhancement. For
instance, it occurs in a nearly parabolic orbit with a small perihelion distance p�, as in the
case of a solar probe, for which even p� = 4 R� has been envisaged. The expansion of

h1 = RN1

h0
+ O(h0/R) (98)

has only odd terms. One should also note that, as can be seen from figure 1, the angle 	AB is
fixed by the Euclidean experimental setup and should be considered independent of m. In the
approximation h0 � R,

	AB = π − 2h0/R + O(h0/R)3

is slightly less than π ; the law of cosines has been used here.
We now proceed to discuss enhancement at the second and third order. It is convenient

to first review the behaviour of the function G(r, h) (87) in the limit r/h = O(R) � 1.
Replacing ρ with its expression (38), using (87), and expanding, one gets

G0(r, h) = hJ0(r/h), G1(r, h) = N1[J ′
0(r/h) + J1(r/h)],

G2(r, h) = N2

r
J ′

0(r/h) +
N2

1

2h
[J ′′

0 (r/h) + 2J ′
1(r/h)] +

C2

h
J2(r/h).

Now, when u � 1

J0(u) = −π

2
+ u +

1

2u
+

1

24u3
+ · · · ,

J1(u) = −1 + ln(2u) + · · · , J2(u) = π

4
− 1

u
+ · · · ;
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setting u = r/h,

G0(r, h) = r − πh

2
+

h2

2r
+

h4

24r3
+ · · · ,

G1(r, h) = N1

[
− h2

4r2
+ ln

2r

h
+ · · ·

]
,

G2(r, h) = N2
1

(
π

4h
+

h2

6r3

)
+ N2

(
π

2h
− h2

6r3
− 1

r

)
+ · · · .

We need

G0,hh(r, h) = 1

r
+

h2

2r3
→ 1

r
, G0,hhh(r, h) → h

r3
,

G1,h(r, h) = −N1

(
1

h
+

h

2r2

)
→ −N1

h
,

G1,hh(r, h) = N1

(
− 1

2r2
+

1

h2

)
→ N1

h2
,

G2,h(r, h) = N2
1

(
− π

4h2
+

h

3r3

)
+ N2

(
− π

2h2
− h

3r3

)

→ −(
N2

1 + 2N2
) π

4h2
.

In the expression (67) of �2 the last term is constructed with G2(r, h) and is not enhanced.
The second term comes from G1,h(r, h0) = −N1/h0 and, when summed over the end points,
contributes to the light-time with −2N1h1/h0 = −2N2

1 R
/
h0. Lastly, the first term gives

h0h
2
1

/
R = N2

1 R
/
h0. Therefore, the enhanced part of the second-order contribution to the

light-time is

�2 enh = −N2
1 R

/
h0 + O(R0), (99)

in agreement with (9). The second-order terms in the ODP are just the enhanced ones.
In a similar way, we get the enhanced third-order terms. For this we need the enhanced

part of h2, to be extracted from (64); its terms are constructed, respectively, with G0,hh, G0,hhh,
G1,hh and G2,h. Using their asymptotic expressions above one gets the relation

2

R
h2 +

h2
1

2

(
h0

r3
A

+
h0

r3
B

)
+

2h1N1

h2
0

− (
N2

1 + 2N2
) ( 2π

4h2
0

)
= 0.

The third term prevails, and

h2 = −h1N1R
/
h2

0 = −N2
1 R2

/
h3

0 + O
(
R
/
h2

0

)
, (100)

in agreement with the Newtonian case (which corresponds to N1 = 1).
In the expression (68) for �3,

�3/h2
0 = 2h1h2

R
+

h3
1

6

(
h0

r3
A

+
h0

r3
B

)
− 2h2N1

h0
+

h2
1N1

h0

− πh1

2h2
0

(
N2

1 + 2N2
)

+
1

3h2
0

(
2N3

1 + 6N1N2 + 3N3
); (101)

the first, third and fourth terms are enhanced so that finally

�3 enh = N3
1 R2

/
h2

0 + O(R/h0). (102)

Similarly, it turns out that �4 enh ∝ N4
1 R3

/
h3

0 + O(R/h0)
2.
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To summarize, expansion (12) reads (for the Sun)

�t

m
= �1 + 2 × 10−6 R�

h0
�2 + 4 × 10−12

(
R�
h0

)2

�3 + · · · . (103)

In the superior case, when R � h0, �s is a descending power of R/h0, beginning with
(R/h0)

s−1. This is the main enhanced term. It depends only on the single PPN parameter
N1: one could say, enhancement arises due to the long-range component ∝1/r of the index of
refraction. �1, typically ≈10 N1, is the (logarithmically enhanced) term of (3);

�2 = −N2
1

(
R

h0
+ O(1)

)
, �3 = N3

1

[(
R

h0

)2

+ O

(
R

h0

)]

single out the main enhanced contribution. For a given R, the strongest possible enhancement
occurs when h0 = R�; numerically

�t

m
= 10N1 − 2 × 10−6 R

R�
N2

1 + 4 × 10−12N3
1

(
R

R�

)2

+ · · · . (104)

In a typical configuration, with one station on the Earth, rA = 1AU � rB , so that
R = 2 AU = 400 R�. The three terms in the expression above are about 20, 3.2 × 10−3, and
6.4 × 10−7. For a given accuracy in N1 (or �1), this shows how many terms are needed in the
expansion in this extreme case.

9. Deflection

In the standard theory, the deflection of the image of a faraway source is the acute angle δ

between the asymptotes of the ray. Taking the origin of longitudes on the symmetry axis OK
through the closest approach (figure 4) and using (53), the longitude of the outgoing asymptote
reads (with ρ = uh)

φ∞ = π + δ

2
= h

∫ ∞

b

dr

r
√

ρ2 − h2
=
∫ ∞

1
du

d ln r(u)

du

1√
u2 − 1

. (105)

Expanding in powers of m/h, using (86) and separating out the main part, we obtain

φ∞ =
∑
s=0

CsIs

(m

h

)s

= π

2
+

m

h

∑
s=1

CsIs

(m

h

)s

, (106)

where

Is =
∫ ∞

1

du

us+1
√

u2 − 1
are the numerical constants and d(log(r(u))/du has been defined in equation (85). The total
deflection is explicitly

δ = 2N1
m

h
+ π

N2
1 + 2N2

2

(m

h

)2
+

4
(
N3

1 + 6N1N2 + 3N3
)

3

(m

h

)3
+ · · · .

In the more common isotropic gauge (83)

h = bN(b) = b + N1m + N2
m2

b
+ N3

m3

b2
+ · · · ,

and so

δ = 2N1
m

b
+

π(N2
1 + 2N2) − 4N2

1

2

(m

b

)2
+

+
10N3

1 + 18N1N2 + 12N3 − 3πN3
1 − 6πN1N2

3

(m

b

)3
+ · · · . (107)
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In terms of the PPN coefficients and using the expansion of h, to second order we have

δ = 2m(γ + 1)

h
+

πm2

4
(8 − 4β + 3ε + 8γ ), (108)

which agrees with [13] and [26]; in general relativity, and using the closest approach b,

δ = 4
m

b
+ (15π − 32)

m2

4b2
+

(155 − 45π)m3

3b3
, (109)

in agreement to second order with [7].
This standard approach, however, is not adequate for astrometric observations, which are

carried out from a point B at a finite distance rB . In the linear approximation this problem has
been solved in [19], section 40.3; here we give a general formulation and derive the quadratic
term. Referring to figure 4, we need the unit tangent vector n(φ) in the counterclockwise
direction (increasing φ) at a generic point (r cos φ, r sin φ) on the ray (for simplicity, on the
outgoing branch), expressed in terms of the function r(φ):

n(φ) = (r ′ cos φ − r sin φ, r ′ sin φ + r cos φ)√
r ′2 + r2

. (110)

From (60)

r ′(φ) = r

√
ρ2 − h2

h
,

so that at B, the tangent vector is

nB = 1

ρB

(√
ρ2

B − h2 cos φB − h sin φB,

√
ρ2

B − h2 sin φB + h cos φB

)
= (nBx, nBy). (111)

With

cos χB = h/ρB = 1/uB, sin χB =
√

ρ2
B − h2

/
ρB =

√
1 − 1/u2

B,

it is convenient to introduce the quantity χB , a function on the ray; in the limit m → 0, since
ρ → r and h → 1, it reduces to αB (figure 1). Then

nB = (sin(χB − φB), cos(χB − φB)). (112)

The deflection δB is provided by the vector product

|n� × nB | = sin δB,

where n� = (sin(δ/2), cos(δ/2)) is a unit vector along the asymptote of the incoming ray.
Hence we obtain the exact expression

δB = φB − χB +
δ

2
. (113)

Two effects contribute in (113): a local term χB due to the change in the tangent, and a change
in the orientation of the outgoing asymptote relative to OA. In the case of GAIA and other
space astrometric projects, no images can be obtained near the Sun, so that rB = 1 AU ≈ h

and there is little enhancement. The data analysis will be truly global, with subtle statistics.
The expected angular measurement error ≈5 × 10−11 is quite below the first-order deflection
≈4 × 10−8 and much larger than the second-order term ≈10−16; however, the fractional
difference between δ and δB is not small. With our powerful formalism the derivation of the
second-order approximation to δB is straightforward.
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Two limits are noteworthy. When m → 0, φB tends to αB and, of course, there is no
deflection. To recover the standard expression when B goes to infinity, note that, by use of
(85),

φB =
∫ uB

1
du

d ln r(u)

du

1√
u2 − 1

= χB +
m

h

∫ uB

1
du

q(u)√
u2 − 1

;

therefore, to second order,

φB =
(

1 +
m2C2

2h2

)
χB +

mC1

√
u2

B − 1

huB

+
m2C2

√
u2

B − 1

2h2u2
B

. (114)

Thus, the deflection reads

δB = δ

2
+

(
m2C2

2h2

)
χB +

mC1

√
u2

B − 1

huB

+
m2C2

√
u2

B − 1

2h2u2
B

. (115)

In the limit uB → ∞, this agrees with equation (107). In terms of rB and h0, this is

δB = δ

2
+
√

r2
B − h2

0

m

h0rB

(
C1 +

mC2

2rB

)
+

m2C2χB

2h2
0

+
m2C1√
r2
B − h2

0

(
N1h0

r2
B

− h1rB

h2
0

)
. (116)

For uB finite, this result agrees to first order with [19], equation (40.11).

10. Conclusion

With the implementation of optical lasers in deep space, experimental gravity will undergo a
big leap. The planned mission ASTROD ([22, 23] and other papers) will consist of a fleet of
three drag-free spacecraft in a triangular configuration with semi-major axes of about 1 AU.
Although no detailed error analysis is available, ranging accuracies of 3 × 10−3 cm or better
are expected; with closest approach less than 1 AU, this error is comparable with, or smaller
than, the second-order gravitational delay.

Optical interferometry in space will make huge improvements in phase measurements
possible. The GAME (Gamma Astrometric Measurements Experiment) project (see [15])
consists of a Fizeau interferometer in the focal plane of a space telescope to measure the
angular separation of stars in a narrow field of view near the Sun. The expected accuracy in
γ of 10−7 will require second-order corrections in the gravitational delay.

LISA—a planned mission for low-frequency gravitational wave detection ([12, 14] and
many other papers, in particular [20])—will fly three drag-free spacecraft orbiting at 1 AU
at the vertices of an equilateral triangle with sides L = 5 × 1011 cm; this fleet will rotate
around its centre with the period of a year. Three optical interferometers with baseline L will
operate simultaneously, with an expected sensitivity σL/L ≈ 10−21 or better. The change in
light-time difference between two arms due to the solar gravitational delay has the period of
6 months, in a frequency band overwhelmed by the acceleration noise, but it is interesting to
evaluate the effect. For two vertices A and B, rB − rA = δr ≈ L � (rA, rB) = 1 AU. In the
(now generic) inferior case the reduced action (51) (with the − sign!) is of order

rAB + mN1
δr√

r2
A − h2

0

≈ 5 × 1011cm + 104 cm.

With the approximation δr � 1 AU the action reads
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S(h) = h	AB +
δr

rA

√
r2
AN2

(
r2
A

) − h2

= h	AB +
δr

rA

⎡
⎣√r2

A − h2 + m
N1rA√
r2
A − h2

+
m2

2

⎛
⎝N2

1 + 2N2√
r2
A − h2

− N2
1 r2

A(
r2
A − h2

)3/2

⎞
⎠
⎤
⎦ ,

(117)

an expression that can be used directly to obtain all relevant quantities. For an estimate,
however, it suffices to remark that in the above m-expansion each term is smaller than
the previous one by O(m/rA) = 10−8; hence for LISA the first-, second- and third-order
corrections to the light-time are, respectively, of order 104 cm, 10−4 cm and 10−12 cm,
corresponding to gravitational wave signals of order

2 × 10−8, 2 × 10−16, 2 × 10−24.

We did not investigate the consequences of this large, but low-frequency signal on the
performance of the instrument.

The puzzle of the ODP expression for the gravitational delay has been understood. It
must be considered in the framework of an expansion in powers of m/b; of all second-order
terms so arising in a close conjunction some are enhanced. They can be rigorously singled
out with a further expansion in diminishing powers of R/b0; those that appear in the ODP
are just those of order m(m/b0)(R/b0). With the powerful tool of geometrical optics, we
have provided a procedure to extend the calculation to higher order and have obtained the full
correct second-order term of the delay.

A methodological reflection is a fit conclusion. The evaluation of the gravitational delay,
a conceptually simple and straightforward problem, faces subtle mathematical difficulties
and a great algebraic complexity. Our approach is based upon two unusual mathematical
levels of description: light propagation with the eikonal theory, rather than null geodesics,
and asymptotic power series, an abstract mathematical tool. The latter, in which ordinary
functions are set aside and an abstract mathematical tool is employed, seemingly runs against
physical intuition. As shown, both are essential to directly attain, and take advantage of, the
crucial features of the problem: the light-time as the minimum of Fermat’s action, and a safe
and automatic procedure to select and estimate different terms. This is another example of the
tenet that every physical problem has an appropriate, often not intuitive, level of mathematical
description, and severe penalties are in store for its neglect.

Appendix

The radial gauge freedom and the difference between the closest approach and b0 can cause
some confusion. For example, the textbook [30] presents (equation (8.7.4)) the light-time
between the closest approach and a generic point; it is expressed in Schwarzschild’s gauge r̄

and reads

t (r̄, b̄) =
√

r̄2 − b̄2 + (1 + γ )m ln
r̄ +

√
r̄2 − b̄2

b̄
+ m

√
r̄ − b̄

r̄ + b̄
,

quite different from (2). In a real case two such terms are needed, one for each branch. But,
contrary to what stated in the textbook, the sum of the two square roots (first term) is not the
distance AB. The isotropic gauge and the distance b0, not the closest approach, should be used.
First, if one sets (37) r̄ = r + γm, the formula reads, to O(m),

t (r, b) =
√

r2 − b2 + (1 + γ )m

(
ln

r +
√

r2 − b2

b
+

√
r − b

r + b

)
.
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Both formulae are useless, however, because the closest approach b = b0 + mb1 is not known
beforehand. The ray must be anchored to two known points and, with b1, is determined by the
unknown γ with (81). Because√

r2 − b2 =
√

r2 − b2
0 − m

b1√
r2 − b2

0

,

√
r2
A − b2 +

√
r2
B − b2 = rAB − mb1

⎛
⎝ 1√

r2
A − b2

0

+
1√

r2
B − b2

0

⎞
⎠

= rAB − m(1 + γ )

(√
rA − b0

rA + b0
+

√
rB − b0

rB + b0

)
,

and the standard formula is recovered.
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